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Interpretations and implications of negative binomial distributions
of multiparticle productions

Tetsuo Arisawa

Waseda University, Tokyo 169-8555, Japan
(Received 13 September 2006; published 20 November 2006)

The number of particles produced in high energy experiments is approximated by a negative binomial
distribution. Deriving a representation of the distribution from a stochastic equation, conditions for the
process to satisfy the distribution are clarified. Based on them, it is proposed that multiparticle production
consists of spontaneous and induced production. The rate of the induced production is proportional to the
number of existing particles. The ratio of the two production rates remains constant during the process.
The “NBD space” is also defined where the number of particles produced in its subspaces follows
negative binomial distributions with different parameters.
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L. INTRODUCTION

In high energy experiments, accelerated particles are
collided to reproduce the conditions that occurred in the
early universe. Many particles are created in both circum-
stances. In the experiments, particles from selected events
are analyzed to understand features of elementary particle
processes. However, because multiparticle production pro-
cess as a whole cannot be handled by simple perturbative
calculations, a complete understanding of the phenomena
has not been achieved.

It is known that multiplicity distributions of particles
produced in the experiments are well described by the
negative binomial distributions (NBD) [1-5]. Experi-
ments show that it holds as a general aspect of multiparticle
production processes, regardless of the types of colliding
particles, such as pp, ete”, mp, pN, or NN, for a wide
range of the energies, +/s.

Negative binomial distributions appear as a convolution
of k Bose-Einstein (or geometric) distributions[6,7]. To
explain the distributions, models and interpretations of
the multiparticle production phenomena have been pro-
posed, such as branching of QCD partons [8], a Gamma
mixing distribution to the Poisson [9], and productions of
clans [10].

Information theory derives NBD as the most probable
distribution from limited knowledge [11,12]. Also, it is
providing new aspects of multiparticle production espe-
cially based on Tsallis entropy [13-15].

To comprehend the general features of multiparticle
production processes, new interpretations of negative bi-
nomial distributions are being attempted in this report. In
the following, a “particle’” means a QCD parton as in the
branching models.
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II. MATHEMATICAL FORMULAS AND
CONDITIONS OF NBD

A stochastic equation of NBD with parameter k is ex-
pressed as

dptn = A=k + P, + (k+n—1DP,_}, (1)

for integer n = 1. For n = 0, the second term of the right
hand side is omitted. P, (z) represents a probability that an
event contains n particles which have been produced after
collision. ¢ is most simply regarded as time, but it is
interpreted differently as a variable of parton branching
in Refs. [8,16—18].

The A(r) denotes a particle production rate at ¢. Unlike
the references, the production rate here is assumed
t-dependent. At f,, the initial # of the production, A(z)
becomes nonzero and multiparticle production begins.
A(z) returns to zero and multiparticle production ends
before the observation. In addition, different from the
references, the representation (1) of the stochastic equation
corresponds to an initial condition P,(fy) = 8,9. And the
factor (k + n)A(¢), multiplied on n-particle probability,
will be used to separate two types of production afterwards.

From Eq. (1), P,(¢) is represented with P,_ (),

P(1) = ﬁ “dt, exp{— j "t (k + n)A(r;,)}

0 In

X (k +n— I)A(tn)Pn—l(tn)-

By successive substitutions, P, (7) is expressed as follows:
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P(1) = ﬁ “dt, exp{— ﬁ "t (k + n)A(t;)}(k T n— DA,

0 n
f’” dt,_ exp{— "odl (k0 — 1)A(r;1_1)}(k + 1= 2)A(tyy)
1y tp—1

0

which leads to a NBD formula

_ T(k+n) I (R
Pn(t)_WCXp< kj; dl)t(t))

0

X {1 - exp(— j;: dt’/\(t’))}”. 3)

In the case of k = 1, the negative binomial distribution
becomes Bose-Einstein distributions. The negative bino-
mial distribution expressed by (3) will be specified by
NBD(k%, f;o di’ A(¢)) in this report.

