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For compact U(1) lattice gauge theory we have performed a finite size scaling analysis on N�N3
s lattices

for N� fixed by extrapolating spatial volumes of size Ns � 18 to Ns ! 1. Within the numerical accuracy
of the thus-obtained fits, we find for N� � 4, 5 and 6 second order critical exponents, which exhibit no
obvious N� dependence. The exponents are consistent with 3d Gaussian values, but not with either first
order transitions or the universality class of the 3d XY model. As the 3d Gaussian fixed point is known to
be unstable, the scenario of a yet unidentified nontrivial fixed point close to the 3d Gaussian emerges as
one of the possible explanations.
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I. INTRODUCTION

Abelian, compact U(1) gauge theory has played a promi-
nent role in our understanding of the permanent confine-
ment of quarks. It was first investigated by Wilson in his
1974 milestone paper [1], which introduced lattice gauge
theory (LGT). For a 4d hypercubic lattice, his U(1) action
reads

 S�fUg� �
X
�

S� (1)

with S� � Re�Ui1j1
Uj1i2Ui2j2

Uj2i1�, where i1, j1, i2, and j2

label the sites circulating about the square � and the Uij

are complex numbers on the unit circle, Uij � exp�i�ij�,
0 � �ij < 2�.

Wilson concluded that at strong couplings the theory
confines static test charges due to an area law for the path
ordered exponentials of the gauge field around closed paths
(Wilson loops). A hypothetical mechanism of confinement
was identified by Polyakov [2], who attributed it in 3d
Abelian gauge theory to the presence of a monopole
plasma. For the 4d theory at weak coupling, both Wilson
and Polyakov expected a Coulomb phase in which the test
charges are not confined. The existence of two distinct
phases was later rigorously proven [3].

So it comes as no surprise that 4d U(1) LGT was the
subject of one of the very early Monte Carlo (MC) calcu-
lations in LGT [4]. One simulates a 4d statistical mechan-
ics with the Boltzmann factor exp���gS�fUg�� and
periodic boundary conditions (other boundary conditions
are possible too, but are not considered here);�g � 1=g2 is
related to the gauge coupling g2, �g � 0 is the strong
coupling limit, and �g ! 1 is the weak coupling limit.
The study [4] allowed one to identify the confined and
deconfined phases. After some debate about the order of
the phase transition, the bulk transition on symmetric
lattices was suggested to be (weakly) first order [5], a
result which was substantiated by simulations of the
Wuppertal group [6,7]. Other investigations followed up

on the topological properties of the theory. This lies outside
the scope of the present paper. The interested reader may
trace this literature from [8].

The particle excitations of 4d U(1) LGT are called gauge
balls and, in the confined phase, also glueballs. Their
masses were first studied in Ref. [9]. In the confined phase
all masses decrease when one approaches the transition
point. Crossing it, they rise in the Coulomb phase with the
exception of the axial vector mass, which is consistent with
the presence of a massless photon in that phase. Recently,
this picture was confirmed in Ref. [10], relying on far more
powerful computers and efficient noise reduction tech-
niques [11]. The first order nature of the transition prevents
one from reaching a continuum limit, as is seen in Fig. 7 of
[10]. In contrast to that, investigations in a spherical ge-
ometry [12] and of an extended U(1) Wilson action [13]
reported a scaling behavior of glueballs consistent with a
second order phase transition. But this is challenged in
other papers [14,15], so that it remains questionable
whether an underlying nontrivial quantum field theory of
the confined phase can be defined in this way.

Here we focus on U(1) LGT in finite temperature ge-
ometries. We consider the Wilson action (1), choose units
a � 1 for the lattice spacing, and perform MC simulations
on N�N3

s lattices. Testing U(1) code for our biased
Metropolis-heatbath updating (BMHA) [16], we noted on
small lattices that the characteristics of the first order phase
transition disappeared when we went from the N� � Ns to
a N�N3

s ; N� < Ns geometry. This motivated us to embark
on a finite size scaling (FSS) calculation of the critical
exponents of U(1) LGT in the N�N3

s , N� � constant, Ns !
1 geometry. For a review of FSS methods and scaling
relations, see [17].

