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We propose a lattice action including unphysical Wilson fermions with a negative mass m0 of the order
of the inverse lattice spacing. With this action, the exact zero mode of the Hermitian Wilson-Dirac
operator HW�m0� cannot appear and near-zero modes are strongly suppressed. By measuring the spectral
density ���W�, we find a gap near �W � 0 on the configurations generated with the standard and improved
gauge actions. This gap provides a necessary condition for the proof of the exponential locality of the
overlap-Dirac operator by Hernandez, Jansen, and Lüscher. Since the number of near-zero modes is small,
the numerical cost to calculate the matrix sign function of HW�m0� is significantly reduced, and the
simulation including dynamical overlap fermions becomes feasible. We also introduce a pair of twisted
mass pseudofermions to cancel the unwanted higher mode effects of the Wilson fermions. The gauge
coupling renormalization due to the additional fields is then minimized. The topological charge measured
through the index of the overlap-Dirac operator is conserved during continuous evolutions of gauge field
variables.
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I. INTRODUCTION

In the construction of the lattice chiral fermions, the
conventional Wilson-Dirac operator DW still plays a cru-
cial role. In the domain-wall fermion [1–3] the lattice
Dirac operator is nothing but the Wilson-Dirac operator
in four dimensions, but the fermion field has interactions
also with its fifth dimensional neighbors. The overlap-
Dirac operator [4] D contains a matrix sign function of
the Hermitian Wilson-Dirac operator HW � �5DW as

 D �
1

�a
�1� �5 sgn�aHW��; �a �

a
1� s

: (1)

An important difference from the usual Wilson fermion is
that the mass term is given with a negative value m0 �
��1� s�=a of the order of the inverse lattice spacing 1=a.
In the limit of vanishing gauge coupling, the parameter s
must be between �1 and 1 in order to obtain the single
flavor massless fermion; the sign function is well defined
since there is a lower bound in the eigenvalue spectrum of
jHW j. In the presence of the gauge interaction, HW could
develop zero or near-zero eigenvalues, which makes the
the matrix sign function singular. The near-zero mode does
not exist for sufficiently smooth background gauge fields
fU��x�g satisfying a condition jj1� P���x�jj< � for all
plaquette variables P���x� with � a small number less than
	1=20:49 [5]. In the actual numerical simulations, how-
ever, jj1� P���x�jj is larger by an order of magnitude, and
the near-zero modes appear quite frequently.

The origin of the near-zero modes is understood as a
local lump of the background gauge field (or so-called the

dislocation). An analytic example of such a gauge configu-
ration and its associated exact zero mode is given in [6].
Because such a zero mode is localized in space-time, the
number of the near-zero modes increases as the lattice
volume V is increased. In other words, the spectral density
���W� of HW is nonzero at �W � 0, which is true at any
finite value of gauge coupling [7]. The localization prop-
erty of the near-zero modes has recently been studied
extensively [8–10], and it is found that they are exponen-
tially localized unless one enters the Aoki phase, where the
flavor-parity symmetry is spontaneously broken [11].
Since the radius of the exponential falloff is of the order
of lattice spacing a, the effect of the near-zero modes
disappears in the continuum limit, and therefore is a lattice
artifact.

The effect of the near-zero modes appears as a small
residual breaking of chiral symmetry in the domain-wall
formulation [12]. Namely, the four-dimensional fermion
mode receives additive mass renormalization mres when
the lattice extent in the fifth dimension L5 is finite [13,14].
The problem is not just that mres is finite, but the suppres-
sion is only by 1=L5 rather than by exp��cL5� as expected
for the extended nonzero modes [10,15]. For the overlap
fermion, the residual mass can be made arbitrarily small by
projecting out the near-zero mode and treating them ex-
actly when one calculates the matrix sign function. The
problem however manifests itself in the locality of the
overlap-Dirac operator. The locality is proved only when
there exists a gap in the spectral density of HW near zero
[16]. Therefore, the existence of the near-zero mode per-
sisting in the infinite volume limit could potentially spoil
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the locality of the overlap-Dirac operator and thus the
controlled continuum limit of the overlap fermion. Even
if there exists nonzero density of the near-zero modes, the
locality may still be maintained [8], provided that the near-
zero modes are exponentially localized and its exponential
falloff is sufficiently fast. The effect of the near-zero modes
becomes irrelevant in the continuum limit, as the localiza-
tion length scales as the lattice spacing a. In this case the
locality of the near-zero modes should always be checked
in order to make sure that the Aoki phase is not entered.

