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A Ginsparg-Wilson based calibration of the topological charge is used to calculate the renormalization
constants which appear in the field-theoretical determination of the topological susceptibility on the
lattice. A systematic comparison is made with calculations based on cooling. The two methods agree
within present statistical errors (3%–4%). We also discuss the independence of the multiplicative
renormalization constant Z from the background topological charge used to determine it.
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I. INTRODUCTION

Topology in QCD plays a relevant role in understanding
several low energy properties of the theory. One of the
quantities that has a direct interest in phenomenology is the
topological susceptibility � which is defined as the corre-
lator at zero momentum of two topological charge density
operators Q�x�. In particular, the value of � in the pure
gauge theory is interpreted in terms of the mass of the
singlet pseudoscalar meson [1,2].

The lattice is an excellent tool to calculate such dimen-
sionful observables and, specifically, the lattice determina-
tion of � in the pure gauge theory is in good agreement
with phenomenological expectations [3–5].

The calculation of � or any other topology-related quan-
tity on the lattice requires a regularization QL�x� of the
topological charge density operator. The formal naı̈ve con-
tinuum limit must satisfy QL�x� ���!a!0 a4Q�x� (a is the lattice
spacing).

However, in general,QL�x� does not meet the continuum
Ward identities [6]. Consequently, the lattice definition of
the topological susceptibility �L � hQ2

Li=V [V is the lat-
tice volume and QL �

P
xQL�x�] need not coincide with

the physical continuum expression �. The two quantities
are related by [7,8]

 �L � Z2a4��M; (1)

where Z and M are renormalization constants which, for
evident reasons, are called multiplicative and additive,
respectively. In order to extract � from the lattice data of
�L, one must know the values of Z and M.

Let us outline the origin of the two renormalization
constants. Any matrix element which contains n insertions

of the topological charge operator can be calculated either
in the continuum (with an adequate regularization) or on
the lattice. In general, the two calculations match only after
the inclusion of a multiplicative renormalization constant Z
[8,9] for each insertion ofQ�x�. In formal writing,QL�x� �
Za4Q�x� where Z is a finite renormalization constant. In
the theory with fermions, the topological charge mixes
with other operators related to the axial anomaly [10].
This mixing induces a correction to the above-described
multiplicative renormalization and consequently also to
Eq. (1). Such a correction is, however, rather small [11]
and it is usually neglected consistently with the large
statistical errors from a typical numerical simulation.

If n � 2, the above matrix element includes further
divergences which are the origin of the additive term M.
In fact, the expression for � contains the product of two
topological charges at the same spacetime point. The op-
erator expansion of this product at short distances contains
mixings with operators that share the quantum numbers of
�. On the other hand, it is known that the correlation
function of two topological charge operators at nonzero
distance is negative [12,13], hQ�x�Q�0�i< 0 for x � 0.
This inequality also holds on the lattice for any definition
ofQL�x� [14–17]. Since � is a positive quantity, part of the
contact terms must be included in the physical definition of
�. The rest of the terms, if any, must be subtracted and they
are M.

A prescription is necessary to calculate M. Because of
the expression � � d2 lnZ���=d�2j��0, where Z��� is the
partition function of the gauge theory with a theta term, we
know that � vanishes within the zero topological charge
sector. We then adopt the following definition for M: it is
the value of �L in the sector of zero topological charge,
M � �Ljq�0, where q is the value of the total topological
charge of a configuration (as determined by cooling or
other means to be introduced later).

A nonperturbative method to calculate Z andM has been
developed in Refs. [18,19]. The method will be described
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in Sec. II. It has been used in several calculations of
topological properties in QCD and other theories. Various
tests and studies of efficiency have also been worked out in
the past. In Sec. III we will present the main contribution of
the paper: a study of systematic errors that may affect the
calculation of the renormalization constants and a com-
parison of results when they are obtained by using different
methods for calibrating the background topological sector.
Some conclusive comments are given in Sec. IV.

II. THE NONPERTURBATIVE CALCULATION
OF MAND Z

In Refs. [18,19] a technique, called the ‘‘heating
method,’’ to calculate the renormalization constants in
Eq. (1) was put forward. The idea behind the heating
method is that the UV fluctuations in QL�x�, which are
the ultimate cause for renormalizations, are effectively
decoupled from the background topological signal so
that, starting from a classical configuration of fixed topo-
logical content, it is possible, by applying a few updating
(heating) steps at the corresponding value of the lattice
bare coupling constant �, to thermalize the UV fluctua-
tions without altering the background topological content.
This result is favored by the fact that topological modes
have very large autocorrelation times, as compared to other
nontopological observables (this autocorrelation time is
particularly long in the case of full QCD [20,21] and also
in the case of a large number of colors [22]).