Later we learned about a paper by Vettorazzo and de
Forcrand [18], who speculate about a scenario of two
transitions at finite, fixed N�: One for confinement-
deconfinement, another one into the Coulomb phase,
both coinciding only for the zero temperature transition.
Their claim for the confinement-deconfinement transition
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is that it is first order for N� � 8 and 6,Ns ! 1, becoming
so weak for N� � 4 that it might then be second order. In
contrast to having two transitions at finite N�, the conven-
tional expectation appears to be one transition, which is
first order for sufficiently large N�. For small N� it may be
second order and is then conjectured to be in the 3d XY
universality class. See Svetitsky and Yaffe [19] for an early
discussion of some of these points.

In the next section we present our numerical results in
comparison with previous literature, followed by a sum-
mary and conclusions in the final section.

II. NUMERICAL RESULTS

Our FSS analysis relies on multicanonical simulations
[20] for which the parameters were determined using a
modification of the Wang-Landau (WL) recursion [21]. A
speed-up by a factor of about 3 was achieved by imple-
menting the biased Metropolis-heatbath algorithm [16] for

the updating instead of relying on the usual Metropolis
procedure. This is substantial as, for instance, our 164

lattice run takes about 80 days on a 2 GHz PC.
Additional overrelaxation [22] sweeps were used for
some of the simulations.

Our temporal lattice extensions are N� � 4, 5 and 6. For
Ns our values are 4, 5, 6, 8, 10, 12, 14, 16 and 18. Besides,
we have simulated symmetric lattices up to size 164. The
statistics analyzed in this paper is shown in Table I. The
lattice sizes are collected in the first and second columns.
The third column contains the number of sweeps spent on
the WL recursion for the multicanonical parameters.
Typically the parameters are frozen after reaching f �
e1=20 for the multiplicative WL factor (technical details
of our procedure will be published elsewhere). Column
four lists our production statistics from simulations with
fixed multicanonical weights. Columns five and six give
the � values between which our Markov process cycled.
Adapting the definition of chapter 5.1 of [23], one cycle
takes the process from the configuration space region at
�min to �max and back. Each run was repeated once more,
where after the first run the multicanonical parameters
were estimated from the statistics of this run. Columns
seven and eight give the number of cycling events recorded
during runs 1 and 2.

Using the logarithmic coding of chapter 5.1.5 of [23],
physical observables are reweighted to canonical ensem-
bles. Error bars as shown in the figures are calculated using
jackknife bins (e.g., chapter 2.7 of [23]) with their number
given by the first value in column four (always 32), while
the second value was also used for the number of equilib-
rium sweeps (without measurements) performed after the
recursion. Weighted by the number of their completed
cycles, the results from two or more runs are combined
for the final analysis (compare chapter 2.1.2 of [23]).

A. Action variables

Figures 1 and 2 show for various values of Ns the
specific heat

 C��� �
1

6N
�hS2i � hSi2� with N � N�N3

s (2)

in the neighborhood of the phase transition for N� � 6 and
on symmetric lattices. The � ranges in the figures are
chosen to match.

In Fig. 3 we show all our specific heat maxima on a log-
log scale. Our data for the symmetric lattices are for Ns �
8 consistently described by a fit to the first order transition
form [24] Cmax�Ns�=�6N� � c0 	 a1=N 	 a2=N

2. The
goodness of our fit is Q � 0:64 (see, e.g., chapter 2.8 of
Ref. [23] for the definition and a discussion of Q), and
its estimate for the specific heat density is c0 �
0:000 196 1 �26�. This is 10% higher than the c0 value
reported by the Wuppertal group [7], where lattices up to
size 183 were used. For the interface tension, consistent fits

TABLE I. Statistics of our MC calculations. The simulation
with 
 attached in the WL column uses 22 WL recursions, all
others 20.

