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We investigate dark matter candidates emerging in recently proposed technicolor theories. We
determine the relic density of the lightest, neutral, stable technibaryon having imposed weak thermal
equilibrium conditions and overall electric neutrality of the Universe. In addition we consider sphaleron
processes that violate baryon, lepton and technibaryon number. Our analysis is performed in the case of a
first order electroweak phase transition as well as a second order one. We argue that, in both cases, the new
technibaryon contributes to the dark matter in the Universe. Finally we examine the problem of the
constraints on these types of dark matter components from earth based experiments.
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I. INTRODUCTION

The origin of the dark matter is one of the most intrigu-
ing open problems of modern particle physics and cosmol-
ogy. A few decades ago, astronomers realized that it was
impossible to explain the motion of galaxies, just by ac-
counting the luminous part of the galaxy. The most impor-
tant observational evidence comes from the rotation curves
of spiral galaxies. Astronomers are able to estimate the
velocities of clouds of hydrogen atoms, just by looking at
the Doppler shifted 21 cm emission. Naively one would
expect by using Newton’s law, that the velocity of clouds
like these should fall as / r�1=2, when r becomes larger
than the radius of the luminous part of the galaxy (r being
the distance to the center of the galaxy). However, astron-
omers observe an almost constant velocity, independent of
r. Unless one proposes a radical change of the laws of
gravity or of motion, it is logical to assume that matter that
does not interact ‘‘too much’’ and therefore appears dark to
us, has to fill the space of the galaxy.

Once we assume that a type of dark matter (DM) is
responsible for the discrepancies of the motion of the
galaxies, then there are two distinct possibilities for the
origin of the DM. The first type of candidates are of
baryonic origin and they are called MACHO (Massive
Compact Halo Objects). The MACHO can be brown dwarf
stars, giant planets and massive black holes. Massive black
holes with masses near 100MJ can be remnants at the

center of supernovae explosions. The brown dwarf stars are
stellar objects with masses less than 0:1MJ . Since a

proton star needs at least a mass of 0:1MJ to ignite

nuclear fusion, brown dwarfs never get to begin the nuclear
fusion of hydrogen. Giant planets can be also a component
of MACHOs with masses of the order of 0:001MJ .

However, observations so far showed with a high level of

confidence that MACHOs cannot account for more than
20% of the DM [1].

The second possibility is to have matter of nonbaryonic
origin. In contrast with MACHOs that are compact objects
of baryonic matter, in this case we have particles that are
neutral and interact only through gravitational and weak
forces. The name WIMP (Weakly Interacting Massive
Particles) is frequently used for these particles. The
Standard Model does not have the particles with the de-
sired properties. Ordinary neutrinos are the only electri-
cally neutral objects that interact weakly within the SM.
They are, however, too light and would compose part of a
hot-type dark matter, which is usually not considered in a
viable cosmological model. This is so since hot dark
matter would smear out large scale structure of galaxies.
Supersymmetry, for example, provides some natural
WIMP candidates for cold dark matter such as neutralinos.

In the search of WIMP candidates, particles related to
technicolor theories were also investigated as possible
sources of cold DM. This idea was pioneered by
Nussinov in [2,3] and further investigated in [4]. He imag-
ined that DM could be accounted by a technibaryon asym-
metry which can be ultimately related to the ordinary
baryon asymmetry. Although it was clear that technicolor
can give ‘‘reliable’’ DM candidates, little interest was
shown in the past because of the severe problems that
most technicolor theories suffer from such as large flavor
changing neutral current processes and/or problems with
the Electroweak Precision Measurements. Progress in this
direction has been made recently. We have constructed
explicit technicolor extensions of the SM passing the pre-
cision tests [5–8]. Our results are further supported by
ADS/CFT inspired model computations [9–11]. Because
of their walking nature they have very much reduced flavor
changing neutral current processes. Therefore it does make
sense to revisit the possibility of technibaryons as compo-
nents of DM. We have started this analysis in [8] for the
models with technifermions in the adjoint representation of
the technicolor gauge group. In this case the technibaryon
is one of the would-be Goldstone bosons of the underlying
technicolor theory. In Ref. [12] has been also suggested
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that technicolor theories may lead to dark matter candi-
dates of similar nature.