One can thus create samples of configurations within a
given topological sector q with the UV fluctuations ther-
malized. If q � 0 then the measurement of QL on such a
sample leads to the lattice value of the background topo-
logical charge qL. As described above [8,9], this result
must be renormalized to match the continuum value q,

 qL � hQLijq � Zq; (2)

where the subscript jq indicates that the thermalization is
achieved within the sector of charge q. Therefore, knowing
q from the classical configuration and determining qL from
the measurement of QL on the sample, Z can be extracted.

If q � 0 then measuring Q2
L=V on the sample leads to

the value �Ljq�0 which is precisely M, as indicated above.
M can also be calculated on samples with nonvanishing

topological background q. Following Eqs. (1) and (2) the
additive constant is extracted in this case by using the
relation

 M �
1

V
�hQ2

Lijq � �hQLijq�
2� (3)

and leads to the same results [18,23].
A sample of configurations belonging to the sector of

total topological charge q is obtained in the following way.
One starts from a classical configuration with topological

charge q. It can be easily obtained either by using cooled
configurations where the energy and the topological charge
correspond to the presence of one instanton (if q � 1)1 or
by setting all gauge links to unity (if q � 0). Then a few
updating steps are applied and the proper operator (either
QL or Q2

L=V) is measured at each step. Moreover, at each
step the background topological charge is checked by
cooling2 [27] in order to verify that the configuration still
lies in the sector of charge q [28]. When the result of the
measurement stabilizes (data display a plateau), while q
stays fixed, we consider that the UV fluctuations are ther-
malized and hQLijq�1 and hQ2

L=Vijq�0 yield Z and M,
respectively.

When the cooling applied to a configuration reveals that
its background topological charge is no longer equal to q,
then the configuration is discarded from the sample.
However, the following event might also happen: a pos-
sible new instanton or anti-instanton created by the various
updating steps might evade the cooling probe because the
very cooling procedure could destroy it (this may happen
especially when the instanton spans a few lattice spacings).
In this case we would include in the sample a configuration
which actually does not belong to the sector of topological
charge q. Such an event would obviously distort the mea-
surement of any of the above topological operators. For
example, it yields an overestimation of hQ2

Lijq�0 because
any added instanton or anti-instanton only increases the
value of the square. On the other hand, since the theory
prefers the sector of vanishing topological charge, the
updating steps during the calculation of Z tend to bring
the configuration to that sector either by destroying the
original instanton or by creating from scratch an anti-
instanton. As a consequence, the value of hQLijq�1 be-
comes underestimated because on average the expectation
value of QL in the sector q � 0 is less than in the sector
with q � 1.

In the past we have always been aware of that potential
problem, and in this paper we present a study where the
background topological sector is calibrated by another
method in order to compare the results and detect any
difference in the form of a systematic error. The new
method is the counting of zero modes by using Ginsparg-
Wilson based operators [29], and it will be described in the
next section.

III. A STUDY OF SYSTEMATIC ERRORS

Following the lines described in the above section, we
have calculated the values of the renormalization constants
in Eq. (1) for the 1-smeared topological charge operator

1Alternatively, one can also approximate a BPST instanton
[24] on the discrete lattice [25]. The same procedures can be
applied for q > 1.

2Different variants of the cooling procedure lead to identical
results [26].
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defined as [30]

 QL�x� � �
1

29�2

X�4

������1

~	���� Trf����x�����x�g;

(4)

where all link matrices have been substituted by 1-smeared
links [31] (the smearing parameter was c � 0:90). The
corresponding renormalization constants will be called
M�1� and Z�1� to denote the level of smearing. In the above
expression ����x� is the plaquette in the �–� plane with
the four corners at x, x� �̂, x� �̂� �̂, x� �̂ (counter-
clockwise path). Links pointing to negative directions
mean U���x� � Uy��x� �̂�. The generalized completely
antisymmetric tensor is defined by ~	1234 � 1 and
~	������� � �~	����. The calculation was performed for
the Yang-Mills theory with the SU(3) gauge group and
Wilson action [32]. The lattice size was 124 and the bare
coupling � � 6.

