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We present a model independent study of the chiral condensate evolution in a hadronic gas, in terms of
temperature and baryon chemical potential. The meson-meson interactions are described within chiral
perturbation theory and the pion-nucleon interaction by means of heavy baryon chiral perturbation theory,
both at one loop, and nucleon-nucleon interactions can be safely neglected within our hadronic gas
domain of validity. Together with the virial expansion, this provides a systematic expansion at low
temperatures and chemical potentials, which includes the physical quark masses. This can serve as a
guideline for further studies on the lattice. We also obtain estimates of the critical line of temperature and
chemical potential where the chiral condensate melts, which systematically lie somewhat higher than
recent lattice calculations but are consistent with several hadronic models. We have also estimated
uncertainties due to chiral parameters, heavier hadrons, and higher orders through unitarized chiral

perturbation theory.

DOI: 10.1103/PhysRevD.74.096003

I. INTRODUCTION

One of the most interesting questions about QCD is its
phase diagram, and, in particular, the transition from a
hadron gas to a quark-gluon plasma, and the restoration
of chiral symmetry at finite baryon density. On the experi-
mental side, there are several experiments such as CERES,
KEK, STAR, SPS, LHC, and RHIC that probe this tran-
sition at different values of temperature and baryon density.
On the theoretical side, first principle calculations on the
quark-gluon phase performed on the lattice have been
traditionally hindered by the well-known fermion determi-
nant sign problem. The search for alternative approaches to
overcome this problem, at least for some values of the
chemical potential, have recently bolstered the activity in
lattice QCD at finite density (see for example [1-5] for a
review and further references). However, lattice studies
still present some difficulties in the infinite volume ex-
trapolation and most importantly in that they do not use
realistic values for the quark and hadron masses, particu-
larly the pions and kaons, which are the lightest mesons
and the most abundant at low temperatures.

However, from the hadronic phase it is also possible to
obtain model independent predictions by means of chiral
perturbation theory (ChPT) [6—8] which is the low energy
effective theory of QCD (see [9] for introductions and
reviews). Let us recall that the spontaneous chiral symme-
try breaking of QCD requires the existence of eight mass-
less Goldstone bosons that can be identified with the pions,
kaons, and the eta. Therefore they are the most relevant
degrees of freedom at low energies. With these fields, the
ChPT Lagrangian is built as the most general derivative
expansion, over 47 f . = 1.2 GeV (the symmetry breaking
scale), respecting the symmetry constraints of QCD.
Hence, ChPT is the low energy effective theory of QCD.
Actually, there is also an explicit symmetry breaking due to
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the small quark masses that give rise to a small mass for the
pions, kaons, and the eta, which are thus just pseudo-
Goldstone bosons. For this reason ChPT is an expansion
also in masses which are treated perturbatively. The lead-
ing term is fixed once we know the symmetry breaking
scale, and the next orders contain a finite number of con-
stants that absorb the infinities generated from loops, ren-
dering the calculations finite order by order. Baryons can
also be included in the Lagrangian respecting chiral sym-
metry but their treatment is more involved due to their
large masses. Within heavy baryon chiral perturbation
theory (HBChPT) [10], this problem is overcome for the
meson-baryon interaction by an additional expansion over
the baryon mass. Since we are only interested in the quark
condensate in a hadronic gas, we will neglect the nucleon-
nucleon interactions. In particular, this leaves cold nuclear
matter outside our domain of applicability. We therefore
have a model independent formalism derived from QCD
that provides a systematic expansion at low energies and
chemical potentials. This approach has proven very suc-
cessful and works remarkably well within the meson sec-
tor, whereas for the meson-baryon sector the convergence
is somewhat slower.

In order to include the thermodynamic effects of the
temperature and chemical potential, we will use another
model independent approach, namely, the virial expansion
[11-13]. It is a simple and successful technique already
applied to describe dilute gases made of interacting pions
[14] and other hadrons [12]. In contrast to lattice ap-
proaches, it is very straightforward to introduce the baryon
chemical potential. For most thermal observables it is
enough to know the low energy scattering phase shifts of
the particles within the gas, which could be taken from
experiment, avoiding any model dependence. However,
since we are interested in the quark condensate, defined
as a derivative of the pressure with respect to the quark
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masses, one needs a model independent theoretical de-
scription since it cannot be obtained directly from experi-
ment. Thus, in this work we extend to finite baryon
chemical potential, wp, the model independent approach
that combines the virial expansion and ChPT, a method
already applied at pp = 0 in [14-16].

For the condensate, it is therefore particularly important
to note that we are using the physical hadron masses in all
our calculations. Let us also remark that the expansion that
relates hadron masses to quark masses, particularly for
pions, shows some of the best convergence properties in
ChPT, much better than the energy expansion itself. We
therefore hope that our results at low energy and chemical
potential could serve as a guideline for a correct inclusion
of mass effects in further studies, for instance, on the
lattice, at least in the isospin limit.

The plan of the work is as follows. In the next section we
introduce in detail the virial formalism and make a rough
estimation, using the free gas, of its applicability bounds in
the temperature-chemical potential plane. With a brief
introduction to ChPT and the hadron mass dependence
on quark masses, we incorporate the interactions, which
we do in two different scenarios. A pure SU(2) gas of pions
and nucleons, where we include systematically contribu-
tions up to a given order, and a more realistic gas including
kaons, etas, and heavier hadrons, where we neglect certain
contributions due to the Boltzmann suppression. We will
show the size of the different terms paying particular
attention to the pion-nucleon interaction, and we will
provide phenomenological parametrizations of the conden-
sate melting temperature. In addition, we will estimate by
extrapolation the melting line in the temperature-chemical
potential plane. Finally, we will calculate our uncertainties
due to the imperfect knowledge of chiral parameters and of
the high energy behavior. The latter will be done by using
unitarized chiral amplitudes. We will conclude with a
summary and discussion of our results.

II. THE VIRIAL EXPANSION

The thermodynamics of a system of hadrons is encoded
in the grand canonical potential density z = €, — P, where
we have explicitly extracted €;, which is due to the exis-
tence of a vacuum expectation value even at 7 = 0, and P
stands for the pressure [14,17]. In our case we are inter-
ested in a multicomponent relativistic gas made of pions,
kaons, etas, and nucleons. Later on we will introduce
heavier hadrons. In addition, we will assume that only
the strong interactions are relevant and that the baryon
density, defined as ny — nj, is conserved. For that reason,
the pressure will depend on the temperature 7 and a baryon
chemical potential up. Note that the nonstrange quark
chemical potential u, = wp/3 is also frequently used in
the literature. The relativistic virial expansion [11-13]
reads
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where &; = exp[B(u; — M;)], B = 1/T, M, is the mass of
the i species and w; = 0, £ up for mesons, baryons (anti-
baryons), respectively. The coefficients