Cycles
L� L WL Sweeps/run �min �max 1 2

4 4 18 597 32� 20 000 0.0 1.2 213 240
4 4 11 592 32� 20 000 0.8 1.2 527 594
4 5 14 234 32� 12 000 0.8 1.2 146 172
4 6 19 546 32� 32 000 0.9 1.1 258 364
4 8 29 935 32� 32 000 0.95 1.05 229 217
4 10 25 499 32� 64 000 0.97 1.03 175 317
4 12 47 379 32� 112 000 0.98 1.03 338 360
4 14 44 879 32� 112 000 0.99 1.02 329 322
4 16 54 623 32� 128 000 0.99 1.02 19 219
4 18 58 107 32� 150 000 0.994 1.014 93 259
5 5 18 201 32� 12 000 0.8 1.2 114 122
5 6 20 111 32� 36 000 0.9 1.1 294 308
5 8 31 380 32� 40 000 0.95 1.05 35 191
5 10 47 745 32� 72 000 0.97 1.03 144 231
5 12 37 035 32� 112 000 0.99 1.02 280 326
5 14 49 039 32� 112 000 1.0 1.02 192 277
5 16 43 671 32� 160 000 1.0 1.02 226 257
5 18 56 982 32� 180 000 1.0 1.014 138 241
6 6 28 490 32� 40 000 0.9 1.1 312 281
6 8 44 024 32� 40 000 0.96 1.04 173 175
6 10 51 391 32� 72 000 0.97 1.04 139 170
6 12 41 179 32� 128 000 0.995 1.02 226 283
6 14 50 670 32� 128 000 1.0 1.02 89 220
6 16 56 287 32� 160 000 1.0 1.02 149 189
6 18 68 610 32� 180 000 1.005 1.015 123 200
8 8 46 094 32� 40 000 0.97 1.03 111 159

10 10 48 419 32� 96 000 0.98 1.03 103 133
12 12 70 340 32� 112 000 0.99 1.03 75 82
14 14 112 897 32� 128 000 1.0 1.02 57 51
16 16 87 219 32� 160 000 1.007 1.015 12 73
16 16 191 635* 32� 160 000 1.007 1.015 48 74
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to a small positive as well as to a zero infinite volume value
are possible. Interestingly, the Wuppertal group decided
against including their largest lattices from [6] in their final
analysis [7], because action data on them did not cover the
double peak region coherently (communicated by T.
Neuhaus).

ForN� � 4, 5 and 6, our curves in Fig. 3 are linear fits in
Ns, Cmax�Ns� � a1Ns 	 a0 	 a�1=Ns. For N� � 4, the
goodness of this fit is Q � 0:20 using our Ns � 6 data.
But for N� � 5 and 6, theQ values are unacceptably small,
although the data scatter nicely about the curves. For large
Ns, the maxima of the specific heat curves scale like (see
[17])

 Cmax�Ns� � N
�=�
s ; (3)

where one has �=� � 4 in the case of the first order
transition for N� � Ns. In the N� fixed, Ns ! 1 geometry,
the systems become three dimensional, so that �=� � 3
would be indicative of a first order transition, while
our data are consistent with the second order exponent
�=� � 1.

