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We define the nonperturbative part of a quantity as the difference between its numerical value and the
perturbative series truncated by dropping the order of minimal contribution and the higher orders. For the
anharmonic oscillator, the double-well potential, and the single plaquette gauge theory, the nonperturba-
tive part can be parametrized as A�Be�C=� and the coefficients can be calculated analytically. For lattice
QCD in the quenched approximation, the perturbative series for the average plaquette is dominated at low
order by a singularity in the complex coupling plane and the asymptotic behavior can only be reached by
using extrapolations of the existing series. We discuss two extrapolations that provide a consistent
description of the series up to order 20–25. These extrapolations favor the idea that the nonperturbative
part scales like �a=r0�

4 with a=r0 defined with the force method. We discuss the large uncertainties
associated with this statement. We propose a parametrization of ln�a=r0� as the two-loop universal terms
plus a constant and exponential corrections. These corrections are consistent with a2

1-loop and play an
important role when �< 6. We briefly discuss the possibility of calculating them semiclassically at large
�.
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I. INTRODUCTION

The perturbative renormalizability of the standard
model is a remarkable property that played an important
role in establishing its phenomenological prominence. It
guarantees that we can calculate the radiative corrections at
any order in perturbation theory. However, Dyson’s argu-
ment [1] suggests that these perturbative series are diver-
gent and one needs to truncate them in order to get a finite
result. A procedure often used for this purpose consists in
dropping the smallest contribution at a given coupling and
all the higher order terms. The difference between this
truncated series and the numerical value of the quantity
calculated can be called the nonperturbative part (NPP).
The NPP depends on the truncation procedure and also on
the renormalization scheme. However, if the NPP has a
simple parametrization and if we can calculate it approxi-
mately, we will have made a big step toward a complete
solution of the problem.

In this article, we discuss the NPP as defined above for a
variety of models. Our main goal is to find an accurate
formula for the average plaquette in lattice QCD in the
quenched approximation. The paper is organized as fol-
lows. In Sec. II, we calculate the minimal error that can be
made at a given coupling, if we assume that for sufficiently
small coupling the error is dominated by the first order
dropped. In Sec. III, we show that the general estimates of
Sec. II work well for the anharmonic oscillator. In Sec. IV,
we show that, for the ground state of the double-well
potential, the one instanton effect is larger than the error
estimated on the basis of the asymptotic behavior of the
perturbative series. However, for the average of the two
lowest energy levels, we obtain a good agreement with the

general estimate. The case of a SU�2� lattice gauge theory
with one plaquette is discussed in Sec. V. In that case, the
NPP can be calculated exactly and it can be checked that
the error formula works well. In contrast to what happens
for the anharmonic oscillator where the error at a given
order has a given sign, the examples discussed in Secs. IV
and V show more complicated sign patterns that can be
studied easily because we can calculate the numerical
values very accurately. In particular, Figs. 1–9 should be
understood as a tutorial for the interpretation of Figs. 14
and 15.

In all the above examples, the NPP can be approximated
as A�Be�C=� with � a generic notation for the expansion
parameter. Could the same type of result be obtained in
lattice gauge theory? Lattice QCD in the quenched ap-
proximation is introduced in Sec. VI. Simple hypotheses
(power of the two-loop renormalization invariant scale,
power of the lattice spacing) for the NPP of the plaquette
are compared with the numerical data using a series calcu-
lated up to order 10 [2]. This order is not large enough to
decide if any of the hypotheses are adequate. Higher order
extrapolations are necessary to discriminate among the
various possibilities. In Sec. VII, two extrapolations are
discussed. One is based on the existence of complex sin-
gularities [3], the other on the existence of an infrared
renormalon [4–6]. These two extrapolations predict quite
correctly the 16th coefficient as it can be obtained from a
graph in Ref. [7]. They both seem consistent with the
possibility [7,8] that the NPP is proportional to the 4th
power of the lattice spacing as parametrized using the force
method in Refs. [9,10]. The uncertainties associated with
the extrapolations are discussed in Sec. VIII. In Sec. IX, we
discuss an exponential parametrization of the lattice spac-
ing as a function of the inverse coupling. Our result is
consistent with the possibility of corrections scaling ap-*Electronic address: yannick-meurice@uiowa.edu
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proximately like a2
1-loop, in good agreement with a sugges-

tion made in Ref. [11]. In the Conclusions, we discuss the
possibility of calculating the corrections semiclassically.

Some words of caution, the separation between the NPP
and the truncated series is a computational scheme. We do
not claim that the NPP has a distinct physical interpreta-
tion. In the past, there have been attempts [6–8,12] to
relate the difference between the average plaquette and
its perturbative expansion to the gluon condensate used
in calculations based on the operator product expansion
(OPE) in the continuum. The results presented here can
certainly be compared to the lattice calculations in these
references; however, our goal is to understand a particular
lattice model studied with a particular perturbative scheme.
We believe that an accurate parametrization of the NPP,
defined above as a function of �, is a preliminary step that
needs to be completed before attempting to extract accu-
rate numerical values of continuum quantities such as the
gluon condensate.