The goal of the present work is threefold: First, we will
provide the basic set up while showing the detailed com-
putations needed to determine the present relic density of
our technibaryon DM candidate. Second, we consider two
different orders of the electroweak phase transition and
compare the results. Third, using our low energy effective
theory developed in [8] we compute the relevant cross
sections needed to examine the problem of the constraints
on these types of DM components from earth based
experiments.

In the next section we review the basic properties of the
new technicolor theory and present the lightest neutral
technibaryon (LTB) of the theory. In Sec. III we present
our main calculation of the technibaryon contribution to
DM. In Sec. IV we investigate the experimental constraints
and comment on the detection of our technibaryon WIMP.
Finally we briefly conclude in Sec. V.

II. CONVENTIONS AND NOTATIONS

The minimal walking technicolor model [5–8] has two
techniflavors (techni-up U, and techni-downD) transform-
ing according to the adjoint representation of the SU�2�
technicolor gauge group. The global flavor symmetry is
SU�4� which breaks spontaneously to SO�4�. The associ-
ated low energy effective theories have been constructed in
[8]. There are 9 Goldstone bosons, 3 of which are eaten by
the W and Z bosons and are the technicolor equivalent of
the ordinary pions. Three of the remnant six Goldstone
bosons transform under techniflavor symmetries as:

 ULUL; DLDL; ULDL; (1)

with electric charges, respectively

 y� 1; y� 1; y; (2)

while the other three are the antiparticles. In the following
we drop the subscript L when referring to the above states.
The parameter y can take any real value. It is related to the
hypercharge of the techniquarks and is such that gauge
anomalies cancel out. Additionally in order to cancel
Witten’s global anomaly we simply add an extra family
of leptons

 L L �
�0

�

� �
L
; ��0R; �R�; (3)

with hypercharges:

 �
3y
2
;

�
�3y� 1

2
;
�3y� 1

2

�
; (4)

where we use the convention:

 Q � T3 � Y: (5)

A typical cold DM candidate must be electrically neutral
and at most have weak interactions. For example we can
choose y � 1=3, i.e. the SM-like hypercharge assignment
and in this case �0 (the new neutrino) is electrically neutral
and can be made stable by requiring no mixing with the
lighter neutrino species. This case is similar to the one
studied in [13]. In this paper we consider the case with
y � 1, where the second (technibaryon) Goldstone boson
of Eq. (1) is now electrically neutral. One the other hand,
the new leptons �0 and � have electric charges�1 and�2,
respectively. The still not directly observed Goldstone
bosons will acquire masses via new interactions. If we
assume these interactions to preserve the technibaryon
number, then the electrically neutralDD, if it is the lightest
technibaryon, is stable. We will denote with LTB the light-
est neutral technibaryon particle. We conclude that DD
is an interesting candidate which can be a cold DM
component.

III. COMPUTING THE LTB RELIC DENSITY

We now explicitly compute the DD-type boson relic
density in the case it is neutral and stable. We impose
thermal equilibrium and overall electric neutrality for the
matter in the Universe. Imposing overall electrical neutral-
ity avoids the huge energetic Coulomb costs due to electric
fields of the otherwise uncanceled charges in the Universe.
In addition to the theoretical reasons, observations confirm
an overall neutrality. Thermal equilibrium occurs among
different particles as long their rate � of interaction is much
larger than the the expansion rate of the UniverseH, where
H is the Hubble constant. If H > � at a given time the
particles decouple from each other and hence can no longer
be in thermal equilibrium.

At some energy scale higher than the electroweak one,
following the work of Nussinov [2], we assume the exis-
tence of a mechanism leading to a technibaryon asymmetry
in the Universe. Given that the technibaryon and baryon
number have a very similar nature such an asymmetry is
very plausible and can have a common origin. Here we will
not speculate further on the origin of the (techni)baryon
asymmetry but will relate it to the observed baryon asym-
metry as done by Nussinov as well as in [4]. Here we
provide detailed computations for our specific technicolor
model for two types of electroweak phase transitions.

