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We study a 4� 1 dimensional pure Abelian Gauge model on the lattice with two anisotropic couplings
independent of each other and of the coordinates. A first exploration of the phase diagram using mean field
approximation and monte carlo techniques has demonstrated the existence of a new phase, the so called
Layer phase, in which the forces in the 4-D subspace are Coulomb-like while in the transverse direction
(fifth dimension) the force is confining. This allows the possibility of a gauge field localization scheme. In
this work the use of bigger lattice volumes and higher statistics confirms the existence of the Layer phase
and furthermore clarifies the issue of the phase transitions’ order. We show that the Layer phase is
separated from the strongly coupled phase by a weak first order phase transition. Also we provide
evidence that the Layer phase is separated by the five-dimensional Coulomb phase with a second order
phase transition and we give a first estimation of the critical exponents.
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I. INTRODUCTION

Higher dimensional theories have been introduced by
Kaluza and Klein to achieve unification to all known, that
time, interactions. There is strong theoretical motivation
for considering spacetimes with extra (more than three)
spatial dimensions like String theory and M-theory that try
to incorporate quantum gravity in a consistent way. In the
context of these theories ten (String theory) or 11
(M-theory) spacetime dimensions are required. Although
there is still a lack of experimental evidence on the exis-
tence of a higher dimensional world, these ideas have
shown a new revival during the last decade in the context
of brane world theories, the latter attempt to respond to
long standing problems of theoretical physics like the
hierarchy problem, the cosmological constant problem
and the fermion mass hierarchy. Brane world theories
assume that our world is a three brane which is embedded
in a higher dimensional space (bulk).

A class of these theories considers a (4� n)-
dimensional space with n flat compactified dimensions
(ADD scenario) [1] while a second class makes use of
noncompact warp extra dimensions (Randall-Sundrum
first and second model) [2]. Although initially these theo-
ries were referring to the gravity interaction they immedi-
ately gave rise to questions for the brane localization of the
other fields (for a review see [3–5]). For the localization of
fermions one can use the domain wall mechanism where a
bouncelike static solution generated from some extra scalar
field interact with the fermions. Chiral fermions succeed to
appear usually in that formulation [3,6]. However there is a
more powerfull mechanism where we can achieve local-

ization of extended structures of particles which include
gauge fields, fermions and scalar fields with gauge charge
[7,8] and is based on confinement along the extra dimen-
sions. This mechanism may be triggered by the extra
dimensional gravity [9].

Since the mid eighties Fu and Nielsen proposed a five-
dimensional abelian gauge lattice model with anisotropic
couplings that could serve as a new way of thought for
achieving the dimensional reduction [10]. The idea was
that the anisotropy of the interactions between the four-
dimensional space and the fifth (extra) dimension could
give a phase diagram which contains a new kind of phase
beyond the well known and expectable strong and
Coulomb phases. By using Mean Field methods it was
shown that the new phase was characterized as a
Coulomb one in the four dimensions but confining along
the remaining one. This new phase was called Layer phase.
Since the confinement along the extra dimension is respon-
sible for the fact that there is no interaction between
neighboring four-dimensional layers, that could serve as
an indication of the effective existence of the four-
dimensional world.

The higher dimensional gauge theories belong to the
class of the nonrenormalizable ones. Therefore such theo-
ries can be only valid as effective emerging from more
fundamental theories the origin of which is still under
discussion. One way to deal with these theories is to adopt
the necessary existence of a cut-off � and consider them as
effective theories for low enough energies. In any case the
perturbation theory seems not to be sufficient to describe a
mechanism for the gauge field localization on three dimen-
sional submanifold for which the interaction of the gauge
and matter fields along the extra dimensions must be sup-
pressed. With the five-dimensional anisotropic gauge abe-
lian model that we study here we intend to present a gauge
field localization mechanism on the lattice realized by
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means of the Layer phase. The property of confinement
along the extra dimension which characterizes the Layer
phase has to be studied using necessarily nonperturbative
tools.

A first numerical study of the model has been done in
[11] in which the Layer phase was identified by means of
Monte Carlo techniques. In [12] the same model was
studied in more extent and furthermore a new version
was presented consisting of defining the coupling anisot-
ropy as dependent of the extra dimension coordinate. This
version of the anisotropic model was inspired by the
mechanism used to establish the higher dimensional mod-
els with warp extra dimensions mentioned above [2]. It
also provided the possibility of having the Layer phase on
the lattice.