II. MINIMAL ERROR ESTIMATE

In the following, we consider quantities Q which admit
an asymptotic series of the form

 Q�
X1
k�0

ak�k: (1)

We assume that the leading growth of the coefficients can
be parametrized as follows:

 ak � C1C
k
2��k� C3�: (2)

This type of behavior is justified generically in Ref. [13]. In
the case of lattice gauge theory, this type of behavior is
seen explicitly in the limiting case of the one plaquette
model discussed in Sec. V. We define �k as the difference
between the numerical value of Q and the series truncated
at order k:

 �k��� � Q��� �
Xk
l�0

al�
l: (3)

In addition, we will assume that, for sufficiently small
coupling, �k is approximately given by the next order
contribution

 �k ’ �k�1ak�1: (4)

At fixed coupling �, j�kj can then be minimized for k �
k? with

 k? ’ ��jC2j�
�1 � C3 � �1=2� �O��jC2j�: (5)

This expression has been obtained by using the leading
term of the Stirling formula for the gamma function
(
�������
2�
p

zz�1=2e�z). In Eq. (5), ��jC2j�
�1 is the leading term

and �C3 � �1=2� the first correction. It assumed that � is
small enough to neglect the O��jC2j� terms which require

the higher order terms of the Stirling formula. Plugging
Eq. (5) in the expected error gives the minimal error,

 min kj�kj ’
�������
2�
p

jC1j��jC2j�
1=2�C3 e��1=jC2j��: (6)

The exponential part of this formula is well known [13].

III. THE ANHARMONIC OSCILLATOR

A simple quantum mechanics example where the situ-
ation described in Sec. II is approximately realized is the
anharmonic oscillator. The Hamiltonian reads

 H � p2=2� x2=2� �x4: (7)

We discuss the perturbative expansion of the ground state
energy

 E0 �
X
k�0

ak�k: (8)

The leading asymptotic behavior of the coefficients has
been calculated by Bender and Wu [14]:

 ak � ��1�k�1
�����������
6=�3

q
3k��k� 1=2�: (9)

Using Eq. (6), we obtain

 min kj�kj ’ �
������
12
p

=��e��1=3��: (10)

This is illustrated in Fig. 1 where the logarithm of the error
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FIG. 1. Natural logarithm of the absolute value of the differ-
ence between the series and the numerical value for order 1 to 15
for the anharmonic oscillator as a function of 1=�. As the order
increases, the curves get darker. The thicker dark curve is
ln��

������
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p

=��e��1=3���.
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is plotted versus 1=�. With this choice of variables, the
minimal error is represented by a straight line that is
approximately tangent to all the curves representing the
empirical error.

A careful look at Fig. 1 shows that the empirical curves
go slightly below our estimated error. In other words, j�kj
is slightly smaller than Eq. (4). This is illustrated in Fig. 2.
One can see that the minimal error from Eq. (10) provides
an envelope for the curves from Eq. (4) at various order, but
the empirical j�kj are slightly smaller. One also sees that
Eq. (4) becomes better as � becomes smaller. A more
detailed study shows that the difference between Eq. (4)
and j�kj decreases as a power of � close to 1. The features
of j�kj seem related to the fact that the series has alternated
signs. In the following, we will only consider same sign
series. Understanding the above feature is not crucial for
the rest of the discussion.

IV. THE DOUBLE WELL

A more intricate situation in encountered for the double-
well potential. In shifted coordinates, the potential reads

 V�y� � �1=2�y2 � gy3 � �g2=2�y4: (11)

If we expand the ground state in powers of g2,

 E0 �
X
k�0

akg2k; (12)

the leading asymptotic behavior of the coefficients reads
[15]

 ak ���3=��3k��k� 1�: (13)

This implies

 min kj�kj ’
���������
6=�

p
g�1e��1=3g2�: (14)

Figure 3 shows that this lower bound on the error is not
reached. Rather, we see that the error is bounded by the one
instanton contribution

 �E0 � ��g��
�1=2e��1=6g2�: (15)

This is a nonperturbative effect that at first sight is not
related to the large order behavior of the perturbative
series. However, some connection exists (see below).

As illustrated in Fig. 4, a good approximation for the
error at order k is

 �k ’ ��g��
�1=2e��1=6g2� � ak�1g

2�k�1�: (16)

Both terms are negative and there is no possible cancella-
tion between them.

Except for the overall normalization, Eq. (14) is the
square of the instanton effect. This is not a coincidence.
In Ref. [15], it is explained that Eq. (13) is an instanton–-
anti-instanton effect. It is possible to get rid of the one
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FIG. 3. Natural logarithm of the absolute value of the differ-
ence between the series and the numerical value for order 1 to 15
(in g2) versus 1=g2 for the ground state of the double-well
potential. As the order increases, the curves get darker. The
thicker dark curve is ln��g���1=2e��1=6g2��. The dashed curve is
ln�
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p
g�1e��1=3g2��.
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FIG. 2. Natural logarithm of the absolute value of the differ-
ence between the series and the numerical value for order 10 as
in Fig. 1 compared with the estimate of Eq. (4) at order 10
(dashes). The thicker dark curve is ln��
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p

=��e��1=3���.
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instanton effect by replacing the numerical value of the
ground state by an average over the two lowest energy
levels. This can be seen from the lowest order semiclassical
formula [16]:

 E0 ’ �1=2� � �g���1=2e��1=6g2�;

E1 ’ �1=2� � �g���1=2e��1=6g2�:

One then recovers Eq. (14) as shown in Fig. 5. Note that the
approximate doubling of the energy levels at small cou-
pling is not seen in perturbation theory because one mini-
mum of the potential goes to infinity when g goes to zero.