Tl 0
B" :g,2777;2 ﬁ) dppre "BWPHEMI=M) ()

correspond simply to the virial expansion of the pressure
for a free gas
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where 77; = 1 for bosons and n; = —1 for fermions. The

interactions appear in the virial expansion through the
S-matrix [13,14]. For the meson-meson and pion-nucleon
interactions relevant for this work, this can be recast in
terms of the elastic scattering phase shifts, thus we can
write

O BMAM) o )
g =" f JEEK, (BE)AU(E),  (4)
M;+M;

where K,(x) is the first modified Bessel function of the
second kind and

A= 3@+ 1)@] + 1)8}(E), )
LJ,S

87, ¢ being the ij — ij phase shifts (defined so that § = 0
at threshold) of the elastic scattering of a state ij with well-
defined isospin, total angular momentum, and strangeness
I, J, S. For the nucleon-nucleon interaction, using the
S-matrix representation could be more convenient than
the phase shifts, but here we are only interested in a
sufficiently diluted hadron gas, so that we can neglect
NN, and the above formalism is enough for our purposes.
Thus, in this work we will use the virial expansion together
with ChPT phase shifts, extending previous works to in-
clude a nonvanishing baryon chemical potential in a had-
ron gas. We will study the validity of this approach in a
section below.

Let us now recall that the quark masses appear in the
Lagrangian as m,ggq, therefore the nonstrange quark con-
densate is given by [14]

_ dz _ JP
GD1p, = P (0lg410) — e (6)

Note that we are working in the isospin limit, using a
common mass 7 = (m, + my)/2 both for the u and d
quarks, and {0|3¢|0) = (O|iiu + dd|0). The (0|5s|0) con-
densate, which is smaller, and whose thermal evolution is
slower than the nonstrange one [16] could also be studied
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with similar methods, but this lies beyond our present
scope.

III. CHIRAL PERTURBATION THEORY

Let us then briefly explain our use of ChPT and fix some
notation, starting from the purely mesonic sector. Since the
ChPT Lagrangian is built as the most general derivative
and mass expansion [6—9], the meson-meson interaction
amplitudes are obtained as a series in even powers of
momenta and masses, both denoted generically p?. The
leading order starts at O(p?) and is universal, only depend-
ing on one scale F', which at leading order can be identified
with the pion decay constant f . At next to leading order
(NLO), the amplitudes contain one-loop diagrams with
O(p?) vertices plus the tree level contributions from the
O(p*) Lagrangian. Indeed, all one-loop calculations can be
renormalized in terms of a set of O(p*) parameters, L (u)
and H,(u), u being the renormalization scale, which can
be determined from a few experiments, or in the case of
H}, from the resonance saturation hypothesis [18], and
used for further predictions at low temperatures. In
Table I we list the values of these parameters that we will
use for the amplitudes in this work.

Within ChPT, partial waves ¢;;5 are obtained as an
expansion in even powers of momenta and masses.
Dropping for simplicity the IJS indices, we find #(s) =
ty(s) + t4(s) + - - -, where t,(s) = O(p"). Since we need
elastic amplitudes for the virial expansion, the phase shift
8,;5(s) is simply the complex phase of its corresponding
partial wave. In principle, the ChPT series is only valid at
low energies compared with 47f, =~ 1 GeV, although in
practice it is limited to momenta of the order of 200—
300 MeV above threshold. For this reason, we cannot apply
our expansions for temperatures beyond that range. We
will study the applicability of our approach with more
detail in the next section.

Baryons have a mass of the order of the chiral expansion
scale 477f ., but they can also be included as degrees of
freedom in a chiral effective Lagrangian if they are treated

TABLE I. One-loop ChPT low energy constants used for our
calculations. Those in the ChPT column are taken from [7,19],
whereas those in the TAM column are taken from [20]. H}(M p) is
taken from [18] for both cases.
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as heavy particles in a covariant framework called
HBChHPT [10]. In this case, the series is organized in terms
of order N=1, 2, 3 that contain powers of
pN/(FEMN T2l where [=1,...,(N + 1)/2. Once
again, the divergences at each order are absorbed in a set
of parameters, which in the notation of [21] are called a’s
at O(p?) and b’s at O(p*). We provide in Table II the
values we have used, but we want to remark that these
parameters are strongly correlated and other sets can be
found in [23].

The HBChPT framework is especially well suited for
our approach, not only since 7N scattering has been cal-
culated to one loop, but also because it has been unitarized
[22,24] describing the A(1232) resonance correctly, which
will be of use for the last section. In particular, we will use
the third order calculation [21,23]. Note that there is a
fourth order calculation available [25], that has also been
unitarized [22,24], but it introduces many more chiral
parameters (up to 18 parameters in total) with very large
uncertainties, and just a slight improvement over the third
order results. Let us also remark that the second order
coefficients, which are called a; in the formalism of [21]
that we follow here, can be translated to other coefficients
often used in the literature, called c;, which are not dimen-
sionless. The values listed in the HBChPT column in
Table II correspond to

¢, = —1.06 * 0.06
c3 = —5.74 = 0.15

¢, =34%05
€, =37*02

(N

in GeV~! units. These are perfectly compatible with the
recent values given in [26]

cp = _Ogtgg

c3 = —47"13

c;=33%x02

+0.5 ®)
Cy = 3.570:2.
The corresponding values used for unitarized HBChPT in
the last section are

TABLE II. Low energy constants for O(p®) HBChPT used in
our calculations, for the nonunitarized and unitarized cases
(taken from [22]).

ChPT IAM HBChPT HBChPT + IAM
Li(M,) 0.4=+0.3 0.561 =0.008 g« —2.60 = 0.03 —1.36 = 0.02
Ly(M,) 1.35+0.3 1.21 £0.001  a, 1.40 = 0.05 0.438 = 0.015
L, -35=*1.1 —2.79 * 0.02 a, —1.00 = 0.06 —0.70 = 0.04
Ly(M,) -03+05 —0.36 = 0.02 as 3.30 = 0.05 1.29 + 0.04
Li(M,) 1.4+0.5 1.4 +0.02 by + b, 2.40 = 0.3 3.06 = 0.3
Ly(M,) -02=*03 0.07 = 0.03 by -2.8+0.6 —0.41 = 0.27
L, —0.4+0.2 —0.44 = 0.003 b 1.4£03 —1.5+0.2
Ly(M,) 0.9 +0.3 0.78 + 0.02 bis — bys 6.1 0.6 7.4+0.5
Hy(M,) -34=*1.1 -34=*1.1 by —24+04 -3.7%02
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¢; = —0.75 = 0.02
C3 = _31 + 03

Cy = 1.4 = 05
ci=1.5+02

()]

As the last point concerning ChPT, and as we advanced
in the Introduction, the chiral condensate virial calculation
requires the knowledge of the quark mass dependence.
Within ChPT, since we deal with hadrons, we actually
recast Eq. (6) as follows [14]:

M, OP
qq) = 0lgql|0) — — 10
(gq) = (0lgql0) ; on M, (10)
- Cp JoP
=0|gqlO)( 1 + Y —— ——), 11
Olaglof1+ X oyt ) A0

where, for further convenience we have introduced the
constant F, which is the pion decay constant in the chiral
limit, and we have defined the coefficients

oM;,
dn
which encode the hadron mass dependence on the quark
mass. The ¢, coefficient in SU(2) ChPT was calculated in
[14]. Here we will use the SU(3) ChPT expressions at
O(M%) which, for h = 7, K, n can be read in [16].
Numerically they amount to

¢, =0.9%0% cx = 0.5704,

Ccp = _F2

(0lgqloy~1, (12)

c, = 04753, (13)

Using the O(M%) calculation of the nucleon mass within
HBChHPT [23,27], we find

oy = 36413, (14)

where we have used the recent values [26] for the HBChPT
parameters in Eq. (8). This corresponds to a nucleon sigma
term:

ooy = 40717 MeV, (15)

where the uncertainties are estimated assuming uncorre-
lated errors and provide a very conservative range. Had we
used the constants in Eq. (7), we would have found
51713 MeV. We have checked that the difference between
these two central values will amount to roughly 1 MeV or
less in our melting temperatures within the validity region
of the approach, that we will study in the next section.
Finally, let us analyze the hierarchy of the different
terms. First of all, we see that the contributions to the virial
expansion of the pressure are exponentially suppressed as
exp(—BM,;). Nevertheless, the exp(Bup) factor for the
nucleons can overcome the previous thermal suppression
if the chemical potential is of the same order as their mass.
These exponentials are inherited by the derivatives. In
addition, we observe that c¢,./M, > cy/My > cx/Myg >
c,/M,. For the above two reasons, pions and the inter-
actions of the other species with pions are the dominant
contributions for studying the melting of the condensate.
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Nucleons become comparable only when their chemical
potential is of the order of their mass. In addition, since
nucleon-nucleon interactions are much stronger at low
energies than those of pion-pion or pion-nucleon, we will
carefully exclude the region with too high nucleon density.

As an illustration, and in order to compare with other
results in the literature as well as to obtain an estimate on
the reliability of the virial expansion, we will first study
briefly the case of a free gas.

IV. THE FREE GAS AND THE DOMAIN OF
VALIDITY OF OUR APPROACH

The interest of this case is that we have a closed ex-
pression for the pressure, already given in Eq. (2), which
can be integrated numerically and compared with its sec-
ond order virial expansion, namely, Eq. (16) with all Bi-‘]‘.t =
0,1ie.,

BP=>Bé, + B &, (16)
h

First of all, in Fig. 1 we have plotted the relative abundan-
ces of the most relevant species as a function of the
temperature, which we parametrize in terms of their den-
sity
p L

PGP HM—py) m,

We see that the lightest particles, the pions, are the main
component of the hadronic gas up to temperatures as high
as 200 MeV. As previously remarked, we can also notice
that nucleons form a small fraction of the gas unless we

(g, T) = % (17)

S —
[[— 7 K, n
H— = N (u, =40 MeV)

P = N (u, =400 MeV)
. N (=700 MeV)

o
W
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FIG. 1. Density over T? of different species in a free hadronic
gas. The pion population is by far the largest up to 200 MeV,
except at very high baryon chemical potentials, where nucleons
dominate.
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FIG. 2 (color online). Estimation of the region where the virial
expansion may provide a good approximation to the quark
condensate. Within the region inside the dashed line, and for a
free gas of pions and nucleons, the relative error € of the second
order virial expansion with respect to the analytic expression is
less than 5%. The virial approximation deteriorates rapidly
beyond that ‘““validity region.” As commented in the text, we
also require the nucleon density to be smaller than the saturation
density p, (the thick continuous line) and therefore we exclude
the dotted area. The remaining white area is our approximate
validity region.

reach high chemical potentials, of the order of 500 MeV or
higher.

Next, in Fig. 2 we show, in the (u g, T) plane, the relative
error between the exact calculation using Eq. (2) and the
second order virial expansion for the chiral condensate,
Eq. (16). This we define as

_ |<£I¢1>exact B <QQ>viria1|
%|<QQ>exact + <q(’I>virial|

(18)

We see that the second order virial expansion provides a
fairly good approximation € = 0.05 for moderate tempera-
tures and chemical potentials (roughly 7 << 200 MeV and
g < 800 MeV) and slightly beyond we obtain just quali-
tatively correct results (e = 0.20), since the expansion
deteriorates rather rapidly. In addition, and since our scope
is just to describe a simple hadronic gas, the nuclear matter
regime should be excluded from the validity region. In fact,
nuclear matter, even at low temperatures, is not a gas but a
fluid [17], since, at low momenta, NN interactions are an
order of magnitude larger than 7777 or N interactions. Just
for illustration, we have plotted in Fig. 2 as a continuous
line, the points where the saturation density, pg =
0.16 fm™3, is reached.

Let us however remark that we are not interested in all
the hadron thermodynamics, but just in a particular quan-
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tity, the quark condensate, that does not depend on the
interactions themselves but on their derivative with respect
to quark masses. Thus, the enhancement due to NN inter-
actions with respect to 7N or 77 is not as large for the
quark condensate as it may be for other thermodynamic
quantities that depend on the NN interactions. In particu-
lar, it has been shown [28], using an equation of state for
the nuclear matter regime based on a chiral Lagrangian,
that the evolution of the quark condensate with nuclear
density is well reproduced up to somewhat beyond p/2
just with a linear term proportional to the nuclear wN
sigma term, but that higher orders in density are relevant
beyond (see Fig. 3 in [28]). Since the nucleon-nucleon
interaction lies outside the scope of this work, but the
7N interaction is included, we only consider densities
below pg/2. Note that with this choice we lie on the safe
side. In addition, the uncertainties due to the 7V interac-
tion, that will be studied later in this work, are much bigger
than the neglected effects of higher orders in density up to
densities much larger than p(/2.

In summary, in Fig. 2, the dotted area stands for densities
above p,/2 and the remaining white area in Fig. 2 will be
referred as the “validity region,” in the understanding that
this is just a very crude estimate. Fortunately, we will see
that, once we introduce the interactions, most of the inter-
esting phenomena, including our extrapolations for the
condensate melting, occur within the bounds of this valid-
ity region, so that the virial expansion is reasonably under
control and definitely not diverging wildly. In particular,
the region of relevance to study the freeze-out or the phase

300p

250(

(3%
o
=

Temperature (MeV)
193
S

--- Full SU(2) free gas (virial)
—— Full SU(2) free gas (resumation) N\

50 = + contribution from heavier hadrons ]
C - Nyffeler, Z. Phys. C60, 159 (1993)
0 I T B S S B
0 200 400 600 800 1000

Baryon chemical potential (MeV)

FIG. 3. Condensate melting line in the (up, T) plane for a free
pion and nucleon gas (continuous line). Note that it is very well
approximated by the extrapolated line from the second order
virial expansion (dashed) as long as up < 800 MeV. The melt-
ing is faster when adding free heavier hadrons (dash-dotted line).
Finally, we compare with the free gas results using crude
estimates of oM,/ dm, based on the number of valence quarks
[30] (dotted line).
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transition in relativistic heavy ion collisions, up =
40-50 MeV, T =~ 170-200 MeV [29] lies within our do-
main of validity.