Even if one is able to produce an asymmetry above or
around the electroweak scale the (techni)baryon number is
spoiled by quantum anomalies. Fortunately although the
baryon (B), technibaryon (TB), lepton (L) number and the
new lepton number for the new lepton family (L0) are not
conserved individually, their differences, i.e. B� L and
3TB� L are preserved. This fact allows for a nonzero
(techni)baryonic asymmetry to survive. The processes
leading to such a violation are termed ‘‘sphaleron’’ pro-
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cesses and at the present time are negligible. However
these processes were active during the time the Universe
had a temperature above or at the scale of the electroweak
symmetry breaking (� 250 GeV). Indeed these processes
were rapid enough to thermalize baryons, leptons and
technibaryons. At some point as the Universe expands
and its temperature falls, the baryon-lepton-technibaryon
violation processes cease to be significant. The precise
value of this temperature T� depends on the underlying
theory driving electroweak symmetry breaking. Within the
SM framework and assuming the validity of the semiclas-
sical calculation of the tunneling effect [14], T� has been
estimated by equating the rate of the sphaleron processes to
H. According to [14], T� satisfies the following equation

 T� �
2MW�T

��

�W ln�MPl
T� �

B
�
�
�W

�
; (6)

where MW is the mass of the W bosons, MPl is the Planck
scale, �W is the weak coupling constant, � is the self-
coupling of the Higgs boson and B��=�W� is a function
that takes on values from 1.5 to 2.7 as the ratio �=�W goes
from zero to infinity [14,15]. As we already mentioned this
formula is an approximation and it depends on the not very
well known ratio of �=�W . According to what is the value
of this ratio, T� can vary within the 150–250 GeV range. In
technicolor theories, since the Higgs is a composite object,
the self-coupling � is in principle calculable. An estimation
� � 1=8 for our specific model was given in [7]. Since
�W � 1=29 (or a bit larger at the electroweak scale), the
ratio �=�W gives a T� around 200 GeV.

It is time to introduce now the chemical potentials for
the relevant particle species. We here follow Ref. [16]
 

�W for W� �dL for dL; sL; bL

�0 for �0 �dR for dR; sR; bR

�� for �� �iL for eL;�L; �L

�uL for uL; cL; tL �iR for eR;�R; �R

�uR for uR; cR; tR ��iR for �eR; ��R; ��R

��iL for �eL; ��L; ��L

where the indices L and R denote chirality. We have a
common chemical potential for the up, charm and top
quarks, and a different one for the other triplet of down,
strange and bottom. A common chemical potential has to
do with the fact that at the scale of interest QCD interac-
tions put quarks of the same charge on equal footing. We
introduce a different chemical potential for all of the
leptons. Also in order to be as general as possible we
have assumed the existence of right handed neutrinos and
introduced different chemical potentials for the left and the
right handed particles. The thermal equilibrium conditions
associated to the weak interactions read:

 �W � �� ��0 �W� $ �� ��0�; (7)

 �dL � �uL ��W �W� $ �uL � dL�; (8)

 �iL � ��iL ��W �W� $ ��iL � eiL�; (9)

 ��iR � ��iL ��0 ��0 $ ��iL � �iR�; (10)

 �uR � �0 ��uL ��0 $ �uL � uR�; (11)

 �dR � ��0 ��W ��uL ��0 $ dL � �dR�; (12)

 �iR � ��0 ��W ���iL ��0 $ eiL � �eiR�; (13)

where it is understood that the Higgs is a composite of two
techniquarks. The Goldstone bosons of Eq. (1) are gauged
under the weak symmetry and hence we introduce the
following chemical potential for these Goldstone bosons
and the new lepton family of Eq. (3)
 

��L for �L �UU for UU

��R for �R �UD for UD

��0L for ��L �DD for DD

��0R for ��R

The corresponding thermal equilibrium equations for the
extra particles introduced by the technicolor theory per se
are