As illustrated in Fig. 6, a good approximation for the
error at order k on the average of the two lowest energy
states is

 �av
k ’

���������
6=�

p
g�1e��1=3g2� � ak�1g

2�k�1�: (17)

The two terms are of opposite signs and there are possible
cancellations between them. This explains the spikes seen
in Figs. 5 and 6.

V. A ONE PLAQUETTE GAUGE MODEL

Before discussing quenched QCD, we consider the
single plaquette SU�2� gauge theory. After gauge fixing
three of the four links, the partition function reads
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FIG. 6. Natural logarithm of the absolute value of the differ-
ence between the series and the numerical value for order 10
(in g2) versus 1=g2 for the average of the two lowest states of
the double-well potential (solid line). The dashed curve is
ln�j
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p
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22j�.
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FIG. 5. Natural logarithm of the absolute value of the
difference between the series and the numerical value for order
1 to 10 (in g2) versus 1=g2 for the average between the two
lowest energy states of the double-well potential. As the order
increases, the curves get darker. The thicker dark curve is
�g���1=2e��1=6g2�. The dashed curve is

���������
6=�

p
g�1e��1=3g2�.
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FIG. 4. Natural logarithm of the absolute value of the differ-
ence between the series and the numerical value for order 10 (in
g2) versus 1=g2 for the ground state of the double-well potential
(solid line). The long dashed curve is ln�ja11g22j�. The dots
represent ln�j � �g���1=2e��1=6g2� � a11g

22j�.
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 Z��� �
Z
dUe���1��1=2� Re Tr U�: (18)

Assuming �> 0, this can be rewritten as

 Z��� � �2=��3=2 1

�

Z 2�

0
dtt1=2e�t

�����������������������
1� �t=2��

q
: (19)

In Ref. [17], it is shown that the integral can be expressed
exactly as a converging expansion in ��1:

 Z��� � �����3=221=2
X1
k�0

Ak�2����k; (20)

with

 Ak�x� � 2�k
��k� 1=2�

k!�1=2� k�

Z x

0
dte�ttk�1=2: (21)

Note that the peak of the integrand e�ttk�1=2 becomes
larger than 2� when k � 2�� 1=2; consequently, the
expansion is approximately truncated at that order. On
the other hand, if we extend the range of integration from
2� to �1, the integral in Eq. (21) becomes the gamma
function and the coefficients grow factorially. We can
determine the parameters C1, C2, and C3 of the leading
asymptotic behavior given in Eq. (2). We consider the sum
without the prefactor �����3=221=2. From the study of
ratios of successive coefficients, we obtain C2 � 1=2 and
C3 � 0. Using Stirling formula, we then obtain C1 � 1.
From Eq. (5), the optimal order of truncation is

 k? � 2�� 1=2: (22)

Note that this is exactly the same order as the order where
the peak of the integrand moves outside of the range of
integration in the exact Eq. (21). From Eq. (6) and after
restoring the prefactor, we obtain

 min kj�kj ’ �2
1=2=����2e�2�: (23)

Figure 7 shows that this is a good approximation.
It is now possible to define precisely what we mean by

‘‘the nonperturbative part of Z���.’’ The perturbative part
is the perturbative series [Eq. (21) with the argument of Ak
replaced by 1] truncated at the integer closest to k?

defined above, and denoted r�k?� hereafter. The nonper-
turbative part consists of two parts. The first part, denoted
R, consists in the remaining terms of orders r�k?� � 1 and
higher in Eq. (20). The second part, denoted T, is minus the
integration tails for the first r�k?� terms that we have added
in order to get a perturbative series in 1=� with
�-independent coefficients. More explicitly,

 Z��� � Zpert��� � ZN pert���; (24)

with

 Zpert��� � �����3=221=2
Xr�k?�
k�0

Ak�1���k; (25)

and

 ZN pert��� � �R��� � T���� (26)

 R��� � �����3=221=2
X1

r�k?��1

Ak�2���
�k (27)

 T��� � �����3=221=2
Xr�k?�
k�0

��k
��k� 1=2�

k!�1=2� k�

�
Z 1

2�
dte�ttk�1=2: (28)

The asymptotic behavior of T��� can be estimated using
Sec. VI of Ref. [17]. We obtained that, at leading order, the
contribution of the tails up to order K is

 �Z��;K� 	 AKe�2���12��3=2; (29)

with

 AK � �
XK
l�0

��l� 1=2�

l!
: (30)

Writing �1� e�t� as e�t�et � 1� and expanding et, we
obtain
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FIG. 7. Natural logarithm of the absolute value of the differ-
ence between the series and the numerical value for order 1 to 10
for the one plaquette integral as a function of �. As the order
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X1
l�1

��l� 1=2�

l!
�
Z 1

0
dtt�3=2�1� e�t� � 2�1=2: (31)

For large K,

 

XK
l�1

��l� 1=2�

l!
’
Z K

0
dtt�3=2�1� e�t�; (32)

we obtain the leading behavior

 AK ’
Z 1
K
dtt�3=2 � 2K�1=2: (33)

Replacing K by its optimal value in Eq. (22), we conclude
that for large �

 T��� ’ �2=��3=2��3=2e�2�: (34)

It is interesting to notice that T��� is larger by a factor
�1=2 than the estimated error given in Eq. (6). This means
that we should also have

 R��� ’ �2=��3=2��3=2e�2� (35)

so that the two leading order contributions cancel. The
correctness of this argument is illustrated in Figs. 8 and 9.