Finally, we show in Fig. 3 the condensate melting line in
the (up, T) plane using either the closed form of the grand
canonical potential density or the one extrapolated from
our second order virial expansion. First of all, if we only
consider 7, K, 7, and nucleons, we note that, starting from
zero chemical potential, the second order virial melting
line indeed follows closely the complete calculation with
Eq. (2), although it deviates abruptly around 7' =~ 180 MeV
and up = 800 MeV, that nevertheless lies beyond the
“validity region.”

In Fig. 3 we also show the melting line that results if we
add the contribution of the heavier hadrons in the free gas
approximation by using

IAP IM,,
A 71 = — —_—
@) = =2 5, o
_ | M, p*/€n(p)
a ﬁ;g”Mh o / LIy ——

19

with €,(p) = +/p* + M3.

In such a case, the extrapolated melting line falls slightly
outside the estimated validity region. We will see in the
next sections that, by adding interactions, an important part
of the melting line moves within the validity region.

Figure 3 is also relevant because it allows us to compare
with previous results existing in the literature that use the
free hadron gas, Eq. (3), to study the condensate, including
also heavier particles as above. In particular, we can com-
pare with the melting lines obtained in [30,31]. We can
observe that there is a quantitative difference between
those calculations and the one we present here. Such a
difference is mainly due to the dependence of the hadron
masses on quark masses dM,/dim, which in those works
was not obtained from ChPT, but simply estimated as
dM,, /i = N, (that is the number of light quarks, except
for the pion that was chosen to be 10) [30] and
OM;,/oM? ~ A/M; with A~ 0.9-1.2 [31]. Table III
shows the comparison between the ¢, coefficients obtained
from these estimations vs the ChPT or HBChPT O(p*)
calculations in Egs. (13) and (14), which we consider very

TABLE III. Coefficients c;, as calculated from estimates in
other hadronic models [30,31] versus the analytic values ob-
tained in ChPT or HBChPT.

Ch ChPT/HBChPT Nyffeler Tawfik-Toublan
Cr 0.9%03 2.0 0.8-1.1
ck 0.5794 0.7 1.6-2.1
Cy 0.4793 0.8 24-32
cy 3.6%13 42 0.6-0.7
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accurate, since the M2 /(4mf,)> ChPT expansion con-
verges very well. Let us remark that the ¢, coefficients in
those works are generically larger than ours for h = 7, K,
and 7). Hence, the effect of using such estimates is to
accelerate the thermal melting of the condensate. In par-
ticular, in Figure 3, we show the results of [30], giving rise
to a much lower critical temperature. This explains why the
free gas results in [30,31] yield melting temperatures much
below those obtained in a free gas using ChPT calculations
for M, /9, as in [14,15]. As a matter of fact, we have
checked that our approach reproduces the results in [30]
just by changing the ¢, coefficients.

In what follows, and given the fact that the free and
interacting contributions are separated in the virial expan-
sion, we show the results both expanding the free gas part
to second order in the virial expansion, and also using the
analytic expression.

V. THE INTERACTING SU(2) GAS OF PIONS AND
NUCLEONS

In the literature the SU(2) flavor case [2,3,14,15] is
frequently studied, by considering the strange quark as
heavy. This is simpler, since the pions are the only
pseudo-Goldstone bosons and there is a clearer suppression
of heavier hadrons due to their heavy masses. On top of
that SU(2) ChPT and HBChPT show a much better con-
vergence than their SU(3) counterparts. In addition, we can
use the one-loop calculations within HBChPT of the #N
scattering amplitudes.

Thus, we will consider the second order virial expansion
of a gas of pions and nucleons, where pions interact among
themselves and with nucleons. The nucleon-nucleon con-
tribution to the condensate melting is suppressed since
c,/M, > cy/My and also because of the Boltzmann sup-
pression of the nucleon population, which can only be
compensated for baryon chemical potentials which lie out-
side the validity region of the virial expansion and are
therefore beyond our scope.

The wp = 0 case within ChPT was first studied in [14]
both with the virial expansion and by an effective field
theory calculation of the grand canonical potential density.
Later on, the ChPT virial study was extended to a finite
pion chemical potential in [15]. In both works, the only
interacting particles were the pions, and all other hadrons
were added in the free approximation.

In this section, apart from the one-loop ChPT 77 scat-
tering amplitudes, we have included the O(p?) calculation
of N within HBChPT [21,23]. First we show in Fig. 4 the
results at wp = 0, and we can notice how the free SU(2)
gas melting temperature lies beyond the virial validity
region, but the pion-pion interaction brings it down to
~230 MeV, within the naive validity region at up = 0
and in agreement with [14—16]. When we further introduce
free nucleons, we get an additional decrease down to
224 MeV. Of course, within our approach, the melting
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FIG. 4. Chiral condensate thermal evolution at zero baryon
chemical potential for the SU(2) pion and nucleon gas. The
free gas extrapolated melting temperature falls entirely beyond
the validity region of the virial expansion, but 77 interactions
bring it below 230 MeV. Although wgz = 0, both the free
nucleons and their interaction with pions accelerate sizably the
condensate melting. Note that, when interactions are introduced,
the difference between calculating the free gas contributions
exactly (resumed) or with the virial expansion is negligible,
and the two curves fall on top of each other.

temperatures are just extrapolations and lie near the edge of
the validity region. What is not an extrapolation is the
behavior at low T, where the different contributions are
calculated consistently with the virial and chiral expan-
sions. However, their effect is more difficult to see in the
figures, and we quote the extrapolated melting tempera-
tures because it is easier to quantify the relative size of the
different contributions. One should always keep in mind
that these are just extrapolations.

Surprisingly, the N interaction, which is the new con-
tribution that we are adding, has a sizable effect even at
mp = 0, decreasing the melting temperature by another
7 MeV, down to 217 MeV.

Let us emphasize that each additional contribution de-
creases the melting temperature further, but since the melt-
ing of the condensate accelerates near the melting point
(the curve becomes steeper as it gets close to zero), even if
the new contribution has a similar size as the previous one,
its effect on the melting temperature seems smaller. That is
the reason why the relatively large effect of 7N is even
more surprising. A nice illustration of this effect is seen in
Fig. 4 since the total result is practically the same no matter
whether we use the virial expansion or the analytic (re-
sumed) expression for the free terms. Indeed, both curves
fall on top of each other in the figure. This is in contrast
with Fig. 3, where there was a difference of roughly 5 MeV
observed at wg = O between the free gas melting tempera-
ture depending on whether we used the analytic form of the
grand canonical potential density or its second order virial
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expansion. The reason is that, in Fig. 3, after adding all
interactions, the slope of the condensate is so steep that
there is almost no difference in the melting temperature,
1 MeV, between using the virial expansion for the free
terms or not.