 ��L � �W ���0L ��L $ W� � ��L�; (14)

 �UD � �DD ��W �DD$ UD�W��; (15)

 

�UU ��UD��W ��DD� 2�W �UD$UU�W��;

(16)

 ��R � ��0 ���L ��0 $ �L � ��R�; (17)

 ��0R � �0 ���0L ��0 $ ���L � ��R�; (18)

where Eq. (15) has been used in Eq. (16).
Each classical gauge and scalar field configuration with

a given topological number leads to a simultaneous jump
for all of the anomalous charges. Hence each quark-
doublet generation, lepton-doublet generation, the new
lepton family number as well as techniquark number are
violated by the same classical field configuration. The one
loop anomalous coefficient dictates the relative amount of
the jump for each anomalous charge when turning on a
given classical field configuration.

With the normalization of 1=3 for the technibaryonic
charge for our techniquarks and 1=3 for the ordinary quark-
baryonic charge of the quarks, 1 for all of the leptons, the
simplest classical configuration with one unit of topologi-
cal charge will induce a transition from the the vacuum of
the theory to a state containing one baryon (per each
generation), one lepton (for each generation), a technibar-
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yonlike object with 3 technibaryons and one new lepton.
The relation among the chemical potentials emerging from
the above is:

 3��uL � 2�dL� ���
1

2
�UU ��DD ���0 � 0: (19)

The parameter � is defined as
P
i��iL � �. We have

assumed that the difference in the baryon number between
two different quark-doublet generations is created identical
before the electroweak phase transition. A similar relation
will be assumed for the lepton charges. Note that the
difference is not affected by the weak anomaly and hence
will not be generated later on.

We can now turn to the calculation of number densities.
The difference between the number densities of particles
and their corresponding antiparticles is given by

 n � n� � n�

� g
Z d3k

�2��3
1

z�1eE	 � 

� g

Z d3k

�2��3
1

zeE	 � 

;

(20)

where n� and n� are the number densities of the particles
and antiparticles, respectively. The constant g is the multi-
plicity of the degrees of freedom (spin, for example), 	 �
1=T in units kB � 1, and
 takes on the values 1 and�1 for
bosons and fermions, respectively. The fugacity z � e�	

and E is the energy. The ratio �=T in the Universe is
sufficiently small that we can Taylor expand the above
relation. The number density now can be written as

 n �

(
gT3 �

T f�
m
T� for fermions;

gT3 �
T g�

m
T� for bosons;

(21)

where the functions f and g are defined as follows

 f�z� �
1

4�2

Z 1
0
dxx2cosh�2

�
1

2

����������������
x2 � z2

p �
; (22)

 g�z� �
1

4�2

Z 1
0
dxx2sinh�2

�
1

2

����������������
x2 � z2

p �
: (23)

We now differentiate two cases according to the order of
the electroweak phase transition. In the case of a second
order or weak first order electroweak phase transition we
expect that the temperature T� is below the temperature of
the phase transition. This means that baryon, lepton and
technibaryon violating processes persist after the phase
transition. The second possibility is to have a strong first
order phase transition where the violating processes freeze
right at the phase transition. We are going to examine
separately the two different cases.

Assuming that the violating processes persist even after
the phase transition, we need to impose two conditions
here: Electric neutrality and set �0 � 0, since the Higgs
boson condenses and the electroweak symmetry breaks
spontaneously. Recall that we can introduce a nonzero

chemical potential only for unbroken symmetries whose
generators commute with all of the gauge ones. Here the
Higgs boson is a composite particle, made of techni-up and
techni-down quarks � �UU� �DD�=

���
2
p

. Therefore when we
refer to �0 as the chemical potential, we mean the chemi-
cal potential of the composite object.

From Eq. (21) we see that the number densities, in the
leading approximation, are linear in the chemical potential
for small �=T. For convenience we express the baryon
number density as

 B �
nB � n �B

gT2=6
: (24)

We shall use the same normalization (dividing the number
density by gT2=6) also for the lepton number, technibaryon
number etc. Since in the end we care only for ratios of
number densities, the normalization constant cancels out.