In conclusion, we have learned that, in this simple lattice
model with a compact gauge group, the nonperturbative
part of the integral has two pieces. One piece comes from
the higher orders, is positive, and dominates at sufficiently
large �. The other comes from the added tails of integra-
tion, is negative, and dominates at sufficiently small �. It is

possible that this pattern persists for the usual lattice gauge
models on cubic lattices.

VI. QUENCHED QCD

We now proceed to introduce lattice quenched QCD, the
main model discussed in this article. With standard nota-
tions, the partition function is

 Z �
Y
l

Z
dUle

��
P
p

�1��1=N� Re Tr �Up��

(36)

with � � 2N=g2. For symmetric finite lattices with LD

sites and periodic boundary conditions, the number of
plaquettes is

 N p � LDD�D� 1�=2: (37)

Using the free energy density

 f � ��1=N p� lnZ; (38)

we define the average plaquette

 P � @f=@�; (39)

and its perturbative expansion

 P��� �
X
m�1

bm�
�m: (40)
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In the following, we used the first three analytical values
from Ref. [18], and the coefficients from 4 to 10 from
Ref. [2]. The coefficients of Ref. [7] up to order 16 are
given in a figure and will be used to check extrapolations.
At large �, high precision data is necessary and we have
used some values of the average plaquette from
Refs. [19,20].

A simple guess is that the envelope of the accuracy
curves is given by a power of some renormalization group
invariant scale. For instance, one could test the idea that it
is proportional to the fourth power of the two-loop renor-
malization group invariant scale

 min kj�kj ’ C���204=121e��16�2=33��: (41)

Figure 10 shows that, up to order 10, this provides a
reasonable envelope in the region 5:5<�< 6. The con-
stant C has been fixed to 6:5� 108 by finding a plateau in
j�10j���

�204=121e�16�2=33��. As the curves leave the conjec-
tured envelope, they become more flat. For instance at
order 8 and for 6<�< 7, a reasonable fit can be obtained
[6] with the square of the perturbative renormalization
invariant scale. However, this does not seem to characterize
the asymptotic behavior.

Note also that, at values of � close to 6, the empirical
error is significantly larger than the next order contribution.
This is illustrated in Fig. 11 at order 5.
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FIG. 10. Natural logarithm of the absolute value of the differ-
ence between the series and the numerical value for order 1 to 10
for quenched QCD as a function of �. As the order increases, the
curves get darker. The approximately straight dark curve is
ln�6:5� 108 � ���204=121e��16�2=33���.
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6j�. The solid curve is ln�6:5� 108 �
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Another simple guess is that the envelope is proportional
to a power of the lattice spacing a expressed in units of
r0 � 0:5 fm. For the interval 5:7<�< 6:92, the follow-
ing empirical power series [10] was obtained from the
force method:

 ln�a=r0� � �1:6804� 1:7331��� 6� � 0:7849��� 6�2

� 0:4428��� 6�3:

It has been suggested that the envelope is proportional to a4

[7,8,12], however this is hard to establish without the
knowledge of the higher orders. On the other hand, the
accuracy curve at order 10 can be fitted very well with a2

but again it does not seem to characterize the asymptotic
behavior since the successive orders are still quite sepa-
rated. This is illustrated in Fig. 12.

The question is now, if the higher orders can be calcu-
lated will the envelope stay approximately straight as in
Fig. 10 or curl up as in Fig. 12? These two alternatives need
to be compared systematically. As we will see in the next
section, this requires the knowledge of coefficients of
higher orders than those actually calculated.

VII. LARGE ORDER EXTRAPOLATIONS

In this section, we consider two large order extrapola-
tions that can be built out of the first 10 terms used above.
The first extrapolation is based on the assumption justified
in Ref. [3] that @P=@� has a logarithmic singularity in the
complex � plane. Integrating, we obtain

 

X
k�1

ak�
�k ’ C�Li2��

�1=���1
m � i��� � H:c; (42)

with

 Li 2�x� �
X
k�1

xk=k2: (43)

In Ref. [3] we argued that 0:001< � < 0:01 and, for this
range of values, the low order coefficients depend very
little on �. For this reason, it is difficult to fit its value given
the accuracy of the coefficients. We have taken the inter-
mediate value � � 0:003 which is compatible with every-
thing we know and determined C � 0:0654 and
�m � 5:787 using the known values of a9 and a10 on a
244 lattice [2]. The estimated errors on these coefficients
and their impact on the determination of C and �m are
discussed at length in the next section. Other choices of �
with this order of magnitude do not affect our conclusions.
The numerical values are given in Table I. Except for the
first term, the agreement is very good. The fact that such a
good agreement can be reached by tuning two parameters
begs for a diagrammatic explanation.

We also obtained a16 � 7:7� 108. This is quite close to
what we found from Fig. 1 in Ref. [7]: a16 ’ 0:000 27�
616 ’ 7:6� 108. Note however, that this value of a16 was
obtained on a 84 lattice and the finite volume effects should

be significant. The perturbative series obtained from
Eq. (42) has finite radius of convergence [3,8]. This seems
to contradict the common wisdom [21] that if we ignore
nonperturbative effects (responsible for the fact that P
takes different limits [22] when g2 ! 0
), we should run
into much more serious problems. Consequently, we be-
lieve that Eq. (42) can only be a good model for the low
orders.