The aim of this paper is to study more intensively the
phase diagram of the model in terms of two gauge cou-
plings, one defined on the four-dimensional subspace and
the other along the extra (transverse) direction. For that we
employ bigger lattice volumes and higher statistics than
used in the past. Our purpose is to show that the Layer
phase not only can be identified with precision using the
lattice techniques but furthermore to demonstrate that it is
well separated both from the five-dimensional Coulomb
phase and the confining phase of the model. Actually we
bring results that are in favor of a first order phase tran-
sition between the Layer and the strong phase. Moreover
we verify that this conclusion is also valid in the limit of the
very strong couplings along the extra fifth dimension for
which the features of the strong-Coulomb transition for the
four-dimensional abelian gauge model are reproduced (see
Sec. IVA). On the other hand we provide strong evidence
that the Layer-Coulomb (5D) transition is of second order
(see Sec. IV B). Although the lattice volumes that we have
been able to use appear not to be sufficient to give a definite
and conclusive answer on the problem of the order of the
phase transition, nevertheless, we are allowed to extract a
first estimation of the critical exponents.

II. THE MODEL

We consider the U(1) gauge lattice action in five dimen-
sions with two anisotropic couplings � and �0:
 

S5D
gauge � �

X
x;1��<��4

�1� Re�U���x���

� �0
X

x;1���4

�1� Re�U�T�x��� (1)

where

 U���x� � U��x�U��x� as�̂�Uy��x� as�̂�U
y
� �x�

U�T�x� � U��x�UT�x� as�̂�U
y
��x� aTT̂�U

y
T �x�

are the plaquettes defined on the 4-D subspace ��; � �
1; 2; 3; 4� and on the plane containing the transverse direc-
tion (xT), respectively. We also denote with aS and aT the

corresponding lattice spacings. The link variables are given
by U� � ei�� for the 4-D subspace and UT � ei�T for the
transverse direction.1 The plaquettes can also be written in
the following form:

 U���x� � exp�i����x��; U�T�x� � exp�i��T�x��

with the definitions:

 ��� � ���x� � ���x� aS�̂� � ���x� aS�̂� � ���x�

��T � ���x� � �T�x� aS�̂� � ���x� aTT̂� � �T�x�

Observables

Two operators, which are mainly used to define the
different phases of the model and help to estimate the order
of the phase transitions, are the spacelike, P̂S, and the
timelike plaquette, P̂T and are given by the following
expressions:

 P̂S �
1

6L5

X
x;1��<��4

cos����x� (2)

 P̂T �
1

4L5

X
x;1���4

cos��T�x� (3)

where L is the length of each lattice direction which is
assumed to be the same in all directions.

Starting from the operators (2) and (3) we measure the
following quantities:

(1) The spacelike plaquette mean value:

 PS � hP̂Si (4)

where the symbol h. . .i denotes the statistical aver-
age with action given by Eq. (1).

(2) The transverselike plaquette mean value:

 PT � hP̂Ti (5)

(3) The distributions N�P̂S�, N�P̂T� of P̂S and P̂T
respectively.

(4) The susceptibilities of P̂S and P̂T :

 S�P̂S� � V�hP̂2
Si � hP̂Si

2�;

S�P̂T� � V�hP̂2
Ti � hP̂Ti

2�
(6)

where V stands for the lattice volume in five or four
dimensions depending on the case under study (see
details below).

(5) The Binder cumulants of P̂S, P̂T :

1In terms of the continuum fields they would be written as
���x� � aSA��x� and �T�x� � aTAT�x�.
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 B�P̂S� � 1�
hP̂S

4i

3hP̂S
2i
; B�P̂T� � 1�

hP̂T
4i

3hP̂T
2i

(7)

Furthermore we use the helicity modulus (h.m.) first
introduced in the context of lattice gauge theories in [13].
It is an order parameter which characterizes the response of
a system to an external electromagnetic flux. More pre-
cisely it is the curvature of the flux free energy (F���) at
the origin (in fact any point �0 different from the origin
will work fine):

 h��� �
@2F���

@�2

����������0
(8)