In this paper we propose the use of the lattice action with
two flavors of extra Wilson fermions with the large nega-
tive mass m0. Since the occurrence of the near-zero modes
is suppressed by the fermion determinant, we expect that
the spectral density ���W�, as defined in (7), vanishes at
�W � 0 and the near-zero modes are strongly suppressed.
By suppressing the near-zero modes, the problem of local-
ity of the overlap-Dirac operator is essentially solved.
Furthermore, the numerical cost for applying the overlap-
Dirac operator is significantly reduced, because the cost for
projecting out the low-lying eigenmodes is proportional to
the eigenvalue density of HW . This is especially important
when one wants to include the dynamical effect of the
overlap fermions in the Monte Carlo simulations.

The idea of adding the extra Wilson fermions is very
simple and in fact has been around for several years [17–
19], but detailed numerical study has been missing until
recently. A preliminary report of this work was included in
[20], and a paper by Vranas [21] was submitted very
recently, after this work had been essentially completed.

With the action that forbids the occurrence of the zero
mode, the global topological charge of the gauge field
configuration cannot change through continuous deforma-
tion of the gauge variable. This is because the spectral flow
of HW�m� can never cross zero at m � m0 under the
continuous deformation. Here we use the index of the
overlap-Dirac operator constructed fromHW�m0� as a defi-
nition of the topological charge. Unlike the measurement
of the F ~F operator after some cooling, this always gives an
unique integer for the topological charge. The property of
conserving topological charge resembles that of the con-
tinuum theory. In the continuum theory, there is an infi-
nitely high barrier in the action between different
topological sectors, but the barrier is lowered by the lattice
regularization of gauge field. With the extra Wilson fermi-
ons the infinite potential barrier is recovered at any finite
lattice spacing, and thus the continuum gauge field is better
approximated.

For the Monte Carlo simulations including the fermion
determinant, the Hybrid Monte Carlo (HMC) [22] provides
the most efficient algorithm. HMC is based on the molecu-
lar dynamics evolution of gauge field variables under the
Hamiltonian including a pseudofermion action �yH�2

W �.
The gauge field evolves with small time steps, that ap-
proximate the continuous evolution. When a near-zero

mode ofHW appears and further approaches the zero point,
the pseudofermion action increases rapidly and generates a
repulsive force. This means that the topological charge
cannot change during the HMC simulation, as far as the
step size is taken small enough. If the step size is so large
that the transmission through the potential barrier is al-
lowed, the conservation of the Hamiltonian becomes poor
and the acceptance rate of the Monte Carlo would become
very low.

Since the topological charge does not change, the HMC
simulation is confined in an initially given topological
sector, and the correct sampling of the � � 0 (or any finite
value of �) is not possible. This is an advantage for the
simulations in the �-regime of the chiral perturbation
theory (ChPT) [23], for which one needs the gauge en-
semble in a given topological sector. For this purpose,
some of the present authors tested a modified plaquette
gauge action to suppress the topology change [24] (see also
[25]). The proposal of the present work is more solid, as it
strictly prohibits the topology change. Out of the �-regime,
on the other hand, the fixed topology is a disadvantage.
But the possible errors due to the incorrect sampling of the
� � 0 vacuum disappear quickly as the physical volume is
increased.

Although we aim at performing dynamical fermion
simulations using the overlap formalism, this paper focuses
on the quenched study. Namely, the dynamical overlap
fermion is switched off, while the extra Wilson fermions
are treated dynamically. We then numerically study the
spectral density of HW for various choices of gauge
actions.

The rest of this paper is organized as follows. In Sec. II
we introduce the lattice actions that we studied in this
work. An implementation in the HMC simulation is also
presented. Our numerical simulations are explained in
Sec. III. Section IV contains the main results of this
work, i.e. the spectral density of HW with and without
the extra Wilson fermions. The topology conservation is
a key property of the extra Wilson fermions. We discuss
how it works (Sec. V) and what is its effect on physical
quantities (Sec. VI). In Sec. VII, we calculate how much
the gauge coupling is renormalized by the extra Wilson
fermions, and show that the finite renormalization can be
made small by further adding pseudofermions with a
twisted mass term. Section VIII contains our conclusion
as well as some discussions about possible artifacts due to
the fixed topology.