Models based on infrared renormalons [4–6] have a
better chance to reproduce the large order behavior of the
series. We assume

 P 	 K
Z t2

t1
dte� ��t�1� t33=16�2��1�x (44)

with

 

�� � ��1� d1=�� � � ��: (45)

In Refs. [4,6], the value x � 204=121 was used. Note that
t1 � 0 corresponds to the UV cutoff (we use that value
later) and t2 � 16�2=33 corresponds to the Landau pole.
Expanding �1� t33=16�2��1�x in powers of t and extend-
ing the integration range to1, we find that at leading order

 P��� �
X
m�1

�bm ���m; (46)

with

 

�b k � C1�33=16�2�k��k� x: (47)

Setting d2 and higher order coefficients to zero, x �
204=121, and using the known values of a9 and a10, we
obtain C1 � 0:219 and d1 � �3:82. The low order pre-
dictions are less good than for the previous method, for
instance, a6 � 120:4. At larger order we obtained a16 �
7:4� 108 which is close to 7:6� 108. Note that
e4�2�3:82�=33 ’ 97 is significantly larger than the usual [23]
factor 28.81 found for the conversion to the MS scheme.

The two extrapolation models are compared in Fig. 13.
The two models yield similar coefficients up to order 20.

TABLE I. bm: regular coefficients; ~bm: extrapolated coeffi-
cients for � � 0:003.

m bm ~bm

1 2 0.7567
2 1.2208 1.094
3 2.9621 2.811
4 9.417 9.138
5 34.39 33.79
6 136.8 135.5
7 577.4 575.1
8 2545 2541
9 11 590 11 590
10 54 160 54 160
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After that, the integral model has the logarithm of its
coefficients growing faster than linear.

Using Eq. (6), for the ���1 expansion, we obtain

 min kj�kj ’ 3:5� ���204=121�1=2e��16�2=33� ��: (48)

Shifting to � using Eq. (45) and neglecting ��1 correc-
tions,

 min kj�kj ’ 3:1108���204=121�1=2e��16�2=33��: (49)

Except for the�1=2 in the exponent, this is proportional to
the two-loop renormalization group invariant. The situ-
ation is reminiscent of what we encountered in Sec. V
where the error was smaller by a factor ��1=2 than naively
expected. Another possibility would be to take x �
204=121� 1=2 if we insist on having a quantity that is
scheme independent.

The study of the asymptotic behavior of the empirical
��1 expansion between orders 40 and 60 indicates C2 ’
0:203 quite close to 33=�16�2� ’ 0:209. The other values
obtained are quite different from those of the coefficients
of the ���1 expansion: C1 ’ 990 and C3 ’ 4:4. With these
values, the optimal order for � � 6 is 25.

The accuracy curves for the two models are compared in
Figs. 14 and 15. We have used the known values for the first
10 coefficients. A careful examination shows that the
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FIG. 13. ln�bk� for the dilogarithm model (solid line) and the
integral model (dashes). The dots up to order 10 are the known
values.
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FIG. 15. Natural logarithm of the absolute value of the
difference between the series and the numerical value for
order 1 to 30 for quenched QCD with the integral model. As
the order increases, the curves get darker. The long dashed
curve is ln�0:65�a=r0�

4�. The solid curve is ln�3:1� 108 �
���204=121�1=2e��16�2=33���.
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FIG. 14. Natural logarithm of the absolute value of the
difference between the series and the numerical value for
order 1 to 30 for quenched QCD with the dilogarithm model.
As the order increases, the curves get darker. The long dashed
curve is ln�0:65�a=r0�

4�. The solid curve is ln�3:1� 108 �
���204=121�1=2e��16�2=33���.
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figures hardly differ up to order 25. From these two figures,
it is plausible that the envelope of the true series is close to
0:65�a=r0�

4. This value of 0.65 does not correspond to a
best fit procedure. If we had forced the �a=r0�

4 behavior
and fitted the proportionality constant at order 26, we
would have obtained 0.79 for the dilogarithm model and
0.71 for the integral model. If we had plotted the corre-
sponding curves in Figs. 14 and 15, they would hardly be
visible on these black and white figures. By taking a
slightly smaller value 0.65, we made the dash curve more
easy to see. We could also have plotted the curve corre-
sponding 0:4�a=r0�

4 that can be inferred from the graphs
and the estimate of the gluon condensate of Ref. [7]. Such a
curve would be �0:49 below the one we drew.

The tadpole improvement [24] could be another method
to study the asymptotic envelope of the accuracy curves.
One defines the new series

 P ’
XK
m�0

bm�
�m �

XK
m�0

em�
�m
R �O���K�1

R � (50)

with a new expansion parameter

 ��1
R � ��1 1

1�
P
m�0

bm��m
: (51)

The consistent sets of numerical values [3,7,25], show that
the beginning of the series converges much faster. This is
clear up to order 8. However, for larger orders, the depen-
dence on the higher order coefficients of the original series
due to powers of 1=�1�

P
m�0bm�

�m� at low orders in �R
makes the tadpole improved series almost as slow as the
original series. In extracting the coefficient [7] of a4,
Rakow used a more sophisticated method where 1=�1�P
m�0bm�

�m� is replaced by the improved series with a
value of �R determined numerically [26]. This procedure
gives better perturbative estimates which explains that the
constant of proportionality 0.4 is smaller than 0.65 as
discussed above.