The h.m. takes always zero value in the confined phase and
values different from zero in the Coulomb phase. Since in
our model the Layer phase is a mixture of both a confining
and Coulomb phase, we propose the following measuring
procedure: we impose first the extra flux � on a stack of
plaquettes (following [13])

 stack � f���j� � 1; � � 2; x � 1; y � 1g (9)

then with a change of variables we spread the extra flux,
uniformly, to all the plaquettes with the given orientation.
Now, our partition function becomes:
 

Z��� �
Z
D�e

�
P

�����planes

cos�������=L�L�����
P

�����planes

cos�����

� e
�0
P

1���4

cos���T �

(10)

where
P
���� denotes the sum over all planes parallel to a

given orientation and
P
���� stands for the sum over the

remaining planes.
The flux free energy is defined by

 F��� � � log
Z���
Z�0�

(11)

In this way, using the h.m. definition (8), we obtain:

 hS��� �
1

�L�L��2

��X
P

�� cos������
�

�

��X
P

�� sin������
�

2
��

(12)

where the sum extends to all the plaquettes in the (��)
orientation and the brakets denote the average over the
gauge ensemble according to the partition function (10)
with � � 0.

In a similar way if we choose the ��;T� orientation and
follow exactly the same steps described above for the
spacelike h.m., we obtain the expression for the ‘‘trans-
verse’’ h.m.:

 hT��0� �
1

�L�LT�2

��X
P0
��0 cos���T��

�

�

��X
P0
��0 sin���T��

�
2
��

(13)

The sum now extends to all the plaquettes on the transverse
plane.

III. THE PHASE DIAGRAM

Before proceeding to the detailed analysis, we present in
advance the model phase diagram and a general descrip-
tion of the behavior of the quantities that are used to
specify the features of the phases.2 The phase diagram is
depicted in Fig. 1. Full triangles represent the results
obtained with hysteresis loop study on 65 and 85 lattice
volumes regarding the spacelike and the transverselike
plaquette. For the points shown with ‘‘squares’’ instead
an extensive high statistics analysis has been performed.
The phase diagram includes three distinct phases. For large
values of � and �0 the model lies in a Coulomb phase (C)
on the 5-D space. Now, if � is kept constant, above the
value of one, while �0 decreases the system will eventually
show up a behavior according to which the force in four
dimensions will still be Coulomb-like while in the fifth
direction the property of confinement is present. This is the
new phase called Layer phase (L). For small values of both
� and �0, the force will be confining in all five directions
and the corresponding phase is the Strong phase (S).
According to this way of reasoning two test charges found
in the Layer phase will experience a Coulomb force in four
dimensions with coupling given by the four-dimensional
coupling �, while along the fifth direction they will expe-
rience a strong force as the corresponding coupling �0

takes small values. Therefore the Layer phase can provide
us with a mechanism for gauge field localization on a 4-D
subspace in the context of higher dimensional models.
Since the potential between two charges can be expressed
by the Wilson loops we will expect the following behavior
[10]:

(i) W���L1; L2� ’ exp���L1L2� (Confinement phase,
1 � �, � � 5))

(ii) W���L1; L2� ’ exp����L1 � L2�� (Coulomb phase,
1 � �, � � 5)

(iii) W���L1; L2� ’ exp���0�L1 � L2�� and
(iv) W�T�L1; L2� ’ exp���0L1L2� (Layer phase,1 �

�, � � 4.)
Moreover if we consider the helicity modulus we find that
it shows the following properties: (i) In the Strong phase
both the spacelike helicity modulus, hS���, and the trans-
verselike helicity modulus, hT��0� take zero values as a

2For the mean field prediction of the phase diagram see [10].
Also for previous attempts for the phase diagram prediction
using numerical simulations see [11,12].
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consequence of a confining force in all directions [13].
This phase is defined in the parameters’ range, �0 < 0:35
and �< 1. We keep the value of �0 constant while we let
vary the value of �. As � increases beyond the critical
point the system passes to the Layer phase and the hS���
takes nonzero values which tend to the value one in the
range of high � values. This feature characterizes the
Coulomb phase on the layers. On the other hand the trans-
verselike h.m., hT��0�, must remain zero for all values of �
since both phases exhibit confinement in the fifth direction
(see Sec. IVA).