II. LATTICE ACTION AND ITS
IMPLEMENTATION

We consider a lattice action

 S � SG � SE; (2)

where SG is any gauge action, such as the Wilson, Lüscher-
Weisz, Iwasaki, etc., and SE denotes the extra Wilson
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fermion. In the following numerical analysis, we use for the gauge part SG the plaquette gauge action SPl, with and without
a modification to suppress dislocations, and the renormalization group (RG) improved (or Iwasaki) action SRG. The
plaquette action is written as

 SPl �

8<
:
	

P
x;�<�

1�Re TrP���x�=3
1��1�Re TrP���x�=3�=� ; when 1� Re TrP���x�=3< �;

1 otherwise
; (3)

where P���x� is the plaquette variable at x on the �-�
plane. The denominator is introduced to suppress the local
lump of the gauge field for which 1� Re TrP���x�=3 takes
a large value [24–26]. When 1=� � 0, it reduces to the
standard Wilson gauge action. For this gauge action with a
finite 1=�, 1� Re TrP���x�=3 cannot become larger than
the parameter �. If � is chosen smaller than 1=20:49, then
the Hermitian Wilson-Dirac operator is proved to have a
gap [5], but we take a larger number 3=2 in the numerical
simulations, because otherwise the lattice spacing becomes
too small even at the strong coupling limit. Another choice
of the gauge action is that of Iwasaki [27], which includes
the rectangular term with the parameter c1 � �0:331. The
denominator as in (3) is not introduced for this case, but it
is known that the rectangular term has an effect to suppress
the dislocations.

The extra fermion term SE is written as
 

SE �
X
x

� �x�DW�m0� �x�

�
X
x


y�x��DW�m0� � i��5�3�
�x�; (4)

where  denotes two flavors of extra heavy Wilson fermion
with a negative mass m0. The second term is a pseudofer-
mion term introduced in order to cancel unwanted effects
of the Wilson fermion especially in the ultraviolet region,
which leads to a large shift of the 	 value to be used in the
simulation as discussed later in Sec. VII. Because of an
additional mass term 
yi��5�3
, which is twisted in the
flavor space by �3, the extra Wilson fermion works to
suppress the near-zero modes of HW�m0� as expected. In
fact, the action SE generates the suppression factor

 det
�

HW�m0�
2

HW�m0�
2 ��2

�
(5)

in the partition function. The twisted mass � controls the
range of the near-zero eigenvalues suppressed by the nu-
merator. The eigenvalues whose absolute value is lower
than � are strongly suppressed, while the other higher
modes are less affected. The limit of �! 1 corresponds
to the case where the pseudofermion term is switched off.
When � � 0, the cancellation is exact, and there is no
extra fermions and pseudofermions.

Since the action (2) includes the fermion, some dynami-
cal fermion algorithm is needed to generate the gauge field
ensembles. Application of the HMC algorithm is straight-
forward except for the additional boson term. In order to

cancel the higher modes ofHW efficiently, we use only one
pseudofermion for both fields. Namely, the Hamiltonian
for the molecular dynamics evolution contains a term
 X
x

�y�x�f�DW�m0� � i��5��DW�m0��
�1�DyW�m0��

�1


 �DyW�m0� � i��5�g��x� (6)

with the pseudofermion field �. Then, the fermion force
derived from (6) largely cancels in the combination
�DW�m0� � i��5��DW�m0��

�1, when the twisted mass �
is small.

In the molecular dynamics evolution with (6), an inver-
sion of the Wilson-fermion matrix DyW�m0�DW�m0� is nec-
essary, and therefore it costs much more than the usual
gauge action. The cost is, however, not substantial com-
pared with the inversion of the overlap-Dirac operator, for
instance, needed for the dynamical overlap fermion simu-
lation. The cost for the inversion of H2

W is proportional to
the inverse of lowest-lying eigenvalue �2

min, which is lifted
by the introduction of the suppression factor (5). It means
that the cost does not increase arbitrarily, even though there
is no explicit lower limit on the lowest-lying eigenvalue.

III. HMC SIMULATIONS

We performed Monte Carlo simulations including the
extra Wilson fermions. Although the fermions are in-
cluded, they are unphysical and irrelevant in the continuum
limit. The physical sea quarks are not included.

The numerical simulations have been done on a 163 

32 lattice with three choices of the gauge actions.

(1) SPl with 1=� � 0, the standard Wilson gauge action.
(2) SPl with 1=� � 2=3. With this choice the plaquette

variable P���x� can take any value in the SU(3)
gauge group except for the two points e�i2�=3I
with I the 3
 3 unit matrix. At these isolated two
points, Re TrP���x�=3 becomes minimum. The pos-
itivity violation as argued in [28] occurs for �
smaller than 3=2.

(3) SRG, the Iwasaki gauge action.

The simulation parameters are listed in Table I. For each of
the three choices of the gauge action we take three values
of�, the twisted mass of the extra pseudofermions, to be 0,
0.2, and 0.4. The large negative mass m0 is always set
to �1:6. The gauge coupling 	 is chosen such that
the lattice spacing determined through the Sommer scale
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r0 ( ’ 0:49 fm from phenomenological models) is roughly
tuned to 0.125 fm, which corresponds to r0=a � 3:9.