This has to be contrasted with the claim by Vettorazzo
and de Forcrand [18] that the N� � 6 transitions are first
order. For N� � 8 and 6, their evidence relies on simula-
tions of very large lattices. Differences in action values
obtained after ordered and disordered starts support a non-
zero latent heat in the infinite volume limit. For N� � 6,
the spatial lattice sizes used are Ns � 48 and 60 and their
MC statistics shown consists of 5000 measurements per
run, separated by one heatbath plus four overrelaxation
sweeps (these units are not defined in [18], but were
communicated to us by de Forcrand and previously used
in [15]). For a second order phase transition, the integrated
autocorrelation time �int scales approximately�N2

s and we
estimate from our own simulations on smaller lattices that
in units of those measurements �int 
 7000 forN� � 6 and
Ns � 48. A MC segment of the length of �int delivers one
statistically independent event (e.g., chapter 4.1.1 of [23]).
Therefore, the run of [18] would, in the case of a second
order transition, be based on less than one event, and strong
metastabilities would be expected as soon as the Markov
chain approaches the scaling region. For Ns � 60 and the
N� � 8 lattices, the situation is even worse. We conclude
that these data cannot decide the order of the transition.

Let us remind the reader that a double peak alone does
not signal a first order transition. One has to study its FSS
behavior, but no error bars can be estimated when one has
only one statistically independent event. Actually, for our
larger spatial volumes we find double peaks in our 6� N3

s
action histograms and they are also well known to occur for
the magnetization of the 3d Ising model at its critical point
[25].
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FIG. 3. Maxima of the specific heat.
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FIG. 2. Finite size dependence of the specific heat functions
C��� on N� � Ns lattices.
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FIG. 1. Finite size dependence of the specific heat functions
C��� on N� � 6 lattices.
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B. Polyakov loop variables

Besides the action, we measured Polyakov loops and
their low-momentum structure factors. For U(1) LGT,
Polyakov loops are theUij products along the straight lines
in the N� direction. Each Polyakov loop P~x is a complex
number on the unit circle, which depends only on the space
coordinates, quite like an XY spin in 3d. We calculate the
sum over all Polyakov loops on the lattice

 P �
X
~x

P~x: (4)

The critical exponent �=� is obtained from the maxima of
the susceptibility of the absolute value jPj,

 �max �
1

N3
s
�hjPj2i � hjPji2�max � N

�=�
s ; (5)

and �1� ��=� from the maxima of

 ��max �
1

N3
s

d
d�
hjPji

��������max
�N�1���=�s : (6)

Structure factors are defined by (see, e.g., Ref. [26])

 F� ~k� �
1

N3
s

���������
X
~r

P� ~r� exp�i ~k ~r�
��������

2
�
; ~k �

2�
Ns

~n; (7)

where ~n is an integer vector, which is, for our measure-
ments, restricted to (0,0,1), (0,1,0), and (1,0,0). Maxima of
structure factors scale like

 Fmax� ~k� � N
2�	
s : (8)

The exponents can be estimated from two parameter fits,
(A) Y � a1N

a2
s . Because of finite size corrections, the

goodness Q of these fits will be too small when all lattice
sizes are included. The strategy is then not to overweight
[27] the small lattices and to omit, starting with the small-
est, lattices altogether until an acceptable Q � 0:05 has
been reached. We found a rather slow convergence of the
thus-obtained estimates with increasing lattice size. This
can be improved by including more parameters in the fit.
So we used the described strategy also for three parameter
fits, (B) Y � a0 	 a1N

a2
s . The penalty for including more

parameters is, in general, increased instability against fluc-
tuations of the data and, in particular, their error bars. For a
number of our data sets, this is the case for fit B, so that an
extension to more than three parameters makes no sense.
We performed first the fit B for each data set, but did fall
back to fit A when no consistency or stability was reached
for a fit B including at least the five largest lattices. The
thus-obtained values are listed in Table II. Table III gives
additional information about the fits.

Our lattices support second order transitions for N� � 4,
5 and 6. The evidence is best for observables derived from
Polyakov loops. For example, in Fig. 4 we show our data
for the maxima of the Polyakov loop susceptibility to-

gether with their fits used in Table II (for the symmetric
lattices the data are connected by straight lines). For fixed
N� we find an approximately quadratic increase with Ns,
while there is a decrease for the symmetric lattices, which
appears to converge towards zero or a finite discontinuity
(note that one has no common scale for Polyakov loops
from symmetric lattices, because their lengths change with
N�).