Let us now set ug # 0. In Fig. 5 we show in the (ug, T)
plane the melting line of the free SU(2) gas of pions and
nucleons, the gas with only interacting pions, and, finally,
the effect of adding the N interaction. The effect of the
latter becomes bigger as up increases from zero, and
becomes maximum around wp = 600-700 MeV, where
it produces a decrease in the melting temperature of about
40 MeV with respect to the gas without 77N interactions.
Up to a chemical potential of wz = 40-50 MeV, the re-
gion of relevance [29] for relativistic heavy ion collisions,
the decrease in the melting temperature amounts roughly to
10 MeV when we include the 7N interaction.

In Fig. 6 we present a comparison of our pure SU(2)
results with lattice estimates in the literature [2,32]. Note
that our melting temperature for a given wp lies system-
atically above the corresponding one on the lattice. This
could already be noticed in the g = 0 case [14], both with
the analytic ChPT calculation of the partition function and
the virial expansion [14,15].

To facilitate future comparison of our results with other
calculations, we have performed a simple quadratic fit to
our central results up to 500 MeV, giving the following
phenomenological expression for the dependence of the
melting temperature with the baryon chemical potential:

TC(ILLB) —
7.(0)

1 —0.031 55(2)<T“(f))>2, (20)

DS e

200} -
> 0
(]
= 150 _
2 I
2
<
g L
£ 1007 =
()
F
50; -—- SU(2) free gas (resumed) \ ]
L |—=  +7@minteraction l
| |—— +nN interaction
07""\H“\“H\HH\HH\H’
0 200 400 600 800 1000

Baryon chemical potential (MeV)

FIG. 5. Melting line in the (wp, T) plane of the chiral conden-
sate for an SU(2) gas of hadrons. We show the result for the free
gas, but also adding the 777w ChPT SU(2) interaction to one loop,
and the line resulting from adding the 7N interaction to third
order in HBChPT.
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FIG. 6. Comparison between our results and other estimates in
the literature. The gray band corresponds to the fit in [2], while
the dashed line corresponds to the one shown in [32]. Note that
these works obtain values for 7, that are systematically lower
than our model independent approach (dotted line).

where the uncertainty is due only to the statistical fit to the
central value, and does not contain the uncertainties in our
approach, mostly due to the chiral parameters, which will
be treated in a separated section below.

VI. REALISTIC HADRON GAS

In the previous section we considered a gas made just of
pions and nonstrange nucleons. However, in a real gas, we
should consider all hadrons. This we will do by including
them as free particles. The only exception will be the kaons
and etas, that, in view of Fig. 1, are sufficiently abundant up
to 200 MeV to deserve a separate treatment and include
their interaction with a pion. All other interactions are
severely suppressed by Boltzmann and c¢;, /M, factors. At
very large up, the heavier nucleons may not be Boltzmann
suppressed, but that is beyond our estimated validity range.

Thus, in Fig. 7, we compare the condensate thermal
evolution at up = 0 of the SU(2) pion and nucleon gas
including 777 and 7N interactions (thick continuous line)
with the results obtained adding further contributions that
are numerically sizable. First, we consider the effect of free
kaons and etas, which slightly accelerate the vanishing of
the condensate, decreasing the extrapolated melting tem-
perature by ~4 MeV. Next, we have included the kaon and
eta loops in the 777 interaction. This amounts to calculat-
ing 7r7r scattering in SU(3) ChPT instead of SU(2). Since
the 777 interaction is by far the dominant one, this one-loop
effect decreases the melting temperature by ~2.5 MeV.
When we include the one-loop interactions of 7K and 77,
we observe a further decrease of ~6.5 MeV. We have
checked that, if we remove the nucleons, these results are
in agreement with [16].
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FIG. 7 (color online). Condensate thermal evolution at upz = 0
in a gas of hadrons. Starting from the SU(2) gas including 7
and 7N interactions, we show the effect of adding kaons and
etas, both as real and virtual states in 77 loops, as well as the
effect of the 7K and 71 ChPT one-loop interactions. The band
includes the estimated uncertainties due to free heavier hadrons.

To end with the up = 0 case, we add the heavier had-
rons, where we have estimated that
oM n

— 1~ aNu’d,

_ (heavier hadrons), 2D
anm

where « is an adimensional constant and N, is the
number of valence u or d quarks in the hadron. For
nucleons, following [33], and from our Eqs. (13) and
(14), we estimate ay =~ 1.97%7. For the other heavier had-
rons, we have estimated a = 0.5-2.5, which roughly cov-

1 -
0.8 ]
ot
Nt
1
Vv 0.6 ]
~~ L
= L
A
'7 04f | @ Hg=0 a .
r | (&) py=250MeV
[ | (©) ny=500MeV|.
0.2 | (d) uy=800MeV|" -
[ | (e) Hp =900 MeV
07“”\‘ AT P B -
0 50 100 150 200
Temperature (MeV)
FIG. 8. Condensate thermal evolution in a gas of hadrons for

different constant values of wp. The dotted pieces of the curves
lie beyond the “‘validity region” estimated in the text. Note the
lines just correspond to central values.

096003-8



CHIRAL CONDENSATE THERMAL EVOLUTION AT ...

ers the range of « obtained for the nucleons and light
mesons.

Let us now turn to wp # 0. In Fig. 8 we show curves for
the evolution of the chiral condensate for different constant
values of the chemical potential. We can see how the
increase of wp accelerates the melting of the condensate,
and that the effect of the chemical potential on the melting
temperature is less than 10 MeV until wup is of order
250 MeV. In addition, we have plotted the curves as
continuous lines within the ‘“validity region” estimated
in previous sections and as dotted lines outside. In this
way we see that, when wp is of the order of the nucleon
mass, the approach deteriorates rapidly, although it can still
give reasonable results at very low temperatures. A differ-
ent perspective is provided in Fig. 9, where we now show
the condensate evolution versus wp for constant 7. Note
that, as we get close to 7 = 0, the evolution with the
chemical potential is almost a constant, the condensate in
vacuum, within the validity region. At exactly T = 0 all
fugacities vanish, except those of nucleons when wp >
M, but that lies beyond the validity region and cannot be
studied with our approach.

Finally, in Fig. 10, we present the melting lines in the
(T, wp) plane, showing first the complete SU(2) pion and
nucleon gas result, to which we have added all the effects
of kaons and etas. As it could be expected, the biggest
difference is observed at low wp. In particular, in the
interesting up = 40-50 MeV region [29] we find that there
is a ~10 MeV additional decrease due to kaons and etas,
on top of the one we already found in the previous section
due to the 7N interaction. For higher energies the effect of
K and 7 contributions are less evident, not because they
decrease, but because they become relatively less impor-

Na

0.8 d e i
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= . . S
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FIG. 9. Condensate evolution with the baryon chemical poten-

tial in a gas of hadrons for different constant values of 7. The

dotted pieces of the curves lie beyond the “validity region”

estimated in the text. Note the lines just correspond to central

values.
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FIG. 10 (color online). Our final result for the chiral conden-
sate melting line in the (wg, T) plane. Starting from the SU(2)
gas with 777 interactions, we show the effect of 7N interactions
and of adding kaons and etas. The dark area covers the uncer-
tainty due to heavier hadrons estimated as explained in the text.

tant with respect to the nucleon free terms and the larger
N interaction.