All the simulations are carried out using the HMC
algorithm, including those with � � 0, i.e. no extra fermi-
ons and pseudofermions. The step size � of the molecular
dynamics evolution with the leapfrog scheme is 0.01 for all
lattices except for one choice of the action (SPl with 1=� �
2=3 and� � 0:4). The unit length of the HMC trajectory is
set to 0.5. The total number of the HMC trajectories and
observed acceptance rate Pacc are listed in Table I. Also
listed is the integrated autocorrelation time �int measured
for the plaquette variable.

It is known that the HMC simulation becomes unstable
due to (near-)zero eigenmodes (see, for example, [29]).
Since the fermion force F in molecular dynamics steps
contains a piece that is proportional to 1=�min, the step size
�must be kept small such that the combination F
 � is
less than O�1�. Because there is no explicit lower bound on
�min for the Wilson-type fermions, very small eigenvalue
could appear, though it is suppressed by the fermion deter-
minant. The problem appears as exceptionally large values
of �H, the difference of the Hamiltonian between the
initial and final steps of the HMC trajectory. In Fig. 1 we

show a typical HMC history of �H for the lattice ‘‘Pl’’
with 1=� � 0 (standard Wilson gauge action). On the left
panel we show our main run listed in Table I. �H is of
order one for most trajectories but develops several large
spikes during long runs. We also made a test run with a
reduced step size by a factor of 2 (� � 0:005) and show
the result on the right panel, for which the fluctuation of
�H is reduced and the occurence of the spikes becomes
rare.

The volume dependence of the computational cost for
the extra Wilson fermion is quite normal. We repeated the
test run at � � 0:005 on a smaller lattice 123 
 24, and
measured the average value of �H. With 1000 HMC
trajectories we obtain h�Hi � 0:0038�23�, which may be
compared with the result on a larger lattice 0.0061(59).
Although the statistical error is large, the volume scaling is
consistent with the conventional O�V� [30] (or milder),
which implies that the total simulation cost scales as
V5=4. There is no significant spike on both lattice at this
small step size.

The exceptional trajectories result in a violation of area
preserving property of the leapfrog integration of the mo-
lecular dynamics evolution. If it is violated, the detailed

7000 7200 7400 7600 7800 8000
traj.

-2.0

0.0

2.0

4.0

6.0

∆H

0 200 400 600 800 1000
traj.

-2.0

0.0

2.0

4.0

6.0

∆H

FIG. 1 (color online). History of �H for the lattice Pl with 1=� � 0. The left panel shows our main run with � � 0:01, while the
right panel is for a reduced step size: � � 0:005.

TABLE I. Simulation parameters.

Action 1=� � 	 � #Trj Pacc �int he��Hi r0=a

Pl 0 0 5.83 0.01 20 000 0.815 21.6 1.005(4) 4.27(29)
Pl 0 0.2 5.70 0.01 11 600 0.812 9.6 0.996(5) 4.08(10)
Pl 0 0.4 5.45 0.01 11 600 0.826 6.4 1.000(6) 3.81(8)
Pl 2=3 0 2.33 0.01 20 000 0.849 3.6 1.002(3) 3.84(5)
Pl 2=3 0.2 2.23 0.01 20 000 0.844 2.1 0.995(3) 3.94(7)
Pl 2=3 0.4 2.06 0.0067 14 800 0.933 2.0 1.000(1) 3.91(11)
RG � � � 0 2.43 0.01 20 000 0.781 5.1 0.999(4) 3.91(5)
RG � � � 0.2 2.37 0.01 21 600 0.786 4.4 0.998(4) 3.90(7)
RG � � � 0.4 2.27 0.01 20 000 0.793 3.5 0.999(4) 3.84(4)
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balance condition of the Monte Carlo algorithm cannot be
proved, and therefore the exactness of the algorithm is lost.
This is a problem associated with a discontinuity in the
effective pseudofermion action, as in the case for (6). If the
step size is small enough, the trajectory would never pass
the discontinuity because of the strong repulsive force from
the potential wall, and no problem arises. But for some
large step size the trajectory may occasionally go across
the discontinuity, and then the conservation of the
Hamiltonian is strongly violated.

This problem can be monitored by the quantity he��Hi,
which must be consistent with 1 when the area preserving
property is satisfied. In the second last column of Table I
we list the value of he��Hi. For most cases it is consistent
with 1 within 1 standard deviation. The problem is ex-
pected to disappear if one chooses small enough step size
�. In fact, for the run Pl with 1=� � 2=3 and � � 0:4, for
which � is 2=3 of other cases, the number of large spikes
is much reduced and the relation he��Hi � 1 is satisfied to
a good precision.