Our structure factor data support the Coulomb phase for
�> �c: As shown for N� � 6 in Fig. 5 the structure
factors remain divergent for �> �c, as expected for a
power law fall-off of Polyakov loop correlations. These
observations apply to the � ranges (compare Table I)
covered by our multicanonical simulations. To have still
many cycling events on large lattices, this range was
chosen to shrink with increasing lattice size. So we do
not test very far into the �>�c phase.

The Polyakov loops describe 3d spin systems. One
would like to identify whether the observed transitions
are in any of their known universality classes. At first

TABLE II. Estimates of critical exponents as explained in the
text. Properties of the fits are summarized in Table III.

N� �=� �=� �1� ��=� 2� 	

4 1.15 (10) 1.918 (34) 1.39 (7) 1.945 (10)
5 0.97 (04) 2.086 (79) 1.51 (4) 1.955 (20)
6 1.31 (07) 1.968 (37) 1.59 (4) 1.901 (31)
nt 1.15 (15) 1.95 (5) 1.55 (5) 1.95 (5)

TABLE III. Number of data used and type of fit (A or B as
explained in text), goodness of fit Q.

N� �=� �=� �1� ��=� 2� 	

4 7B, 0.25 7B, 0.21 7B, 0.25 8B, 0.78
5 4A, 0.76 6B, 0.40 4A, 0.80 7B, 0.23
6 3A, 0.09 7B, 0.09 4A, 0.83 5B, 0.42
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FIG. 4. Maxima of Polyakov loop susceptibilities.
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thought, the universality class of the 3d XY model comes
to mind (e.g., [19]), because the symmetry is correct. It is
easy to see that the N� � 1 gauge system decouples into a
3d XY model and a 3d U(1) gauge theory. The latter has no
transition and is always confined. But one cannot learn
much from this observation, as there is no interaction
between the two systems. Surprisingly, the data of
Table II do not support the XY universality class.
Although our estimates of �=� agree with what is ex-
pected, �=� is entirely off. For the XY model, a small
negative value is established [17], while Fig. 3 shows that
all our specific heat maxima increase steadily. We remark
that the scenario may change for N� < 4. We have prelimi-
nary results for N� � 2 and 3. The increase of the specific
heat maxima becomes considerably weaker than for N� �
4. For N� � 2 it slows continuously down with increasing
lattice size (so far up to Ns � 20) and one can imagine that
it comes altogether to a halt. Once completed, our simula-
tions for N� � 2 and 3 will be reported elsewhere.

III. SUMMARY AND CONCLUSIONS

In view of expected systematic errors due to our limited
lattice sizes, one can state that our estimates of Table II are
consistent with the Gaussian values �=� � 1 and �=� � 2
(with error bars 0.3 for �=� and 0.1 for �=�). Using the
hyperscaling relation 2� � � d� with d � 3 yields � �
� � 1=2. The other estimates of exponents listed in
Table II provide consistency checks, as they are linked to
�=� � 1 and �=� � 2 by the scaling relations �	 2�	
� � 2 and �=� � 2� 	. For the Gaussian exponents,
�1� ��=� � 1:5 and 	 � 0 follow, both consistent with
the data of the table.

However, the problem with the Gaussian scenario is that
the Gaussian renormalization group fixed point in 3d has
two relevant operators [28], so one does not understand
why the effective spin system should care to converge into
this fixed point [19]. Therefore, the interesting scenario of

a new nontrivial (nt) fixed point with exponents acciden-
tally close to the 3d Gaussian arises. An illustration, which
is consistent with the data, is given in the last row of
Table II. The mean values are constructed to fulfill the
scaling relations and match with � � 0:482, � � 0:554,
� � 0:94, � � 0:253, 	 � 0:05.