In the last section we will discuss the comparison of our
results with some previous works in the literature, but first
we will study the uncertainties within our approach.

VII. UNCERTAINTIES DUE TO THE CHIRAL
PARAMETERS

In previous sections we have shown results for the
central values of the chiral parameters given in Table I
and II. In this section we show the uncertainty due to the
errors in the chiral parameters also listed in those tables by
adding in quadrature the uncertainties caused by each one
of the parameters independently. Let us remark that the
dependence on these parameters is twofold. On the one
hand, they appear in the interactions through the phase
shifts in Eq. (5), but, on the other hand, some of them also
appear in the ¢, coefficients in Eq. (12) that parametrize
the hadron mass dependence on the quark masses [16].
Indeed, the errors in Egs. (13) and (14) correspond to the
uncertainties in the chiral parameters.

Thus, in Fig. 11 we show again as a dark band our final
extrapolated melting line in the (wg, T) plane, which in-
cludes the uncertainties due to heavier hadrons. The region
between the dashed lines covers also the uncertainties due
to the chiral parameters. The error is highly asymmetric
since, as we have already commented, it becomes more and
more difficult to decrease the melting temperature by add-
ing new effects, so that the inner dashed line is much closer
to our “‘central’ results.

We also remark that the uncertainties grow very fast at
higher wp values in good agreement with the estimated
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FIG. 11. Our final result for the chiral condensate melting line

in the (up, T) plane. The dark area covers the uncertainties due
to the heavier hadrons, which we have included as free compo-
nents of the gas. The area between dashed lines corresponds to
the uncertainty in the parameters of ChPT and HBChPT listed in
Table I and II.

range of validity of the chiral expansion. At sufficiently
large values of wp, our uncertainties are too large even for
qualitative predictions. However, for small or moderate
chemical potentials, say wp << My, we get quite stable
predictions, and the extrapolated melting line is deter-
mined up to a 10 to 15 MeV uncertainty.

In Fig. 12 we compare our melting line estimates with
previous works. We show both our full error band (between
the dotted lines) and that due to heavier hadrons only (light

225
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175
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Temperature (MeV)

= « =« SU(3) ChPT error bands

—_

N

[
T

SU(3) ChPT with uncertainties only due to heavier hadrons|
Toublan & Kogut, Phys. Lett. B 605 (2005) 129 ]
— — - Uncertainties from previous ref. ]
100 | ssmeze Tawfik, J. Phys. G31 (2005) 1105 -
mmmm Fodor & Katz, JHEP 0404, 050 (2004)
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FIG. 12 (color online). Comparison between our results and
others in the literature. Our melting temperatures are consistent

within errors with Ref. [34] but systematically higher than
[4,32].
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gray band). Note that we are consistent within uncertainties
with the hadronic model in [34], but, systematically, our
melting temperatures are somewhat higher than estimates
using lattice [4,32]. Note that, as expected, and in contrast
with lattice results, our melting temperatures always occur
a few MeV above the chemical freeze-out temperature that
has been estimated from p, spectra at RHIC as Ty =

165 = 7 MeV, u) = 41 =5 MeV [29].

Finally, to ease future comparisons with our results, we
provide a simple quadratic fit to our results up to 500 MeV,
giving the following phenomenological expression for the
dependence of the melting temperature with the baryon
chemical potential:

T(up) _ . o017/ M8 \?
T.0) 1 0025_0011(71.(0)) . (22)

In contrast with the fit given in the pure SU(2) case,
Eq. (20), the errors now are much larger since they take
into account the uncertainty due to the chiral parameters
and other heavier hadrons.

VIIL. UNITARIZED INTERACTIONS

Up to this point, we have been using a model indepen-
dent approach. To that end we have used chiral perturba-
tion theory, which is a low momenta expansion, to describe
the interactions between hadrons. However, in the virial
coefficients, Eq. (4), the momentum integral extends to
infinity, and one may wonder if the extrapolation of ChPT
amplitudes to high energies beyond their applicability
range may be distorting the results. In order to check the
importance of the high energy contribution to those inte-
grals, we will thus extend the ChPT amplitudes by means
of unitarization, and, in particular, the inverse amplitude
method (IAM), which provides a remarkably good descrip-
tion of the meson-meson scattering data up to much higher
energies. This will introduce a mild model dependency but
will allow us to estimate how large the effect of the high
energy extrapolation is in the virial integrals.

Let us first briefly review unitarization and the IAM. For
a detailed description of the method and its results, we refer
to [20,35-37]. Note that, in view of Egs. (4) and (5), we
need phase shifts of elastic amplitudes of definite isospin /
and angular momentum J. Such amplitudes are called
partial waves, 7;;(s), although for brevity we will drop
the 7, J indices. Unitarity for elastic partial waves implies
that

Im#(s) = o(s)l#(s)%, o(s) = 2qem/s,  (23)

where gy s the center of mass momentum. Note that this
implies that the modulus of the partial wave in the elastic
regime is bounded by |#(s)| < o~ !(s).

The ChPT partial waves are obtained as an expansion in
momenta and masses £(s) = £,(s) + t4(s) + - -+, where
t, = O(p?), ty = O(p*), where p denotes a generic mo-
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menta or pseudo-Goldstone boson mass. Thus, unitarity is
only satisfied order by order:

Imt,(s) =0, Imt,(s) = o (s)|t,(s5)|% (2%

This means that, since the truncated ChPT series grow like
polynomials, unitarity can be badly violated at high ener-
gies. In addition, typical features of strong interactions,
which are the resonances that saturate the above unitarity
bound, are absent from the ChPT partial waves, since they
correspond to poles in the second Riemann sheet that
cannot be described with polynomials. In practice, pure
NLO ChPT only provides a description of meson-meson
scattering data up to energies of the order of 200 MeV
above threshold.

However, partial wave unitarity, Eq. (23), fixes com-
pletely the imaginary part of the inverse amplitude since

it follows that Im¢~! = — o (s). Consequently, in the elastic
regime a unitary partial wave can be written as
1
i(s) = (25)

Ret !(s) — io(s)’

and therefore we only need an approximation to Ret™!(s).
The inverse amplitude method (IAM) simply approximates
Ret ™ !(s) by the NLO ChPT result to find

B _ t(s)
n, —Ret, —io3 1 —1,(s)/t,(s)

AM(s) = (26)

where in the last step we have used Eq. (24). In this way we
satisfy unitarity while respecting the NLO chiral expan-
sion, which is recovered at low energies. In addition, the
IAM can generate poles associated to resonances. The
above derivation has been done for elastic amplitudes
and yields amplitudes that indeed extend the ChPT calcu-
lations describing remarkably well the 7777 and 7K scat-
tering data up to roughly the first relevant inelastic
threshold [35].