Instead of assuming the �a=r0�
4 behavior, it is also

possible to extract the power from linear fits of ln�j�kj�
versus ln�a=r0�. For k � 26 the two extrapolations give
similar fits near � � 6. For instance, �26 is 0:56�a=r0�

3:72

in the dilogarithm model and 0:63�a=r0�
3:90 for the integral

model. For larger k, the constant of proportionality and the
exponent keep increasing slowly for the dilogarithm model
and the procedure becomes meaningless for the integral
model. We now discuss in more detail the stability of this
fitting procedure.

VIII. UNCERTAINTIES ON EXTRAPOLATIONS

We now discuss the effects of the uncertainties of the
known coefficients on the extrapolations introduced in the
previous section. The determination of the unknown pa-

rameters in both models depends only on a9 and a10. The
errors on these coefficients are due to the finite volume and
the numerical implementation of the stochastic perturba-
tion theory. According to Ref. [2], from which we took the
values of a9 and a10 for a 244 lattice, the statistical errors
on a9 and a10 are close to 1% while the errors due to the
finite volume are less than half a percent for the calcula-
tions on a 244 lattice.

We have studied the effects of small changes of the
following form:

 ai ! ai�1� �i�; (52)

for i � 9 and 10 on the determination of the parameters A
(amplitude) and S (slope in a log-log plot) appearing in the
approximate parametrization

 �26 ’A�a=r0�
S ; (53)

which was our best estimate of the NPP of the plaquette in
the previous section. With the sign convention for �k in
Eq. (3), i.e., the numerical value minus the series at order k,
�k > 0 for k � 10. If the coefficients of the series are all
positive and end up growing factorially, it is clear that, for a
given �, there is some order for which the truncated series
becomes larger than the numerical value and �k becomes
negative. This explains the downward spikes that are
clearly visible for orders 29 and 30 of the integral model
on Fig. 15. On the other hand, for the dilogarithm model,
�k remains positive as k increases, over the whole �
interval for which �k is larger than the errors on the
numerical values of P.

When the value of the series becomes close to the
numerical value, the errors on the Monte Carlo estimates
of P become important. The numerical values that we have
used for the fits of A and S have estimated errors [19]
smaller than 5� 10�5. Consequently, the details of
Figs. 14 and 15 below �10 on the y axis are meaningless.

We have performed fits of A and S using ln�j�26j�
versus ln�a=r0� for 18 values of � between 5.68 and 6.10.
The quality of the fit can be assessed from

 �f �
�
�1=18�

X18

i�1

�Di= ln�j�26��i�j��2
�

1=2
; (54)

with

 Di � ln�j�26��i�j� � ln�A� � S ln�a��i�=r0�: (55)

�f give an estimate of the typical relative errors obtained
with the fit.

It is also useful to assess how well a particular choice of
parameters reproduces the known values of the known
coefficients of order 8 and less. For this purpose we have
defined
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 �a �
�
�1=4�

X8

j�5

��aj � aj�a9; a10�=aj
2

�
1=2
; (56)

with aj�a9; a10 understood as the value of aj obtained
from the models after the unknown coefficients have
been fixed using a9 and a10. We started at order 5 because
the differences on lower orders are quite large for the
integral model.

It is interesting to notice that, in both models, the ex-
trapolated coefficients depend linearly on a overall scale
factor called C in the dilogarithm model and C1 in the
integral model. These scale factors cancel if we consider
the ratio of the two equations determining the unknown
parameters. In other words, the parameters �m and d1

depend only on a9=a10. Consequently, if �9 � �10 � �,
a9=a10 is unchanged and the only effect of the change is to
rescale all the extrapolated coefficients by a common
factor 1� �. This type of modification generates a linear
response which is the same at all orders and has quite
controllable effects. On the other hand, if �9 � �10, the
parameters �m and d1 are modified and this has more
drastic effects on the extrapolated coefficients.

In order to give a quantitative idea, we have considered
the four cases corresponding to the condition j�9j �
j�10j � 0:01. The results are shown in Tables II and III.
The choice �9 � �0:01 and �10 � 0:01 has a �f signifi-
cantly larger than the other choices. For this choice, the

two models start differing significantly at order lower than
26 and then develop negative spikes at larger order. It
might have been a better choice to quote fits at lower order
where there is a better agreement between the two models
and smaller �f. For instance, at k � 22, we obtain A �

0:69 and S � 3:90 with �a � 0:007 for the dilogarithm
model and A � 0:61 and S � 3:77 with �a � 0:005 for
the integral model. As the fit for k � 26 did not look
reasonable for this choice of �i, we also added a line
with the same signs but a lower magnitude.

In summary, we obtained values of S between 3.3 and
4.3 for fits with a reasonable �f. The boundary of this
interval corresponds to fits that have a larger �a. These
results seem to favor the idea that the NPP scales like a4

over the idea that the NPP scales like a2. However, no
strong conclusions can be drawn because the extrapolation
models are empirical. The only indication of their approxi-
mate validity is that they provide consistent results up to
some reasonably large order. It should also be pointed out
that there is no universal agreement [5,27] about what
should be done about the Landau pole in Eq. (44). In order
to draw strong conclusions, one would need either numeri-
cal values of the coefficients up to significantly larger order
than available now or extrapolation models supported by a
detailed analysis of graphs having significant contributions
in lattice perturbation theory.