In the following analysis we assume that the gauge
configurations are properly sampled. Even if the excep-
tional trajectories exist, they are almost always rejected by
the Metropolis test and thus do not affect the following
trajectories. In the productive run with the dynamical over-
lap fermion, that we are currently carrying out, the step size
is carefully chosen to avoid the potential problem.

IV. SPECTRAL DENSITY

We investigate the effect of the extra Wilson fermions on
the spectral density of the Hermitian Wilson-Dirac opera-
tor HW�m0� in the quenched approximation.

We take 30–100 gauge configurations for each runs
listed in Table I and calculate the low-lying eigenvalues
of HW�m0� with m0 � �1:6. For each runs the gauge
coupling is chosen such that the lattice spacing is roughly
tuned to 0.125 fm. Statistical correlation between consecu-
tive gauge configurations is negligible, as they are sepa-
rated by 200 HMC trajectories. We use the conventional
Lanczos algorithm, and calculate the eigenvalues with its
absolute value less than 0.2 in the lattice unit.

In Fig. 2 we plot the absolute value of the observed
eigenvalues �W for each set of configurations. Different
choices of lattice actions are shown in separate panels, and
in each panel the results at three values of � (0.0, 0.2, and
0.4) are plotted. As one can clearly see, there are significant
number of eigenvalues j�W j less than 0.01 for any of the
three gauge actions if the extra Wilson fermions are not
included (� � 0). On the other hand, with the finite values
of �, the eigenvalues less than 0.02 do not appear at all.
The difference between � � 0:2 and 0.4 is not significant,
but � � 0:2 seems slightly better.

These observations can be made more quantitative using
the spectral density ���W�. The spectral density is defined
by

 ���W� �
1

V

�X
n

��W � �n�
�
; (7)

where h� � �i denotes the ensemble average and �n repre-
sents each eigenvalue on a given gauge configuration. In
Fig. 3 we plot the histogram of ���W�. Each bin in the plots
has a size of 0.0192 in �W . We observe nonzero spectral
density at �W � 0 when there is no extra fermion intro-
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FIG. 2 (color online). Low-lying eigenvalues of HW�m0�.
Lattice actions are Pl with 1=� � 0 (top), Pl with 1=� � 2=3
(middle), and RG (bottom). Data for three values of � (� � 0:0,
0.2, and 0.4) are shown in each plot. The highest mode is also
shown, whose value is 	5:9, almost independent of the gauge
configuration.
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duced (� � 0:0). We calculate the value of ��0� by fitting
an integrated density I� ��� �

R
� ��
� �� d����� with a polyno-

mial 2��0� ���O� ��3�. The results are ��0� � 1:509�3� 

10�3 for Pl with 1=� � 0, 0:494�1� 
 10�3 for Pl with
1=� � 2=3, and 0:177�1� 
 10�3 for ‘‘RG.’’ As well
known, the density of the near-zero modes is substantially
reduced for the improved actions.

With the extra Wilson fermions the near-zero mode
density is essentially zero; there is no events in the lowest
bin. The curve of ���W� near �W � 0 is consistent with

	�2
W for both � � 0:2 and 0.4. The difference between

� � 0:2 and 0.4 is not significant, except for the highest
bin at j�W j ’ 0:2.

Among the three choices of the gauge actions, the
suppression of the near-zero modes is most efficient for
the RG action. We should note that the scale of the vertical
axis in Fig. 3 is different among the three plots, and the
value at j�W j ’ 0:2 is 6–10 times smaller for the RG action
than the standard Wilson gauge action (1=� � 0). The
choice Pl with 1=� � 2=3 is in between the other two.
Therefore, we may conclude that the rectangular term is
more effective to suppress the dislocation than restricting
the range of the plaquette variable by the denominator
in (3).

V. TOPOLOGY CONSERVATION

As we discussed in the introduction, the net topological
charge defined as an index of the overlap-Dirac operator
cannot change by the continuous deformation of the gauge
field variables when the extra Wilson fermion is included.
This is approximately the case in our simulation using the
HMC algorithm with small molecular dynamics time step
�. The large spikes in �H as discussed in Sec. III may
indicate some attempts of the gauge field to go beyond the
potential barrier, but the acceptance probability of such
trajectories is essentially zero and therefore the topology
does not change in the accepted trajectories.