The practical procedure was the following: starting from
a classical configuration with the adequate topological
background content (q � 0 for M�1� or q � 1 for Z�1�),
80 heat-bath (HB) steps were applied, each step consisting
of three Cabibbo-Marinari [33] hits, one for each SU(2)
subgroup and Kennedy-Pendleton algorithm [34] for re-
freshing the dynamical variables. The operator [�QL�

2=V
for M�1� or QL for Z�1�] was measured every 4 steps. This
set of 20 measurements is called the ‘‘trajectory.’’ A test of
the topological sector was accomplished after each mea-
surement on a separate copy of the configuration. We
accepted only those measurements that were thermalized
within the corresponding topological sector. This condition
means that the data must have stabilized to a plateau and
that the test must have revealed that the configuration lay
within the correct topological sector. The average over all
accepted measurements yielded M�1� or Z�1�.

The test was performed by two different methods: either
by a traditional cooling [27] or by counting fermionic zero
modes (CFZM). This last method consists of calculating
the net number of zero modes, n� � n�, by enumerating
the level crossings in the spectrum of the Wilson-Dirac
operator DW � am as the fermion mass m is varied [35–
37]. This method was utilized in Refs. [37,38] to calculate
the topological charge.

The main advantage of the CFZM method against cool-
ing is that the CFZM method does not need to modify the
configuration to which it is applied, hence the topological
content is never altered during the test. On the contrary, its
main disadvantage is that its implementation is heavily
time-consuming.

Let us discuss in more detail the CFZM method. We can
stop counting crossings at any mass am � amstop inside
the allowed interval am< 2. Thus, in general, the mea-
surement of the topological charge will depend on amstop

because there can be level crossings all along the interval

of masses where the gap is closed. This makes the zero
mode counting method look ambiguous. However, in
Ref. [37] it is shown that such a dependence is rather
mild for � 	 6 as long as amstop > 1:5. In the present
work we have sought crossings up to three different values
for the stopping mass: 1.0, 1.5, and 2.0. In particular, the
last (and largest possible) value looks particularly interest-
ing because instantons representing crossings close to
am � 2:0 span a size of a few lattice spacings [37]; i.e.
they are the instantons that most likely could evade the
cooling test.

The search for crossings was realized by following the
same procedure as Ref. [38]. An accelerated conjugate
gradient algorithm [39] was employed to extract the lowest
eigenvalues of the Wilson-Dirac operator.

The topological charge after the cooling test was re-
quired to be equal to 1 or 0 within a tolerance of 
. We
usually chose 
 � 0:3, although tests with other values
were performed (as discussed later) proving that the results
were very robust against the variability of 
.

A. Systematic errors on M�1�

The results for M�1� are shown in Fig. 1. We have
calculated 1380 trajectories of 80 HB steps and measured
the operator Q2

L=V every 4 steps after checking that the
background charge was zero. For each measurement, in the
figure we show the average over all the results. Actually,
we show the data after the 16th step because measurements
after too few HB steps are irrelevant as the configuration is
surely not yet thermalized. A plateau seems to set in after
approximately 40 steps which indicates that thermalization
has been achieved. Then the value of M�1� can be extracted
by averaging over the data after the 40th step.

0 20 40 60 80
HB steps

5.5

6.0

6.5

7.0

10
6 <

Q
L2 /V

>
| q=

0

Cooling (δ=0.3)
CFZM (am

stop
=1.0)

CFZM (am
stop

=1.5)

CFZM (am
stop

=2.0)

FIG. 1. hQ2
L=Vijq�0 as a function of the HB step for the four

calibration tests described in the text. The results for M�1� have
been placed on the left side and are represented by white
symbols. Data corresponding to different calibration methods
have been shifted with respect to each other in order to render the
figure clearer.
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The error bar was calculated in the following manner:
each trajectory was treated as a single datum by averaging
all accepted (i.e., all thermalized and correctly calibrated)
points in it. Since separate trajectories are prepared by
independent Monte Carlo runs, this procedure guarantees
the absence of autocorrelations. Then the average and the
error are easily obtained from this set of 1380 data.
Furthermore, due to the fact that different trajectories can
contain a variable number of accepted points, each trajec-
tory must be weighted by a factor proportional to the
number of accepted points in it.

If the number of accepted points in the trajectory t is nt
and if Tt is the average over all accepted measurements m
in this trajectory,

 Tt �
1

nt

X
m2t

�
Q2
L

V

�
m

�������� q�0
thermalized

; (5)

then

 M�1� �

P
t
TtntP
t
nt

: (6)

Figure 1 displays the results for all four methods of
calibration, cooling with 
 � 0:3 and CFZM with three
different values for the stopping mass. The four white
symbols on the left side of the figure are the corresponding
results for M�1�. They become smaller as the value of
amstop is increased. This effect is possibly an indication
of a systematic error which, however, has little effect on the
calculation since all results look compatible with each
other within errors. It must be stressed that the statistical
errors, represented by the error bars in the figure, amount to
about 3%, which is rather small.