We conveniently define the function � as follows

 �i �

(
6f�mi

T�� for fermions;
6g�mi

T�� for bosons;
(25)

where f and g are those of Eq. (23) and (24), respectively,
and the index i refers to the particle in question.

For all of the SM particles the statistical function is
taken to be 1 and 2 for massless fermions and bosons,
respectively, except for the top quark which we treat mas-
sive as mt is of order T�. The reason why we can take the
other SM particles to be massless in the statistical function
is that m	 T�. However, the technibaryons as well as the
particles of the new lepton family have masses that cannot
be ignored. We should emphasize that we calculate the
baryon and lepton numbers at the temperature T� where
sphalerons die out.

The baryon density can be written as

 B �
3

3

�2� �t���uL ��uR� � 3��dL ��dR��

� �10� 2�t��uL � 6�W � ��t � 1��0; (26)

where Eqs. (8), (11), and (12) have been used and the factor
in the first line includes number of colors and that the
baryon number of each quark is 1=3. The factor 3 of the
down-type quarks is the number of families and equivalent
the factor 2� �t is the number of families taking into
account the top mass effect.

Similarly the lepton number for the Standard Model
leptons is

 L �
X
i

���iL ���iR ��iL ��iR� � 4�� 6�W: (27)

For the new lepton family we have

 L0 � �� ���L ���R� � ��0 ���0L ���0R�

� 2���0 � �� ���0L � 2���W � ���0 � �� ��0: (28)

Similarly for the technibaryons we get
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TB �
2

3
��UU�UU � �UD�UD � �DD�DD�

�
2

3
��UU � �UD � �DD��DD �

2

3
��UD � 2�UU��W:

(29)

The charge constraint for all the particles is

 

Q �
2

3
� 3�2� �t���uL ��uR� �

1

3
� 3 � 3��dL ��dR�

�
X
i

��iL ��iR� � 2 � 2�W � 2�� � 2�UU�UU

� �UD�UD � 2�� ���L ���R� � ��0 ���0L ���0R�:

(30)

For the first order phase transition we will need also the
neutrality with respect to the weak isospin charge which is

 

Q3 �
3�2� �t�

2
�uL �

3 � 3

2
�dL �

1

2

X3

i�1

���iL ��iL�

� 4�W � ��0 ���� � ��UU�UU � �DD�DD�

�
1

2
���0��0L � ����L�: (31)

The need for the isospin neutrality condition, in the first
order case, comes from the fact that we are computing our
final relic densities above the electroweak phase transition
where the weak isospin is unbroken.

Since it is not clear whether the electroweak phase
transition is first or second order, we should examine
both cases. It is expected as in [16] that a strong first order
phase transition occurs fast enough to ‘‘freeze’’ the baryon
and technibaryon violating processes just at the transition.
In this case one calculates the equilibrium conditions just
before the transition. On the other hand, in a second order
phase transition we expect the violating processes to persist
below the phase transition and the equilibrium conditions
are imposed after the phase transition. If the phase diagram
as function of temperature and density of our technicolor
theory would be known a specific order of the electroweak
phase transition would be used.

When the ratio between the number densities of the
technibaryons to the baryons is determined we have

 

�TB

�B
�

3

2

TB
B
mTB

mp
; (32)

here mTB is the mass of the LTB (the mDD) and mp is the
mass of the proton.

Note that a possible mixing between the new family and
an ordinary standard model family would dilute the relative
�0 abundance and eventually annihilate L0.