The formalism can be easily extended to the coupled
channel case [20,36,37]. Let us illustrate the case when
there are two coupled channels 1 and 2 [that could corre-
spond, for instance, to |1) = |(77),;) and |2) = |[(KK);)].
We would then have four partial waves for the different
choices of initial and final states lijs with i, j = 1, 2. Thus,
the unitarity condition has now the following matrix form:

T=<t” t12>’
Iy Ixn
— g 0

Following a similar argument as for the one channel case
above, we find

ImT = T3T¥,
@n

TV =T (T, — Ty) " 'T,. (28)

This expression has been shown to provide a very good
description of meson-meson scattering up to /s =
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1.2 GeV, much beyond the applicability range of standard
ChPT. Note that this has been achieved with chiral parame-
ters L; compatible with those of ChPT and therefore with a
simultaneous description of the low energy and resonant
regions [20,37]. In particular, the f,(600), «(900), p(770),
K*(892), £,(980), and a,(980) masses and widths are well
described together with their associated poles in the second
Riemann sheet [37].

Concerning the pion-nucleon interactions, the unitariza-
tion could follow a similar line [24], but it can be improved
[22] taking into account that HBChPT has a double expan-
sion: the low momenta chiral expansion, that counts
powers of 1/f,. and a heavy fermion expansion in powers
of 1/My, where My is the nucleon mass. Factorizing
explicitly the powers of My and f, the expansion now
reads
po Moy ME ) M oas  ME

1= faMy fx My

+oee (29)

17»™) being dimensionless functions of w/M ,, where  is
the pion energy. Note that, contrary to the meson-meson
case, odd orders of momenta do occur in the expansion.
The partial wave unitarity condition with one fermion in
the final state simply reads: Im¢ = gcy|?|%, so that now

(s) 1

§) = ————7FT.
Ret™(s) — iqem
Once again [24] we can use the HBChPT series at NLO to
approximate Ret™!(s). However, the HBChPT series con-
verges much worse than in the meson-meson sector, and
for that reason it is convenient to reorder the heavy baryon
expansion (see Ref. [22]), to get the following unitarized
amplitude:

(30)

1
Aj;_i;[t(l,l) + %_;t(l,z) + %_%t(lj)]fl -M

IAM ~
AM ~ pER
77'([(1,1))2

(3D

It has been shown that this expression greatly improves the
plain HBChPT description, extending it at least to the
nearest relevant inelastic threshold, and, in particular, up
to /s = 1400 MeV in the A(1232) resonance channel,
which is the most relevant feature of wN scattering at
low energies. Both the mass and width of this resonance
are well described by the unitarized amplitude, together
with its associated pole in the second Riemann sheet.

We will now use Eq. (28) for meson-meson and (31) for
7N scattering, in order to extend ChPT at high energies
and check the contribution of the high momenta region in
the virial integrals. The chiral constants we used for the
unitarized amplitudes are also listed in Tables I and II. Note
that for meson-meson scattering they are compatible with
the values used in standard ChPT at NLO. The HBChPT
parameters are not as well determined as those in the
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meson-meson sector, but it is important to note that the
unitarization results are obtained with chiral parameters of
natural size and quite compatible with different determi-
nations from plain HBChPT.

At this point we want to remark that, since we are
generating heavier resonances when using the unitarized
amplitudes, we do not have to introduce them again as free
particles in the gas, as we did in the previous section, to
avoid double counting. In particular, we do not add now the
f0(600), k(900), p(770), K*(892), f1(980), a¢(980), and
A(1232) resonances as free particles using Eq. (20), since
they are generated by the IAM.

One advantage of unitarization is that some of the reso-
nances are now included with their actual width (that is,
interacting with the mesons), which is an effect that we
could not take into account by including them as free
components of the gas. A priori, this could be relevant,
since these resonances have strong decays, i.e. large
widths, and considering them stable is one of the greatest
over-simplifications in hadronic models. We are thus quan-
tifying also that effect in our previous model independent
parametrizations. Furthermore, we had a large uncertainty
in their ¢, or a;, parameters, which is now largely reduced
since they appear in the meson-meson or meson-nucleon
virial terms, whose ¢, coefficients, Eqs. (13) and (14), are
much better determined.

Thus, in Fig. 13, we compare the condensate thermal
evolution at wp = 0 that we obtained in previous sections
with the results using the unitarized interactions. The dark
narrow band covers, for the IAM results, the uncertainty
due to heavier hadrons for the nonunitarized results. As
commented in the previous paragraph, the fact that unita-
rized interactions include the effect of the first heavier

0.8
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0.4 f
0.2 _
[ With heavier hadrons |
| [—— With heavier hadrons + IAM 1
L P Ll L
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FIG. 13 (color online). Condensate thermal evolution at wp =
0 with ChPT unitarized interactions. The resulting melting
temperature is slightly lower but very close to the model inde-
pendent nonunitarized case within uncertainties.

PHYSICAL REVIEW D 74, 096003 (2006)

resonances accelerates the melting. In addition, since in
the unitarized case what we call “heavier hadrons™ are
now the rest of hadrons, which are heavier and even less
abundant, their associated uncertainty is much smaller.
That is the reason why the dark band from the TAM is
much narrower than the light band. Let us, however, note
that, once the uncertainties are included, the unitarized and
nonunitarized results are very close, showing a remarkable
stability of our results at g = 0.

Similar considerations hold for the uncertainty bands in
Fig. 14. Again, the light band stands for the nonunitarized
standard ChPT, and the much narrower dark band covers
the uncertainty due to heavier hadrons of the [AM result. In
this case, we see that the effect of unitarizing is larger, and
the melting is systematically accelerated at moderate
mp # 0. The bigger difference is now due to the fact
that, as pointed out above, the HBChPT series converges
much worse than the meson-meson one, and the effect of
unitarization is more dramatic, particularly for the A(1232)
that lies very close to threshold. Still these results give
support to our statement that our melting temperature
estimates should be considered as upper bounds, although
the differences between unitarized and nonunitarized are of
about 10 MeV at most.

Figure 15 shows the errors over this last band due to the
uncertainties in the chiral parameters. The error is smaller
than for the nonunitarized case. It should also be noted that
both unitarized and nonunitarized cases overlap within
their errors up to g = 300 MeV and beyond that are never
further than 2 standard deviations away.