In Fig. 2 we show, for each measurement, the number of
trajectories for which the calibration test gave an accept-

able result, q � 0. The plot is shown for all measurements,
thermalized or not, from the 20th HB step onward. The
maximum possible number is obviously 1380 and it falls
off as the amount of HB steps is increased. The decrease is
steeper for the CFZM with larger stopping mass. In the
latest step and for the CFZM with amstop � 2, about 30%
of all trajectories have varied the topological sector, while
for the cooling method the analogous percentage is about
17%. Such a difference still allows us to obtain results for
M�1� that are compatible within (small) errors, as shown by
the white symbols in Fig. 1.

The values of M�1� obtained by using cooling with
varying 
 are indistinguishable from each other (white
circle in Fig. 1) for 
 ranging from 0.1 to 0.5. In Fig. 3
three tolerance parameters for cooling are compared in-
dicating that the three tests are almost completely equiva-
lent. Again the maximum possible number of trajectories
with the right background topological charge is 1380 and it
diminishes as the amount of HB steps is increased. This
number became 1136 for 
 � 0:1 at the latest step.

B. Systematic errors on Z�1�

Figure 4 displays the analogous study of Fig. 1 for the
calculation of Z�1�. An instanton with topological charge
(as measured with QL after cooling) q � 0:997 was em-
ployed. The procedure for the calculation of Z�1� resembles
very much that of M�1�. We prepared 840 independent
trajectories and again the calibration was performed by
four different tests, as indicated in Fig. 4. The average per
trajectory is Tt,

 Tt �
1

nt

X
m2t

�QL�m

�������� q�0:997
thermalized

; (7)

and the result for Z�1� is
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FIG. 2. Counting of trajectories that still lie in the q � 0
topological sector as the number of HB steps increases for the
four calibration methods.
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FIG. 3. Counting of trajectories that still lie in the q � 0
topological sector as the number of HB steps increases for the
cooling method with three different values of 
.
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 Z�1� �
1

0:997

P
t
TtntP
t
nt

: (8)

A plateau sets in at about the 20th HB step. Figures similar
to Figs. 2 and 3 are obtained with analogous conclusions.
Again the coincident results (white symbols in Fig. 4)
indicate that all calibration methods are equivalent in
such a way that any systematic error implicit in our method
has negligible consequences within our precision (statisti-
cal errors in Fig. 4 are about 4%).

It is well known that the total topological charge of
isolated classical instantons, in general, is not equal to
integer numbers when it is calculated with the operator

of Eq. (4). The difference between the value of the charge
and the closest corresponding integer (j1� qj in our case)
becomes negligible when the inequalities a
 �
 La
hold (� being the instanton size and L the lattice size). A
simple calculation shows that the value of q for a discre-
tized instanton in a volume L4 is given by

 q 	 1� 3
�
�
La

�
4
; (9)

while the discretization error is totally negligible if a &

�=3. The ratio a=� can be estimated by looking at the
action density distribution. We expect that the infrared
effect described in Eq. (9) cancels out if we divide the
charge after heating by the initial value q as indicated in
Eq. (2). This fact was carefully checked in [40] for the 2D
O�3� nonlinear sigma model. It was also used in Eq. (8),
although in that case and within our errors, the q � 0:997
in the denominator is indistinguishable from 1. In the
present study we have verified it for our gauge theory: in
Tables I and II the multiplicative constant is calculated at
several values of the gauge bare coupling � on a 164

volume starting from various initial instantons for the 1-
and 2-smeared operators [they are constructed as in Eq. (4)
after substituting all links with 1- and 2-smeared links,
respectively [31]]. A number of trajectories ranging from
200 to 500 were used. Notice that within errors the values
for Z�1� and Z�2� display a dependence on � but not on q as
long as data are divided by the initial value q, as described
above following Eq. (2). If instead data were divided by the
integer closest to q, then the results for Z�i�, �i � 1; 2�
would display a fake dependence also on q. This fact is
seen in Fig. 5 where the values of Z�2� are displayed as a
function of q after dividing by q (circles) or by the closest
integer to q (triangles): only the circles show constancy
with respect to q. Within our statistical errors, the system-

TABLE II. Z�2� for the 2-smeared operator as a function of � for several values of the
background topological charge q. Instantons with charge q 	 �1, 	 �1, and 	 �2 are used
on a lattice volume 164.