A. 2nd Order Phase Transition

Here the two conditions we have to impose are: Overall
electrical neutrality and �0 � 0 for the chemical potential
of the Higgs boson. The ratio between the number density
of the technibaryons to the baryons can be expressed as
function of the L=B and L0=B ratios. In order to provide a
simple and compact expression we consider the limiting
case in which the UU and UD technibaryons are substan-
tially heavier than the DD companion, the top is light with
respect to the electroweak phase transition temperature and
the new lepton family is degenerate, i.e. �� � ��0 . In this
approximation the ratio simplifies to
 

�
TB
B
�

�DD
3�18� ��0 �

�
�17� ��0 � �

�21� ��0 �
3

L
B

�
2

3

�9� 5��0 �
��0

L0

B

�
: (33)

The results of the calculation are summarized in Fig. 1.
This figure shows what are the allowed values of the
parameter � defined below, as a function of the mass of
the LTB, for a given T�, if the LTB accounts for the whole
dark matter density of the universe. The parameter � can be
considered roughly speaking as the total ratio of lepton
over baryon number, with the new lepton family number L0

weighted ‘‘appropriately’’ due to the large mass that �0 and
� carry.

 � �
L
B
�

2

��0
9� 5��0

21� ��0
L0

B
: (34)

 

-6

-4

-2

 0

 2

 4

 6

 0.5  1  1.5  2  2.5  3

ξ

mLTB [TeV]

Phase plot for various T  * - second order PT

anti-particles
particles

upper bound

lower bound
mean value

T  *=150GeV T
 * =

20
0G

eV

T
 * =

25
0G

eV

T  *=150GeV T  *=200GeV T  *=250GeV

FIG. 1 (color online). Plot representing the region of the
parameters according to which the fraction of technibaryon
matter density over the baryonic one takes on the values [3.23,
5.55]. We consider a second order phase transition. The parame-
ters in the plot are the mass of the LTB DM particle and � of
Eq. (34). The plot includes various values of T�. The dotted line
separates areas of abundant particles and antiparticles.
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From Fig. 1 we see, for example, that if we set L0 � 0
(no new leptons present) while also setting L=B � �4, we
need a mass for the LTB somewhere between 1.1 to
2.2 TeV, according to what is the freeze out temperature
T�. We should emphasize that there are two branches of
allowed values for �, separated by the dotted horizontal
line. The lower branch, as, for example, the one we just
described with � � �4, corresponds to a relic density
made by technibaryons DD. The upper set of allowed
values, (as for � � 2), corresponds to the DD antiparticle.
In Fig. 3 we show the dependence of the neutral techni-
baryon matter density as a function of its mass for a fixed
value of the parameter �. We see that if the LTB mass is
lighter than roughly a TeV the density of the particle is very
large, giving a too large ratio �TB=�B. So, for a given
value of � and T�, WMAP data put constraints on the
allowed mass of the technibaryon. On the other hand if
we increase enough the mass of the technibaryon, we can
get a ratio less than 4–5, which means that the techni-
baryon can be a component of the dark matter density.

B. 1st Order Phase Transition

If the electroweak phase transition is predicted to be first
order, then the baryon, lepton and technibaryon violating
processes freeze slightly above the phase transition. For
this reason, we have to impose two conditions, the overall
charge neutrality Q � 0 and Q3 � 0, where Q3 is the
charge associated with the T3 isospin generator of the
weak interactions. This charge has to be zero because
above the phase transition the electroweak symmetry is
not broken and therefore Q3 � 0.

The technibaryon over baryon number density ratio is, in
the same approximation used for the second order phase
transition:

 �
TB
B
� �DD

22� ��0

9�22� 2�DD � ��0 �

�
3�

L
B
�

1

��0
L0

B

�
:

(35)

T� is expected to be larger than that of the second order
case, i.e. it should be identified with the critical tempera-
ture Tc of the electroweak phase transition. This fact forces
the mass of the LTB to be larger than that of the second
order case to describe the whole DM. Our results are
summarized in Fig. 2. As in the case of the 2nd order phase
transition, we have plotted the allowed values of the �
parameter

 � �
L
B
�

1

��0
L0

B
; (36)

which is slightly different from the previous case, as a
function of the LTB mass, under the WMAP constraints
regarding the overall density of dark matter in the universe.
Using the previous example of L0 � 0 and L=B � �4, we
get an LTB mass of around 2.2 TeV.