In order to explicitly check the topological charge of the
generated gauge configurations, we calculate the near-zero
eigenmodes of the overlap-Dirac operator D as defined in
(1). The kernel operator is the Wilson-Dirac operator with
m0 � �1:6, the same value as in the extra Wilson fermion.
The topological charge can be identified as the number of
the left-handed or right-handed zero modes. In practice we
adopt the method proposed in [31]. Namely, we calculate
the low-lying eigenvalues of chirally projected operators
D� � P�DP�. Since the nonzero eigenvalues appear in
pair between D� and D�, the remaining unpaired eigen-
values very close to zero can be identified as chiral zero
modes.

We calculate the eigenvalues of D on 80 configurations
of ‘‘RG’’ with� � 0:2, and find no exact chiral zero mode.
This is consistent with our expectation, as these configu-
rations are generated starting from an initial configuration
in the trivial topological sector, i.e. Q � 0. In addition, we
also generated another set of configurations starting from a
Q � �2 configuration (number of samples is 60). On all of
these configurations we confirm the presence of two left-
handed zero modes as expected. From these observations
we conclude that the topological charge is indeed con-
served during the HMC simulations. We are currently
performing many set of simulations including dynamical
overlap fermions as well as the extra Wilson fermions.
Also in these simulations, there has been no sign of the
change of the topological charge so far.
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FIG. 3 (color online). Histogram of the spectral density of
HW�m0�. Lattice actions are Pl with 1=� � 0 (top), Pl with
1=� � 2=3 (middle), and RG (bottom). Data for three values
of � (� � 0:0, 0.2, and 0.4) are shown in each plot.
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VI. TOPOLOGY DEPENDENCE

Since the topological charge conserves during the HMC
simulation, one cannot sample the correct � � 0 vacuum,
for which the topological charge distributes according to
the topological susceptibility. However, the cluster decom-
position property of the local field theory suggests that the
physical quantities measured in a local space-time region
do not depend on the topological fluctuations occuring far
apart from that region. This means that the physical quan-
tities do not depend on the global topological charge, as far
as the space-time volume is large enough. The topological
fluctuation is controlled by the topological susceptibility
�t � hQ

2i=V, which is proportional to m� � M2
�F

2
� in

unquenched QCD near the chiral limit. The typical length
scale for the topological fluctuation is then given by
�M�F��

�1=2. The lightest possible pion mass in our
planned dynamical simulation is M� ’ 300 MeV, for
which the typical scale is 	1 fm. It becomes even smaller
for heavier sea quark masses or for the quenched theory.
Therefore, our naive expectation is that the fixed-topology
simulations in a �2 fm�4 box or larger do not have too much
impact on physical quantities.

On a rather general ground, one can prove that the
hadron masses in a fixed topological sector deviate from
the correct value in the � � 0 vacuum by O�1=hQ2i�,
which scales as 	1=V [32]. An estimate of the coefficient
using the chiral effective lagrangian implies that the devia-
tion of pion mass does not exceed 1% even for light pions
(	 300 MeV) on a �2 fm�4 box, and the effects on other
hadrons are even smaller.

In this paper we show a study in the quenched approxi-
mation, instead of the time-consuming dynamical fermion
simulations. In the quenched theory, however, the situation
could be drastically different because the hadron masses
are more infrared sensitive due to the double pion pole
structure at the one-loop level of quenched chiral pertur-
bation theory. Because of the integral of the formR
d4pm2

0=�p
2 �m2

��
2, the diagram is infrared divergent

in the chiral limit, and the information of the topological
fluctuation of the whole space-time is gathered through the
singlet vertex m2

0 proportional to the topological suscepti-
bility �t, whose integral over space-time givesQ2 the fixed
topological charge in this case. We therefore expect the
quenched chiral logarithm that depends on the topological
charge as Q2=V rather than its average hQ2i=V.

In order to see the Q dependence in the simulations, we
carry out a calculation of pion mass on quenched gauge
configurations with fixed topological charges jQj � 0, 2, 3,
and 6. The gauge configurations are generated with the
extra Wilson fermions at 	 � 2:37 (RG gauge action), and
the statistics is 100 for each topological charge. The results
for �amPS�

2=�am� are plotted in Fig. 4 as a function of the
quark mass am. We find rather large topological charge
dependence as expected in the quenched theory: the dif-

ference of amPS between jQj � 0 and 6 is as large as 10%.
A similar dependence is also found in [33].

Such a large topology dependence is not expected for
unquenched QCD, because there is no pathological infra-
red divergence. In our on-going dynamical overlap fermion
project, we are planning to investigate the topology depen-
dence in detail as well as the volume dependence.