(ii) For the transition between the Coulomb and the
Layer phase we expect for hS��� to get a value close to 1
for all the values of�0 since the 4-dimensional layers are in
a Coulomb phase, while hT��0� gets zero value for the
Layer phase and as we pass the critical point and enter the
Coulomb phase it must grow towards one as �0 increases
(see Sec. IV B).

IV. MONTE CARLO RESULTS

We used a 5-hit Metropolis algorithm supplemented by
an overrelaxation method (see Ref. [12] and references
within). The lattice volumes used were: 65, 85, 105, 125

and 145. More than 105 sweeps were dedicated to the
thermalization process and we got samples of about 5�
9� 104 measurements free of autocorrelation. Also two
self-adjusting scales were implemented, one for the update
procedure on the 4-D subspace and the other along the
transverse dimension. The errors of the various measured
quantities have been calculated with the jackknife method.

In the following sections we will study the Strong-Layer
and the Coulomb-Layer phase transitions which are of
main interest. In this work we will not study the Strong-
Coulomb phase transition. However we note that strong
evidence for a first order phase transition has been found
due to pronounced two peak distributions (see [12]).

A. Strong-Layer phase transition

We choose a constant value for the coupling �0 � 0:2
and we let the value of � vary for four lattice volumes 65,
85, 105 and 125. For low enough values of� the PS tends to
values equal to �=2 according to the strong coupling
expansion, then grows as it passes to the Coulomb phase
tending to values equal to the weak coupling limit 1�
1=�d�� (see Fig. 2). The transition becomes steeper as the
lattice volume increases.3 A first evidence for a first order
phase transition can be found in Fig. 2 where is shown a
two-state signal for the spacelike plaquette which persists
and becomes more pronounced as we pass from lattice
volume 85 to 125. We should note that the two-state signal
is present only when we study the gauge invariant quanti-
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FIG. 1. The phase diagram of the 5-D anisotropic U(1) gauge
model.
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FIG. 2. (a): Mean values for the spacelike plaquette (the errors
are included in the symbols’ size and the dashed lines guide the
trend); (b): The two peak distribution N�PS� for L � 8 at �0 �
0:2 and � � 1:0073 and L � 12 at �0 � 0:2 and � � 1:0099.

3Note that PT remains constant to the strong coupling value
i.e. �0=2 � 0:1 during the transition (see also [12]).
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ties measured on the four dimension layers and not on the
whole volume. The reason is that as the system passes to
the Layer phase with a noncontinuous way the various
quantities measured on the layers show a ‘‘noncoherent’’
behavior. This phenomenon, in the case of a strong first
order phase transition, is responsible for producing multi-
peak distributions for the quantities measured on the whole
five-dimensional lattice volume while for a weak first order
phase transition one peak wide distributions are formed.
Based on that observation and in order to obtain a more
explicit signal we study the phase transition on the layer.4

The behavior of the spacelike helicity modulus, hS, for
the same transition is depicted in Fig. 3. As it was expected
the hS takes values strictly around zero in the confinement
phase and passes to nonzero values in the Coulomb phase.
The transition shows a steeper passage as the lattice vol-
ume takes bigger values. In particular what is to be noticed
is that for the bigger lattice volume a rather high jump
arises around �	 1:01. In the same figure we have in-
cluded the hT for one volume which takes zero value in
both phases (shown with ‘‘uptriangles’’) which is an im-
print of the confinement along the fifth direction.

The volume dependence of the susceptibility S�P̂S� and
of the Binder cumulant, B�P̂s�, are illustrated in Fig. 4. The
S�P̂s� (measured on the 4-D subspace according to what
has been noted above) exhibits a clear increase with the
volume but it is not a linear one. The minimum of the
Binder cumulant also tends to increase with the volume
though slowly. For the bigger lattice volume used (i.e. 125)
the minimum value, Bmin�P̂s�, seems to lie rather far from
the 2=3 which should be the infinite volume limit in the
case of a higher order phase transition [15].