IV. DETECTION OF THE NEUTRAL
TECHNIBARYON

Apart from the possibility of detecting a technibaryon in
the LHC experiment it would certainly be interesting to
detect the neutral technibaryon in earth based experiments
such as the CDMS [17–20]. Two are the basic ingredients
affecting the detection of a cold DM object in these kinds
of experiments. The first one is how large is the cross
section of the object to be observed with the matter in
the detector. The second has to do with the local density of
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DM in general and of the specific component of DM, in
particular. Current estimates suggest that the local density
for a single component should be somewhere between
0:2–0:4 GeV=cm3. It is evident that the higher the cross
section and the local density of dark matter are, the larger
are the chances for the detection of the particle. The CDMS
collaboration, for example, can identify WIMPs by observ-
ing the recoil energy produced in elastic scattering between
the WIMP and a nucleus in the detector. The expected rates
of events per unit time and mass of the detector has been
calculated in several places and we refer to the review
paper [21] for a complete list of relevant references. The
number of counts reported by the detector per unit time,
mass of the detector and recoil energy is

 

dR
dT
�

R0

E0r
e�T=E0r; (37)

where T is the recoil energy of the nucleus, E0 is the kinetic
energy of the WIMP and r � 4mMn=�m�Mn�

2, m and
Mn being the masses of the WIMP and the nucleus, re-
spectively. The parameter R0 is the total rate containing the
information about the cross section and is given by

 R0 �
2

�1=2

N0

A
dm
m

�0�0; (38)

where N0 is the Avogadro number, A is the atomic number
of the nucleus of the detector, dm is the local dark matter
density, �0 is the cross section for an elastic collision
between the WIMP and the nucleus and �0 is the thermal
velocity of the WIMPs. One should note here that Eq. (37)
is an approximate expression. In reality the calculation is
more elaborate. For example, in principle one has to as-
sume a Maxwell distribution for the velocities of the
WIMPs up to the escape velocity for our galaxy. In addi-
tion, the effect of the motion of the earth relatively to the
halo should be considered. These factors can change the
expected rate. The total rate of counts can be more usefully
rewritten in convenient units as
 

R0 �
503

Mnm

�
�0

1 pb

��
dm

0:4 GeV cm�3

��
�0

230 kms�1

�
GeV2

kg:days
:

(39)

Since our prospective dark matter component is a
Goldstone boson, we are interested only in the spin-
independent elastic cross section. This is given in natural
units by [22]

 �0 �
G2
F

2�
�2 �Y2 �N2F2; (40)

where GF is the Fermi constant and �Y � 2Y. For a Dirac
fermion �Y � YL � YR and � is the reduced mass of the
latter and the nucleus target. �N � N � �1� 4sin2�w�Z,
where N and Z are the number of neutrons and protons
in the target nucleus and �w is the Weinberg angle. The

parameter F2 is a form factor for the target nucleus. The
cross section can be written as

 �0 � 8:431 10�3 �2

GeV2
�Y2 �N2F2 pb: (41)

The Ge atom has 41 neutrons and 32 protons, giving an
�N � 38:59. Our LTB has �Y � 1 [23]. Since Standard

Model neutrinos have �Y � 1=2, this means that the cross
section for the technibaryon will be 4 times larger than the
one corresponding to a heavy neutrino. As we already
mentioned, for typical values of the L=B ratio, in order
to get the whole density for the dark matter, the mass of the
technibaryon should be of the order of a TeV. The form
factor F2 for the nucleus of Ge depends on the recoil
energy T. It models the loss of coherence of the scattering
for large recoil energies. For typical values of the recoil
energy around 20–50 keV one expects F2 to be around
0.58. We estimated the nuclear form factor F using the
solid sphere approximation -proper for the spin-
independent WIMP interaction- summarized in [21]. To
be more precise the nuclear form factor ranges from 0.72 to
0.43 when the recoil energy ranges from 20 to 50 keV [24].