VII. BETA SHIFT

The extra Wilson fermions and their associated pseudo-
fermions have masses of order of the lattice cutoff and do
not affect the physics at low energy. Their only effects are
ultraviolet ones, such as the renormalization of the strong
coupling constant and quark masses. Here we calculate the
finite renormalization of the strong coupling constant (or
the 	 shift) due to the extra fields at the one-loop level in
perturbation theory. Such calculation for the massless
Wilson fermion was done before [34,35], but we must
repeat the calculation with the large negative mass.

0 0.01 0.02 0.03 0.04
am

2.0

2.2

2.4

2.6

2.8

3.0

(a
m

P
S)2 /(

am
)

Q=6
Q=3
Q=2
Q=0

FIG. 4 (color online). Pseudoscalar mass squared calculated on
the quenched configurations at fixed topological charges jQj �
0, 2, 3, and 6.
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FIG. 5 (color online). ��p�=Nf for various mass parameters.
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The shift of the coupling constant is given as

 

1

g
�Nf�2
eff

�
1

g2
0

���p�; (8)

where ��p� is the vacuum polarization function of gluon
due to fermions:

 ���p� � �p2�� � p�p����p�: (9)

For the usual (lattice) fermions, it is written as

 ��p� � Nf

�
1

24�2 ln�a2p2� � kf

�
; (10)

and the constant kf depends on the fermion formulations.
One-loop calculation gives �0:013732 (Wilson fermion)
[36,37], �0:038 529 (clover fermion) [38]. The logarith-
mic term in (10) corresponds to the usual one-loop running
of the coupling constant and gives the Nf dependent coef-
ficient of the beta function b0 �

1
�4��2
�11

3 N �
2
3Nf�.

The unphysical fermions with a large negative mass do
not contribute to the logarithmic term in (10). Therefore,
the p! 0 limit is finite. Figure 5 shows ��p�=Nf for
the negative mass Wilson fermion with masses am �
�0:80	�1:80. Since the numerical integral becomes
unstable near ap � 0, we obtain the ap! 0 limit by an

extrapolation using the data points below ap � 1. The
numerical results for ��0� are listed in Table II.

At am0 � �1:6 the 	 shift 	 � �6��0� is calculated
as 0.786(4) at the one-loop level. It means that we have to
reduce the 	 value by this amount in order to simulate
without changing the lattice spacing. The actual value
could be significantly larger due to higher order correc-
tions. With the mean field improvement, for instance, the
value is divided by the expectation value of the plaquette
hPi, which is typically around 0.6 for the Wilson gauge
action at 	 � 6.

Including the twisted mass pseudofermions, the 	 shift
is substantially reduced. It vanishes in the limit of �! 0
and the contribution for finite � starts from�2. Results are
shown in Fig. 6 for am0 � �1:6 and the twisted mass� �
0:1–0:4. Note that the vertical axis is 1 order of magnitude
smaller than that in Fig. 5. At � � 0:2, the 	 shift is
0.0502(4) (Nf � 2), which may be compared with the
actual data: 	 � 5:83! 5:70 for Pl with 1=� � 0, 2:33!
2:23 for Pl with 1=� � 2=3, and 2:43! 2:37 for ‘‘RG.’’
The one-loop calculation underestimates the measured
value by about a factor of 2 for the plaquette gauge action,
while it gives a good approximation for the RG action. This
is consistent with the expected mean field enhancement of
the coupling constant for the plaquette gauge action.

The small 	 shift for the cases with the twisted mass
pseudofermions is desirable, because one can avoid too
small 	 values in the dynamical fermion simulations. In
particular, for the Wilson gauge action there is a remnant of
the fundamental-adjoint phase transition [39] in the strong
coupling regime (	 & 5:2). With dynamical fermions it
may appear as a real first-order phase transition, which
prevents one from taking smooth continuum limit.
Examples are found in the simulations with two [40,41]
and three flavors [42] of the Wilson-type fermions.

VII. CONCLUDING REMARKS

By introducing the extra Wilson fermions with the large
negative mass, it is possible to provide a gap in the spectral
density of HW and thus to remove the problem associated
with the near-zero modes. For the overlap fermion the
exponential localization of the Dirac operator is guaran-
teed; for the domain-wall fermion the residual chiral sym-
metry breaking will be much reduced. For three choices of

0 0.5 1 1.5 2

ap

-0.016

-0.012

-0.008

-0.004

0.000

Π
(a

p)
/N

f

am = -1.6, aµ = 0.1
am = -1.6, aµ = 0.2
am = -1.6, aµ = 0.3
am = -1.6, aµ = 0.4

FIG. 6 (color online). ��p�=Nf including the twisted mass
pseudofermions.