We attempt to estimate the infinite volume limit for the
minimum of the Binder cumulant, Bmin�P̂s�, and for that
we use the ansatz:

 Bmin�P̂S� � Bmin;1 �
X1
k�1

Ck
Vk4

where V4 is for the layer volume and we limit ourselves to
k � 2. The relevant values for the fit are given in Table I. In
Fig. 5 we depict the fit. The infinite volume result we
obtain is: Bmin;1 � 0:66591�3� which is well far from
2=3. Note in passing that a linear fit of the three higher
values gives compatible result. So we come to the con-
clusion that a higher order phase transition seems not to be
the case.

Now we try to apply a finite size analysis for the maxima
of the susceptibility of the spacelike plaquette. Following
the method proposed in [16] and also applied in the 4-D
U(1) gauge model in [17], we set the ansatz:
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FIG. 3. The volume dependence of the spacelike h.m. hS. The
transverse h.m. hT (uptriangles) for L � 10 is also shown (the
errors are included in the symbols’ size and the dashed lines
guide the trend).

 

0.995 1 1.005 1.01 1.015

β
0

1

2

3

4

5

6

7

S(P
^

S)

L = 12

       10

         8

         6

(a)

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02 1.025

β

0.6635

0.664

0.6645

0.665

0.6655

0.666

0.6665

B
(P^ S)

L = 12

       10

         8

         6

(b)

FIG. 4. Volume dependence of the susceptibility (a) and of the
Binder cumulant (b) for the spacelike plaquette (the lines guide
the trend).

4The same has been found and identified in the case of the
Layer-Higgs phase [14].
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 �c � �1 �
X1
k�1

Ak
Vk4

�2
cSmax�P̂s�
V4

�
1

4
G2
1 �

X1
k�1

Bk
Vk4
(14)

where: �c stands for the pseudocritical value of the cou-
pling � at each lattice volume, �1 is the coupling value at
infinite volume and G1 is the infinite volume gap in the
plaquette energy. The �c values have been estimated by
making a gaussian fit around the peak of the susceptibility
while the use of the multihistogram method provided
compatible results. The values used for the fits are given
in the Table I.

The results obtained from the fitting procedure with k �
2 in Eq. (14) are:

 �1 � 1:01072�5� and G1 � 0:0297�5� (15)

The value for �1 lies close to the critical value of the
coupling in the 4-D U(1) gauge model found in [17]. This
is rather logical since in both models there is a transition
from a confinement phase to a 4-D Coulomb phase. This
fact is also consistent with the assumption that the 4-D
layers pass to the Coulomb phase in a more or less inde-
pendent way since the transverse interaction is of a strong
type.

The infinite volume gap can be measured in two addi-
tional ways. First from the double peak histograms we

estimate the values of the energy peaks Ei�S;L which
correspond to the Strong and Layer phases, using indepen-
dent Gaussian fits in the vicinity of each peak. Then we
calculate the difference Ĝ � EL � ES for each lattice vol-
ume and we make use of the ansatz:

 Ĝ � G1 �G1e�G2L (16)

The fit is depicted in Fig. 6(a). In this way we obtain the
value for the infinite volume gap,

 G1 � 0:0278�13� (17)

Alternatively by using the energy peaks Ei�S;L found
above and given in Table I we perform exponential fits of
the form:

 Ei�L� � Ei;1 � c1;ie�c2;iL where i � S; L (18)

The results are: ES1 � 0:6257�8� and EL1 � 0:6543�4�
from which we obtain the energy gap equal to:

 G1 � 0:0286�9� (19)
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FIG. 5. Fit for Bmin�P̂S� to the infinite volume.

TABLE I. The pseudocritical gauge coupling values, the
Binder cumulant minima, Bmin�P̂S�, the maxima of the spacelike
susceptibility, Smax�P̂s�, and the energy peaks in the Strong and
Layer phase for �0 � 0:2.

L �c Bmin�P̂S� Smax�P̂s� ES EL

6 1.00180(6) 0.66335(6) 1.125(8) 0.5925(7) 0.6484(8)
8 1.00710(4) 0.66483(4) 2.254(50) 0.6065(2) 0.6511(2)
10 1.00910(9) 0.66540(3) 3.784(40) 0.6141(2) 0.6528(1)
12 1.00995(3) 0.66568(2) 6.110(30) 0.6190(1) 0.6535(1)

 

5 6 7 8 9 10 11 12 13
L

0.03

0.035

0.04

0.045

0.05

0.055

0.06

G
^

(a)

5 6 7 8 9 10 11 12 13
L

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

ES,L

ES

EL

(b)

FIG. 6. (a): The fit for the energy Gap, Ĝ, according to the
Eq. (16); (b): The fits for the energy peaks according to the
Eq. (18).
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The comparison between Eqs. (15), (17), and (19) allows
the conclusion that the three different methods applied for
the energy gap calculation give compatible results and
safely far from zero.