One may expect that the first order transition of the
symmetric lattices prevails once N� is larger than the
correlation length on symmetric lattices. But a nonzero
interface tension has never been established for this tran-
sition. So one could also imagine an instability under the
change of the geometry. From a FSS point of view, it
appears then natural that the character of the transition
will not change anymore, once a value of N� has been
reached, which is sufficiently large to be insensitive to
lattice artifacts. Up to normalizations data from N�N

3
s

and 2N��2Ns�
3, Ns > N� lattices should then become quite

similar. We illustrate this here by rescaling the maxima of
our Polyakov loop susceptibilities with a common factor,
so that they become equal to 1 on symmetric lattices. On a
log-log scale the results are then plotted in Fig. 6 against
Ns=N�. The behavior is consistent with assuming a com-
mon critical exponent for all of them (parallel lines are then
expected for large Ns=N�).

The litmus test for identifying a second order phase
transition is that one is able to calculate its critical expo-
nents unambiguously. Instead of starting with data of un-
controlled quality from very large lattices, the FSS strategy
is to control finite size effects by working from small
systems up to large systems. With MC calculations, FSS
methods find their limitations through the lattice sizes,
which fit into the computer and can be accurately simu-
lated in a reasonable time. Within the multicanonical ap-
proach, ‘‘accurately’’ means that one has to get the system
cycling through the entire critical or first order region, and
at least about 100 cycles ought to be completed with
measurements.
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Our lattice sizes are not small on the scale of typical
numerical work on U(1) LGT, for instance, the lattices
used for the Wuppertal c0 estimate of [7]. But we have
not yet reached lattices large enough to provide hard
evidence that there is no Ns ! 1 turnaround towards
either a first order transition or the 3d XY fixed point. In
particular, in view of the fact that our data do not support
the generally expected scenario, it would be desirable to
extend the present analysis to the largest lattices that can be
reached by extensive simulations on supercomputers, in-
stead of relying on relatively small PC clusters.

With mass spectrum methods [10,29] one may investi-
gate the scaling behavior of the model from a different
angle. In particular, observation of a massless photon [9]
can provide more direct evidence for the Coulomb phase
than our structure factor measurements. Finally, renormal-

ization group theory could contribute to clarifying the
issues raised by our data. Amazingly, even after more
than 30 years since Wilson’s paper [1], the nature of the
U(1) LGT phase transition is still not entirely understood.

ACKNOWLEDGMENTS

We thank Urs Heller for checking on one of our action
distributions with his own code and Thomas Neuhaus for
communicating details of the Wuppertal data. We are
indebted to Philippe de Forcrand for email exchanges
and useful discussions. This work was in part supported
by the US Department of Energy under Contract No. DE-
FA02-97ER41022. Our data were generated on PC clusters
at FSU.

[1] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
[2] A. M. Polyakov, Phys. Lett. 59B, 82 (1975).
[3] A. H. Guth, Phys. Rev. D 21, 2291 (1980).
[4] M. Creutz, L. Jacobs, and C. Rebbi, Phys. Rev. D 20, 1915

(1979).
[5] J. Jersak, T. Neuhaus, and P. M. Zerwas, Phys. Lett. 133B,

103 (1983).
[6] G. Arnold, T. Lippert, T. Neuhaus, and K. Schilling, Nucl.

Phys. B, Proc. Suppl. 94, 651 (2001).
[7] G. Arnold, B. Bunk, T. Lippert, and K. Schilling, Nucl.

Phys. B, Proc. Suppl. 119, 864 (2003), and references
given therein.

[8] Y. Koma, M. Koma, and P. Majumdar, Nucl. Phys. B692,
209 (2004); M. Panero, J. High Energy Phys. 05 (2005) 66.

[9] B. A. Berg and C. Panagiotakopoulos, Phys. Rev. Lett. 52,
94 (1984).

[10] P. Majumdar, Y. Koma, and M. Koma, Nucl. Phys. B677,
273 (2004).
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