Once again, the following quadratic fit provides a fairly
good representation of our unitarized results up to
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FIG. 14 (color online). Condensate melting lines in the (wg, T)
plane with unitarized ChPT interactions compared to the non-
unitarized ChPT. The unitarized case melts faster than the
nonunitarized, due to the dynamically generated resonances
that have their correct widths.
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FIG. 15 (color online). The chiral condensate melting line in
the (wp, T) plane for unitarized ChPT interactions. Note that the
uncertainties due to the heavier hadrons (dark area) are much
smaller than for the nonunitarized case in Fig. 11. The area
between dashed lines corresponds to the uncertainty in the
parameters of unitarized ChPT and HBChPT listed in Table I
and II, and is also smaller than for the nonunitarized case.
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where, once more, the errors take into account the uncer-

tainty due to both the chiral parameters and the heavier
hadrons.

IX. SUMMARY AND DISCUSSION

In this work we have presented a model independent
description of a hadronic gas, based on the virial expansion
and ChPT to NLO for the meson-meson interactions and
third order for pion-nucleon within HBChPT. In particular,
we have studied the melting of the chiral condensate {(Gq)
as a function of temperature, 7, and baryon chemical
potential, wp. We have studied first the validity region,
where the second order virial expansion is expected to
provide a reasonably good description of the condensate
evolution and nucleon density is low enough so that we can
neglect NN interaction. Since the virial expansion is a low
density expansion and ChPT is a low energy effective
theory, our approach is best applicable at low temperature
and chemical potential, although it still seems to provide a
fairly good description of the system up to temperatures of
the order over T = 200 MeV at up = 0 and up to roughly
mp = 900 MeV at very low T (see Fig. 2). This allows us
to quantify the size of different contributions to the evolu-
tion of the condensate in terms of its extrapolated melting
temperature and chemical potential. This is very likely a
good estimate of the transition from ‘“‘normal” hadronic
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matter, where chiral symmetry is spontaneously broken, to
a phase where a chiral symmetry restoration may occur.

We use the virial expansion because it allows us to easily
include both the chemical potential and the interactions in
the thermodynamics of the system. The chemical potential
is very hard to implement on the lattice, to study rigorously
QCD, and our results may give some guidance on this
respect. The interactions are included from the zero tem-
perature and density elastic phase shifts, which are fairly
well known from experiment. As a matter of fact, for most
thermodynamical quantities, one could simply take the
phase shifts from data. However, the calculation of the
condensate requires the knowledge of the dependence on
the quark masses, which is not given by experiment.
Hence, a theory is needed to describe those data, and since
perturbative QCD itself does not describe the low energy
regime, one must turn to ChPT, which is the low energy
effective theory of QCD, for a model independent
description.

Our use of ChPT is very relevant since it provides model
independent and very reliable calculations of the hadrons
mass dependence on quark masses, which is a critical
quantity to follow the condensate evolution. This depen-
dence has been frequently estimated roughly in the litera-
ture, but the ChPT calculation provides an expansion in
terms of meson masses which shows a good convergence
for pions, kaons, etas, and nucleons, which are the domi-
nant components of the hadron gas. Furthermore, we have
shown that several results obtained from free hadron gases
in the literature can be reconciled with the interacting gas
predictions if one uses these correct dependencies.

Next, we have presented results for an SU(2) gas includ-
ing only pions and nucleons. This is of interest because of
its simplicity and because we can include systematically all
the effects up to a given order. This is in contrast with what
we have called a realistic gas, where we have considered
the interactions of kaons and etas with pions within the
SU(3) ChPT formalism; although, formally, the KK, 07,
and nK interactions are of the same order, we have ne-
glected them due to, first, the thermal suppression of kaons
and etas compared with the pions and, second, the weaker
dependence of their mass with respect to nonstrange quark
mass.

In this work we have explicitly shown the size of differ-
ent contributions to the condensate melting for up # 0. In
particular, we have evaluated the free kaon, eta, and nu-
cleon contributions, kaon and eta virtual effects in 77
interactions, as well as the 7K, 7rn interactions, these
have also been calculated at wp = 0 without nucleons to
check with previous results in the literature. In addition, we
have included the 7N interaction, showing that it does
have a sizable effect even at ug = 0. Around up =
40-50 MeV the pion-nucleon interaction itself decreases
the extrapolated melting temperature by 10 MeV. At higher
baryon chemical potentials, the effect is larger.
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It is also relevant to remark that all contributions de-
crease the extrapolated melting temperatures. Intuitively,
adding more states increases the possibilities of generating
disorder, i.e., entropy, and accelerates the melting of the
condensate. The interactions seem to reinforce this effect.
Therefore, our extrapolated melting temperatures can be
considered at least as upper bounds. Nevertheless, we have
shown that it becomes harder and harder to decrease the
melting temperatures with new contributions, so that we
still consider that, within uncertainties, our results provide
very good estimates of the melting temperatures.

In this work we have also performed a detailed study of
uncertainties, which are predominantly of two kinds: on
the one hand, we have approximated the effect of heavier
hadrons by adding them to the gas as free components. The
biggest uncertainty comes from the estimated dependence
of their masses on the nonstrange quark mass. On the other
hand, we have large uncertainties from the chiral parame-
ters of ChPT and HBChPT. This is the dominant source of
error. All in all, our extrapolated melting temperatures
come out with an error of the order of =10 MeV, some-
what smaller at wp =0 and somewhat larger as up
increases.

Let us remark that our results are consistent with other
mp = 0 model independent results that use ChPT and
calculate the partition function either analytically [14] or
also with the virial expansion [14—16]. We also find agree-
ment within errors with hadronic models [34], but our
melting temperatures come out systematically higher
than estimates using lattice [4,32]. In addition, our melting
curves lie, as expected, above the chemical freeze-out
temperature that has been estimated from p, spectra at
RHIC [29].

Finally, in order to have a more realistic description of
the high momentum part of the virial integrals, we have
used a unitarized version of ChPT that extends its applica-
bility up to ~1.2 GeV, and of HBChPT that generates the
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A(1232) resonance. It also allows one to describe correctly
the decay widths of the lightest resonances, which are the
most abundant of the ‘“heavier hadrons” that we had
approximated as free components. We have found that
our results are rather stable, within uncertainties, to these
changes at ug = 0, but that these effects could produce a
further decrease of the melting temperatures of ~10 MeV
for higher chemical potentials.

In conclusion, we have presented a model independent
and systematic study of the chiral condensate evolution
with temperature and chemical potential, by means of the
virial expansion and chiral perturbation theory. The high-
lights of this approach with respect to other fundamental
approaches like QCD on the lattice are: the use of physical
masses for the hadrons, the good control of the hadron
mass dependence on quark masses, and the simple imple-
mentation of the baryon chemical potential. We hope that
our results could serve as a guideline for future works in
hadronic models and also on the lattice, in order to under-
stand the phase diagram of QCD.
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Note added. —After submitting to publication this work,
we became aware of a recent lattice article [38], contested
in [39], where they obtain at uwp =0, a T, = 192(7) X
(4) MeV, somewhat higher than all other lattice results we
are aware of, and in fairly good agreement with the ChPT
results [14—16] and here.
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