The number of counts that are detectable is given by

 counts �
dR
dT

�T  �; (42)

where � is the exposure of the detector measured in kg.days
and �T is the energy resolution of the detector. In the
CDMS experiment a 19.4 kg.days exposure was achieved
for the Ge detectors with an energy resolution of �T �
1:5 keV. So far no counts have been found. The 90% level
of confidence would lead to 2.3 counts.

If we assume that our LTB constitutes the whole DM in
the Universe we have seen from our previous computations
that a typical value of the mass is about 2 TeV, for the
second order phase transition case. Taking a recoil energy
around 50 keV, dm � 0:3 GeV=cm3 and F2 � 0:43 the
number of counts predicted is around 13 which is a value
few times larger than the 90% confidence value presented
before. By stretching the parameters we can reduce, or
even annihilate the gap, between our prediction and ex-
perimental bounds. Using still a mass around 2 TeV but
choosing a different set of input, i.e. dm � 0:1 GeV=cm3,
F2 � 0:3 and T � 70 keV one finds around two predicted
counts. Hence we would be within the 90% confidence
level. Under these rather extreme conditions one cannot yet
completely exclude the possibility that our WIMP can
constitute the whole DM. Another simple way to reduce
the gap between experiment and our LTB particle, if we
imagine it to be a component of DM, is to increase its mass.
In doing so, however, we neglect the relevant information
gained in the previous sections in which we related the
mass of the LTB to the fraction of DM in the Universe it
can account for.
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We now take into account, in a more careful way, such a
dependence on the mass of the LTB. From the previous
section we learned that the general trend is that the amount
of DM saturated by our LTB object decreases when in-
creasing the mass of the LTB. In the absence of a complete
computation of how DM distributes itself in the Universe
we make the oversimplifying assumption that the fraction
of local DM density of our LTB follows the same fraction
of DM in the Universe. At this point we impose the 90%
experimental constraint. Our results are reported in Fig. 4.
In the figure we have chosen F2 ’ 0:43 and the thermal
velocity is 230 km=s. We present both the maximal frac-
tion of local DM density determined imposing the 90%
experimental constraint (Fig. 4) and the associated value of
the LTB mass as functions of �. We have allowed for
variations of the parameters to make our analysis more
complete. Note that we have allowed the local DM density
to reach, in the plots, very large values although a more
modest range (i.e. up to 0:4 GeV=cm3) is probably
sufficient.

Summarizing we can say that for reasonable values of
the input parameters the 90% experimental constraint al-
lows for a 10% to 65% of LTB-DM component in the
Universe. Our DM component allowed mass ranges be-
tween 1.4 and 3.3 TeV depending on the order of the
associated electroweak phase transition as well as the exact
value of the local DM density and experimental parameters
range. Our conclusions are slightly affected if we use
20 keVas recoil energy. In this case at most we can account
for 30% of the DM in the Universe and the masses of the
LTB would be slightly higher.

The question to be answered at this point is: What makes
the rest of the DM in the Universe? We speculate that a
techni-axion, needed for the solution of the strong CP
problem, could be a natural candidate (see for example
[25]). In this way the two components for DM are asso-
ciated to two natural and complementary extensions of the
SM. An explicit model containing axions from technicolor-
like dynamics has been constructed in [26].

V. CONCLUSIONS

We have investigated in much detail dark matter candi-
dates emerging in our recently proposed technicolor theo-
ries. We have determined the contribution of the lightest,
neutral, stable technibaryon to the dark matter density
having imposed weak thermal equilibrium conditions and
overall electric neutrality of the Universe. Sphaleron pro-
cesses have been taken into account. We performed the
analysis in the case of a first order electroweak phase
transition as well as a second order one. In both cases,
the new technibaryon contributes to the dark matter in the
Universe. We have also examined the problem of the
constraints from earth based experiments. We find that
quite a substantial amount of DM can be explained within
our model. The new generation of DM-detection experi-
ments can put very strict limits or even rule out the present
type of DM component. We should stress that our frame-
work can be applied to any model featuring a new baryonic
type particle at the electroweak scale whose new baryon-
type charge is violated only by weak interactions.
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