It would be interesting to move to a different value of the
transverse coupling in order to have a broader view of the
features of the phase transition. We choose a rather small
value, namely, �0 � 0:01. This choice is justified by the
fact that it brings us closer to the 4-D case for which a weak
first order phase transition has been found [17]. We repeat
the same analysis as for the �0 � 0:2 case. The relevant
values for the pseudocritical gauge couplings, the maxima
of the susceptibility, the energy gap and the energy peaks
ES;L are given in Table II.

Our results for both �0 � 0:01 and �0 � 0:2 can be
found in Table III and lead to two conclusions. The first
is that the phase transition occurs at almost constant value
for the spatial gauge coupling �. Moreover the critical
value for the transition between the 5-D confinement phase
to the Layer phase lies very close to the corresponding
critical value found for the 4-D U(1) gauge model. The
second conclusion is that due to the nonzero value for the
infinite volume energy gap combined with all the rest of the
analysis done, we have a clear evidence for a first order
phase transition though a weak one.

B. Coulomb-Layer phase transition

We used four lattice volumes,5 namely: 85, 105, 125 and
145. The gauge invariant quantity used for this transition is
the transverselike plaquette whose values in the confine-

ment phase tend to the strong coupling limit, �0=2, and
grow as the system passes to the Coulomb phase. The
spacelike plaquette, as the forces on the 4-D subspace are
of Coulomb type does not show any substantial change of
its value (see [12]).

We choose to keep � constant to the value 1.4 while we
let �0 vary. In Fig. 7(a) we depict the transverselike pla-
quette as a function of the transverselike coupling for four
lattice volumes. One first observation is that the transition
point moves to smaller values of �0 as the volume in-
creases. Then there is a difference though small for the
values of PT in the transition region between the two
bigger volumes.

In Fig. 7(b) we present our results for the Binder cumu-
lant, B�P̂T�, and for four lattice volumes. It can be noticed
that the minimum value of the Binder cumulant for the
bigger volume lies extremely close to the limit value 2=3.
Although this fact provides evidence for a continuous
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FIG. 7. (a): The mean values of the transverse plaquette, PT ,
with the volume; (b): The Binder cumulant, B�P̂T�, as a function
of the volume (the errors are included in the symbols’ size and
the dashed lines guide the trend).

TABLE III. The critical values for the spacelike gauge cou-
pling and the values for the infinite volume energy gap calculated
in three ways as explained in the text, for two values of the
transverse gauge coupling, namely, �0 � 0:2, 0.01.

�0 �1 G1

0.2 1.01072(5) 0:0297�5�=0:0278�13�=0:0286�9�
0.01 1.01077(5) 0:0305�20�=0:0294�23�=0:0303�14�

TABLE II. The pseudocritical gauge coupling values, the max-
ima of the spacelike susceptibility, Smax�PS�, and the values of
the energy peaks in the Strong and Layer phase for �0 � 0:01.

L �c Smax�PS� ES EL

6 1.00190(8) 1.125(20) 0.5900(9) 0.6467(8)
8 1.00750(6) 2.210(3) 0.6061(7) 0.6510(6)
10 1.00930(4) 3.710(9) 0.6144(5) 0.6531(4)
12 1.01010(3) 5.980(34) 0.6189(3) 0.6336(3)

5The use of rather small lattice volumes such as 45 and 65

gives non reliable information in the light of the higher volume
results. This fact is mainly responsible for extracting the con-
clusion of a possible crossover in [12].

4-DIMENSIONAL LAYER PHASE AS A GAUGE FIELD . . . PHYSICAL REVIEW D 74, 094506 (2006)

094506-7



phase transition it can not be used as a criterion to distin-
guish a second order phase transition from a crossover.

The susceptibility S�P̂T� as a function of the five-
dimensional volume is depicted in Fig. 8. The susceptibil-
ity peaks display a small scaling with the volume. The
pseudocritical �0c and the maxima of the susceptibility,
Smax�P̂T�, for each lattice volume have been estimated
using a gaussian fit around the peak and are given in
Table IV.