IX. PARAMETRIZATION OF THE FORCE SCALE

In the previous section, we considered the possibility of
having the minimal error proportional to the fourth power
of the two-loop renormalization group invariant scale.
What is attractive about this possibility is that it has the
generic form A�Be�C=�. However, the extrapolations sug-
gest that it is not a very accurate parametrization of the
envelope of the accuracy curves and that a �a=r0�

4 parame-
trization seems more promising. In this section, we con-
sider simple parametrizations of a.

First we study the derivative of ln�a� with respect to �
with the first two universal terms subtracted. It should be
noted that the derivative emphasizes the cubic terms in the
expansion of ln�a� and the difference between the two
expansions from Refs. [9,10] is more pronounced than
without the derivative (see Fig. 16). We propose the fol-
lowing parametrization:

 d ln�a=r0�=d� � ��4�2=33� � �51=121���1 � A1e�A2�:

(57)

This form was originally motivated by our idea of obtain-
ing a NPP that could be calculable semiclassically and was
found later in good agreement with an independent argu-
ment [11] (see below). We have also tried power parame-
trizations of the form B1�B2 and found that it requires a
large value of B2 (close to 16) not very stable under small

TABLE III. Values of C1, �d1, A, S, �f, and �a defined in
the text for the integral model, corresponding to various choices
of �9 and �10. All the fits refer to a comparison with the 26th
order.

�9 �10 C1 �d1 A S �f �a

0 0 0.219 3.82 0.63 3.90 0.004 0.08
0.01 0.01 0.221 3.82 0.70 4.01 0.006 0.07
�0:01 �0:01 0.216 3.82 0.57 3.81 0.003 0.08

0.01 �0:01 0.263 3.72 0.42 3.44 0.002 0.03
�0:01 0.01 0.182 3.92 2.29 5.24 0.024 0.12
�0:005 0.005 0.199 3.87 0.94 4.33 0.009 0.10

TABLE II. Values of C, �m, A, S, �f, and �a defined in the
text for the dilogarithm model, corresponding to various choices
of �9 and �10. All the fits refer to a comparison with the 26th
order.

�9 �10 C �m A S �f �a

0 0 0.0654 5.79 0.56 3.72 0.004 0.006
0.01 0.01 0.0661 5.79 0.60 3.81 0.005 0.006
�0:01 �0:01 0.0647 5.79 0.52 3.65 0.003 0.015

0.01 �0:01 0.0791 5.67 0.40 3.31 0.002 0.048
�0:01 0.01 0.0541 5.90 1.46 4.72 0.017 0.056
�0:005 0.005 0.0595 5.85 0.77 4.07 0.007 0.031
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changes of the fitting interval. Using the Taylor expansion
of Ref. [10] to produce a set of numerical values between
5.9 and 6.3, subtracting the first two terms of the right-hand
side (rhs), and taking the log, we can determine numeri-
cally the parameters A1 and A2 from a linear fit. The result
is A1 � �1:35� 107 and A2 � 2:82. For these values the
exponential corrections become larger than the two uni-
versal terms for �< 5:8. Integrating and fitting the con-
stant of integration in the same interval, we found

 ln�a=r0� � A3 � �4�2=33��� �51=121� ln���

� �A1=A2� e
�A2�; (58)

with A3 � 4:5276. This constant was obtained by plotting
the left-hand side minus all the other terms of the rhs versus
�. A nice plateau appears between � � 5:9 and 6.3. The
extremal values in this interval are 4.5272 and 4.5282.

Note that the value of A2 seems consistent with the idea
[11] of using a2

pert corrections for this quantity. The symbol
apert refers to the one-loop or two-loop expression which in
the short � interval considered here can hardly be distin-
guished from each other. For this reason, we have not
introduced any power correction in the last term of
Eq. (57). The assumption of a2

pert corrections fixes A2 �

8�2=33 ’ 2:4 which is close to the value 2.82 obtained
above.

It is possible to use Eq. (58) to predict ln�a=r0� at large
�. For instance, at � � 7:5, we obtain�3:59 (for�3:63 in
Ref. [28]) and�4:74 at� � 8:5 (for�4:81 in Ref. [28]). It
is also possible to obtain the lattice scale �L from the
constant of integration A3, namely �L � exp��A3�=r0 ’
4:4 MeV.

X. CONCLUSIONS

We have considered the definition of the nonperturbative
part of a quantity as the difference between its numerical
value and the perturbative series truncated by dropping the
order of minimal contribution (which is coupling depen-
dent) and the higher orders. For the anharmonic oscillator,
the double-well potential and the single plaquette gauge
theory, the nonperturbative part can be parametrized as
A�Be�C=� and the constants A, B, and C can be calculated
analytically.

For lattice QCD in the quenched approximation, the
perturbative series for the average plaquette is dominated
at low order by a complex singularity and, at this point, the
asymptotic behavior can only be reached by using extrap-
olations. We have considered two extrapolations that pro-
vide a consistent description of the series up to order 20–
25. More work is needed to understand these extrapolations
better. A diagrammatic interpretation of the dilogarithm
formula should be possible. The similarities between the
one plaquette integral and the renormalon motivated inte-
gral suggest that it might be possible to derive the latter
from an effective action for a single plaquette, obtained
from the large volume partition function after integrating
over all the other links. Ultimately, the two approximations
should be put together using dispersion relations in the
complex � plane.