TABLE II. Vacuum polarization function ��p�=Nf at p � 0.

am0 Without pseudofermion � � 0:1 � � 0:2 � � 0:3 � � 0:4

�0:8 �0:0351�2�
�1:0 �0:0379�2� �0:000 395�3� �0:001 53�1� �0:003 29�3� �0:005 49�5�
�1:2 �0:0430�3� �0:001 71�1�
�1:4 �0:0514�3� �0:002 28�2�
�1:6 �0:0655�3� �0:001 12�1� �0:004 18�3� �0:008 44�7� �0:0133�1�
�1:8 �0:0952�4� �0:012 09�4�
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gauge actions, we confirm that the spectral density of HW
vanishes at �W � 0 and the occurrence of the near-zero
mode is very much suppressed. The number of remaining
near-zero modes is smallest for the Iwasaki gauge action.
By also adding the twisted mass pseudofermions, the effect
on the coupling renormalization can be minimized while
keeping the good property of suppressing the near-zero
modes.

A remaining problem concerning the locality of the
overlap-Dirac operator is its actual localization length in
the numerical simulations. For the numerical simulation
with controlled discretization error, the localization length
has to be much smaller than 1=�QCD, and this gives a
stronger practical upper limit of the gauge coupling in
addition to the more fundamental limit from locality.
Golterman, Shamir, and Svetitsky argued that the localiza-
tion length is controled by the mobility edge of the eigen-
modes of HW [8–10]. We are currently calculating the
spatial correlation on the low-lying mode eigenvectors in
order to determine the mobility edge. This work will be
published elsewhere.

Although the extra Wilson fermion is also useful in the
quenched QCD simulations, our main objective is to per-
form the unquenched simulations using the fermion for-
mulation with exact chiral symmetry. So far, the dynamical
overlap fermion simulation has been attempted only on
small lattices [43–46], as its computational cost is ex-
tremely large. One of the reasons for the large numerical
cost is the treatment of the sign function. When the low-
lying eigenvalue HW passes zero during the molecular
dynamics evolutions, the sign function changes its value
discontinuously and its derivative diverges. Fodor, Katz,
and Szabo [43] introduced so-called the reflection/refrac-
tion process on the �W � 0 surface, which requires moni-
toring of the low-lying eigenvalues and takes lots of
computational costs. The cost would scale as V2, as the
lattice volume V is increased, and therefore the simulation
on large lattices could be prohibitively costly. This prob-
lem can be totally avoided by the extra Wilson fermion,
because the zero crossing never happens if the molecular
dynamics step size is chosen small enough. The extra cost
for the Wilson fermion is negligible in the dynamical
overlap fermion simulation. Using this lattice action, we
are currently carrying out the dynamical overlap fermion
simulations on a 163 
 32 lattice.

An immediate question on the strategy of suppressing
the low-lying modes ofHW is that the simulation is trapped
in a given topological sector and one cannot achieve the
correct sampling of the � � 0 vacuum of QCD. This is an
algorithmic problem of the molecular dynamics simula-
tion, in which the gauge variables are changed continu-

ously along trajectories. We first emphasize that the
continuum theory has the same property, i.e. the topologi-
cal nature of the gauge field on a torus. Any lattice gauge
action should recover this topological property as the con-
tinuum limit is approached, and our choice has this prop-
erty at any finite lattice spacing. The configuration space of
a given fixed topology is simply connected in the contin-
uum limit, and therefore the ergodicity of the Monte Carlo
simulation is satisfied even with a fixed topology. At finite
lattice spacings there is no proof of the ergodicity, but there
is no indication of its violation either. In order to detect
such an effect if any, we should probably look at quantities
sensitive to the topological charge density. That is an
interesting subject, which we leave for future studies.

Second, because of the cluster decomposition principle
any physical quantity should not depend on the net topo-
logical charge, if the lattice volume is large enough. Even
on a lattice with a fixed topological charge, local topologi-
cal fluctuation could occur at different positions on the
lattice keeping the net topological charge constant, and the
frequency of the topological fluctuation is characterized by
the topological susceptibility. In other words, the effect of
fixing the net topology is a finite volume effect. (An
important exception to this statement is the CP-odd quan-
tities, such as the neutron electric dipole moment.) As we
discussed in Sec. VI, hadron masses calculated at a fixed
topology contains a finite volume correction of O�1=V� to
the physical value in the � � 0 vacuum [32]. Although the
effect is quite large in the quenched QCD due to the
sickness of quenched theory, we expect a small effect on
dynamical lattices. Study of the topological charge depen-
dence is underway as a part of our project of dynamical
overlap fermion simulations.
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