� q � �0:990 q � �0:988 q � �0:955 q � �0:902 q � �1:941

6.00 0.500(12) 0.503(13) 0.495(15) 0.487(20) 0.499(16)
6.20 0.560(6) � � � � � � � � � 0.569(4)
6.50 0.620(10) � � � � � � � � � 0.631(3)

TABLE I. Z�1� for the 1-smeared operator as a function of � for several values of the
background topological charge q. Instantons with charge q 	 �1, 	 �1, and 	 �2 are used
on a lattice volume 164.

� q � �0:990 q � �0:988 q � �0:955 q � �0:902 q � �1:941

6.00 0.373(20) 0.383(15) 0.370(20) 0.365(20) 0.390(12)
6.20 0.432(6) � � � � � � � � � 0.441(5)
6.50 0.503(11) � � � � � � � � � 0.506(5)
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FIG. 4. Averages of �hQLijq�=q as a function of the HB step for
the four calibration methods. An instanton with charge q �
0:997 was used. The values of Z�1� correspond to the height of
the plateau and they are indicated on the left-hand side of the plot
with white symbols. Data corresponding to different calibration
methods have been slightly shifted for clarity.
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atic error is negligible down to q 	 0:9. Possibly, if the
statistics were increased this limit could grow. In any case,
to calculate Z it is better to make use of instantons with q as
close as possible to an integer.

IV. CONCLUSIONS

We have studied two possible sources of systematic
errors in the nonperturbative determination of the renor-
malization constants for the evaluation of the topological
susceptibility on the lattice, Z and M [see Eq. (1)]:

(i) The cooling test of the background topological
charge along the heating process could yield wrong

information since the cooling procedure could delete
the unwanted instanton or anti-instanton created by
the heating steps. An independent check of the cool-
ing test has been performed by applying calibration
methods based on the counting of fermionic zero
modes. No sizable systematic effects have been ob-
served within our (rather small) statistical errors (3%
for M and 4% for Z).

(ii) In the calculation of Z for the operator QL of Eq. (4)
the simulation must be started from a configuration
with a topological charge q different from zero. In
the infinite volume limit q takes on integer values;
however, on the lattice, the determination of q by
using the operator in Eq. (4) leads to results which,
in general, are close to but not strictly equal to
integers. We have argued that this is a potential
source of error that can affect the calculation of Z.
However, it can be kept under control if one uses
Eq. (2) to extract Z with q not rounded to its closest
integer.

In conclusion, one can safely use the field-theoretical
method to study topology on the lattice since any possible
systematic error of the method is well under control.
Moreover, the method is much less demanding in computer
time than the Ginsparg-Wilson based method.

The APEmille facility in Pisa was used for part of the
runs.
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for the results obtained by applying the same equation after
rounding the value of q to its closest integer.
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M. Göckeler, Phys. Lett. 158B, 332 (1985).
[26] B. Allés, L. Cosmai, M. D’Elia, and A. Papa, Phys. Rev. D

62, 094507 (2000).
[27] M. Teper, Phys. Lett. B 171, 81 (1986); 171, 86 (1986).
[28] F. Farchioni and A. Papa, Nucl. Phys. B431, 686 (1994).
[29] P. H. Ginsparg and K. G. Wilson, Phys. Rev. D 25, 2649

(1982).
[30] P. Di Vecchia, K. Fabricius, G. C. Rossi, and G.

Veneziano, Nucl. Phys. B192, 392 (1981); Phys. Lett.
108B, 323 (1982).

[31] C. Christou, A. Di Giacomo, H. Panagopoulos, and
E. Vicari, Phys. Rev. D 53, 2619 (1996).

[32] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
[33] N. Cabibbo and E. Marinari, Phys. Lett. 119B, 387 (1982).
[34] A. D. Kennedy and B. J. Pendleton, Phys. Lett. 156B, 393

(1985).
[35] R. Narayanan and H. Neuberger, Nucl. Phys. B443, 305

(1995).
[36] H. Neuberger, Phys. Rev. D 61, 085015 (2000).
[37] R. G. Edwards, U. M. Heller, and R. Narayanan, Nucl.

Phys. B535, 403 (1998).
[38] L. Del Debbio and C. Pica, J. High Energy Phys. 02 (2004)

003.
[39] B. Bunk, K. Jansen, M. Lüscher, and H. Simma,

‘‘Conjugate Gradient Algorithm to Compute the Low-
lying Eigenvalues of the Dirac Operator in Lattice
QCD,’’ 1994 (unpublished); T. Kalkreuter and H.
Simma, Comput. Phys. Commun. 93, 33 (1996).

[40] B. Allés, M. Beccaria, and F. Farchioni, Phys. Rev. D 54,
1044 (1996).

ANALYSIS OF SYSTEMATIC ERRORS IN THE . . . PHYSICAL REVIEW D 74, 094503 (2006)

094503-7