The two extrapolations favor the idea that the nonper-
turbative part is a power of the lattice spacing calculated
using the force method and that the power is close to 4. We
found a parametrization of the force scale as the two-loop
universal terms with exponential corrections consistent
with a2

pert corrections. These corrections become quite
important when � is near or below 6.

For large �, we can treat the exponential corrections as
small quantities and expand in powers of these small
quantities. The NPP of the plaquette is then written as a
superposition of terms of the form Aj�Bje�Cj�. If the
constants Bj and Cj can be determined from general argu-
ments, we only need to determine the amplitudes Aj,
starting from those with smallest Cj. Calculating more
terms of the perturbative series and calculating more ac-
curate numerical values of the average plaquette at large �
would help in the empirical determination of these con-
stants. As � becomes large, the lattice spacing becomes
small and the NPP is small. It is plausible that the ampli-
tudes could be calculated by semiclassical methods in the
continuum. This is the most challenging part of the pro-
gram. A method that comes to mind is the instanton
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FIG. 16. d ln�a=r0�=d� using Ref. [10] (thick dashes), [9]
(small dashes), and Eq. (57) (solid line).

Y. MEURICE PHYSICAL REVIEW D 74, 096005 (2006)

096005-12



calculus. However, the infrared sensitivity of the procedure
is notorious and phenomenological input such as the gluon
condensate is often invoked to produce realistic formulas
[29]. Having accurate empirical formulas for a well-
defined model (quenched) lattice QCD would help to re-
visit this question from scratch.

ACKNOWLEDGMENTS

We acknowledge valuable discussions with C. Allton,
M. Creutz, F. di Renzo, A. Duncan, G. Parisi, P. Rakow,
and G. C. Rossi. This research was supported in part by the
Department of Energy under Contract No. FG02-
91ER40664.

[1] F. Dyson, Phys. Rev. 85, 631 (1952).
[2] F. Di Renzo and L. Scorzato, J. High Energy Phys. 10

(2001) 038.
[3] L. Li and Y. Meurice, Phys. Rev. D 73, 036006 (2006).
[4] A. H. Mueller, in Proceedings of the Workshop on QCD:

20 Years Later, Aachen, Germany, edited by P. M. Zerwas
and H. A. Kastrup (World Scientific, Singapore, 1993).

[5] M. Shifman, ITEP Lectures on Particle Physics and Field
Theory (World Scientific, River Edge, NJ, 2001).

[6] G. Burgio, F. Di Renzo, G. Marchesini, and E. Onofri,
Phys. Lett. B 422, 219 (1998).

[7] P. E. L. Rakow, Proc. Sci. LAT2005 (2006) 284 [hep-lat/
0510046].

[8] R. Horsley, P. E. L. Rakow, and G. Schierholz, Nucl. Phys.
B, Proc. Suppl. 106, 870 (2002).

[9] M. Guagnelli, R. Sommer, and H. Wittig (ALPHA
Collaboration), Nucl. Phys. B535, 389 (1998).

[10] S. Necco and R. Sommer, Nucl. Phys. B622, 328
(2002).

[11] C. R. Allton, hep-lat/9610016.
[12] A. Di Giacomo and G. C. Rossi, Phys. Lett. 100B, 481

(1981).
[13] J. C. LeGuillou and J. Zinn-Justin, Large-Order Behavior

of Perturbation Theory (North-Holland, Amsterdam,
1990).

[14] C. Bender and T. T. Wu, Phys. Rev. 184, 1231 (1969).

[15] E. Brezin, J. L. Guillou, and J. Zinn-Justin, Phys. Rev. D
15, 1544 (1977).

[16] S. Coleman, Aspects of Symmetry (Cambridge University
Press, Cambridge, England, 1985).

[17] L. Li and Y. Meurice, Phys. Rev. D 71, 054509 (2005).
[18] B. Alles, A. Feo, and H. Panagopoulos, Phys. Lett. B 426,

361 (1998); 553, 337(E) (2003).
[19] G. Boyd et al., Nucl. Phys. B469, 419 (1996).
[20] H. D. Trottier, N. H. Shakespeare, G. P. Lepage, and P. B.

Mackenzie, Phys. Rev. D 65, 094502 (2002).
[21] G. Parisi, Lectures given at the 1977 Cargese Summer

Institute, 1977.
[22] L. Li and Y. Meurice, Phys. Rev. D 71, 016008 (2005).
[23] R. F. Dashen and D. J. Gross, Phys. Rev. D 23, 2340

(1981).
[24] G. P. Lepage and P. B. Mackenzie, Phys. Rev. D 48, 2250

(1993).
[25] L. Li and Y. Meurice, Proc. Sci. LAT2005 (2006) 258

[hep-lat/0509096].
[26] P. Rakow (private communication).
[27] G. Grunberg, hep-ph/9705290.
[28] M. Guagnelli, R. Petronzio, and N. Tantalo, Phys. Lett. B

548, 58 (2002).
[29] T. Schafer and E. V. Shuryak, Rev. Mod. Phys. 70, 323

(1998).

NONPERTURBATIVE PART OF THE PLAQUETTE IN PURE . . . PHYSICAL REVIEW D 74, 096005 (2006)

096005-13