The transverse helicity modulus, hT , offer the advantage
of rendering more clear the phase transition as the lattice
volume increases. In the Layer phase the force between
neighboring layers is confining, making the system insen-
sitive to the presence of the external flux and thus giving a
zero value to the ’transverse’ h.m. When the system passes
to the Coulomb phase the force becomes Coulomb-like and
thus hT obtains a nonzero value. The behavior of the
spacelike h.m., hS, is quite different: the transition from
the Layer to the Coulomb phase, from the point of view of
the 4-D layers, is actually a passage from a 4-D to a 5-D
Coulomb law. Thus it is expected that hS gets a constant
value.6 In Fig. 9 the transverse helicity modulus is shown
for four lattice volumes. It can be noticed that as the
volume increases the transition to the Coulomb phase
becomes steeper and allows, in principle, an estimation
of the critical point. Indeed in comparison with the trans-
verselike plaquette [see Fig. 7(a)] the use of the helicity
modulus, hT , helps to get a less unambigous signal of the
phase transition.

Now, assuming the presence of a second order phase
transition, we expect that near to the critical point the
correlation length has to be given by the following expres-
sion:

 �	 j�0 � �0cj
�� (20)

We also assume that the pseudocritical value of the
transverse gauge coupling is expressed as a function of
the lattice length according to the expression [18]:

 �0�L� � �01�1� C1L��1=��� (21)

or equivalently by:

 lnj��L�0 � �01j � C2 �
1

�
ln�L� (22)

Using the pseudocritical values for the gauge coupling of
Table IV we obtain [see Fig. 10(a)]:

 � � 0:57�5� and �01 � 0:35028�53� (23)

The asymptotic scaling law for the susceptibility takes
the form:

 Smax�L� � C1 � C2L
�=� (24)
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FIG. 8. (a) The volume dependence of the susceptibility for the transverselike plaquette (errorbars not shown here); (b) the same with
the gaussian fits shown.

TABLE IV. The pseudocritical values �0c and the maxima of
the transverselike susceptibility, Smax�P̂T� at � � 1:4.

L �0c Smax�P̂T�

8 0.36083(8) 1.857(10)
10 0.35746(6) 1.940(12)
12 0.35541(8) 2.024(14)
14 0.35426(3) 2.148(15)

6Indeed the value obtained by the hS is constant and close to 1.
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Using the values of Table IV we obtain �
� � 2:19�74� and

with the help of the Eq. (23) we get � � 1:24�44�. In the
Fig. 10(b) we depict the result of the fitting procedure using
the Eq. (24). In other words we obtain a volume exponent
equal to 0.44(15) which provides a serious evidence for a
second order phase transition.

V. CONCLUSIONS

We consider a U(1) gauge model in 4� 1 dimensions
with anisotropic gauge couplings. The main property of
this model is the existence of a new phase which is called
Layer and is characterized by Coulomb-like interaction on
a 4-D subspace and confinement along the fifth direction.
The other two phases of the phase diagram are a 5-D
Coulomb phase and a confinement phase. The study of
the phase transitions reveals that the Layer and the
Confinement phases are separated by a weak first order
phase transition whose critical gauge coupling is found
very close to the Coulomb-confinement critical coupling
of the 4-D model. Furthermore for the Layer-Coulomb
phase transition we provide serious evidence of a second
order phase transition. If this conclusion persists after the
use of bigger lattice volumes it would provide a promising

scenario for a gauge field localization based on a model
that features a continuum limit.

A final remark should be added which has to do with a
possible connection of our 5-D gauge model with the
percolation model. In [19,20], it is argued that percolation
in three dimensions can be viewed as a gauge theory and it
can capsulate most of the features of confinement and the
glueball spectrum. The values of the exponents � and �
given at the end of the Section IV B are in a good agree-
ment with the values of the corresponding exponenents of
the 5-D percolation model which are: �5Dperc � 1:18 and
�5Dperc � 0:57 (see [21]). Although this fact alone can not
justify any further argumentation on a possible universality
class issues, however it might be useful in providing a new
point of view for the confinement mechanism along the
extra dimension.
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