Equation (2) (and also (1)) is most easily illustrated in a
simple particle branching picture, temporarily assuming k
as an initial number of particles at 7. After #,, particles are
produced one by one, the i-th particle at ¢#;, where i =
1,2,...,nand t, <t; <...<t, <t The probability that
the i-th particle is produced between ¢; and ¢; + dt; is
considered as (k + i — 1)A(¢;)dt;. It is supposed that each
of (k + i — 1) particles which exist just before #; branches
with the same rate of A(z;). The factor exp{— [ Z*' dri(k +
)A(r})} means a probability that (k + i) particles remain
without branching from ¢; to #;,.

In order to satisfy a negative binomial distribution, the
following conditions on A(¢) and k are required for the
multiparticle production.

(1) A(?) is common to all existing particles at any ¢ in

each event or collision.

i) [ ,TO dt (1) is the same for all events, where T denotes
the ¢ at the observations. (It is possible that A(z)
differs event by event.)

(iii) k remains constant at any ¢ in each event.

(iv) k is the same for all events.

These consequences of negative binomial distributions
provide general features of multiparticle production, at
least as approximations. Or these requirements provide a
basis to discuss the limits of application of negative bino-
mial distributions.

II1. INTERPRETATIONS: SPONTANEOUS AND
INDUCED PRODUCTION

Experiments [1] revealed that k is not an integer and
decreases with /s. These contradict the simple assumption
that k is a number of initial particles or partons. (For

f " an, exp{— [ " at (k + l)A(t’l)}k)l(tl)exp<— ] " dt{)kA(t{))), @)

0

{
example, number of partons in (anti)protons is expected
to increase with /s as observed in jet production.) In
addition, if & is the initial number of particles, there should
exist a fixed number of partons at initial time 7, in every
event. To avoid this feature, slightly different distributions
from negative binomial distribution were proposed
[16,17,19] by assuming simple distributions of initial par-
ticle numbers. Instead of modifying the NBD, other inter-
pretations for k will be considered in this report: constant
ratios of different production rates.

First, k is possibly interpreted as a ratio of particle
production probabilities from initial particles and from
produced particles. It is assumed that the production or
the branching rate from the initial particles as a whole is
written as kA(¢) at any ¢, while the production rate from
each particle produced after £, is expressed as the A(r). By
this interpretation, the behavior of k with /s becomes more
understandable. At lower /s, particles produced by
branching rarely initiate additional production because
their energies are too low. Then, the productions by initial
particles are dominant, and k& becomes large. Valence
quarks in colliding hadrons or ¢ and g from e* e~ annihi-
lations may be regarded as the initial particles here.

In this context, the initial particles and the produced
particles are treated differently with the different produc-
tion rates. Furthermore, the initial particles are not ob-
served or counted as final particles unlike the produced
particles, although the former continue to exist and repeat
branching with the latter until production finishes with
A(f) = 0. In Eq. (1), n represents the number of particles
produced after #, and observed at ¢ which results in a
negative binomial distribution. Contributions from the ini-
tial particles are included in k, but not in the number of
particles, n, to be detected.

However, both types of particles should only be QCD
partons in terms of QCD theory. Instead of employing
different types of particles, negative binomial distributions
are reinterpreted introducing two types of particle produc-
tion: “‘spontaneous” and “‘induced” production.

Spontaneous production occurs independently of the
other particles. On the other hand, a presence of particles
causes an additional particle to be produced in the case of
induced production. The rate of the induced production is
proportional to the number of particles. The ratio between
the spontaneous production rate and the induced produc-
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tion rate (per one existing particle) is assumed constant,
and the value is identified as k of the negative binomial
distribution. As seen in the Eq. (1) the transition rate at ¢
from the n particle state to the n + 1 state is expressed (k +
n)A(r), where A(f) means the induced production rate for
one particle.

The words spontaneous and induced are borrowed from
theories of the photon emission from atoms. The two
categories of emission were first proposed by A.
Einstein. Quantum mechanics later provided the basis,
proving that the rates of the two emissions are always the
same (k = 1) [20].

It has already been indicated in a different manner that
negative binomial distributions of multiparticle produc-
tions can emerge as a result of “partial stimulated (in-
duced) emission’ [10]. It was attributed to Bose-Einstein
interference of identical Bosons, and the model is treated
separately from branching processes. In their models,
pions are assumed as the identical Bosons. And it is
believed that the theory is rejected by the NA22 experi-
ments [2].

On the contrary, particles in this report corresponds to
QCD partons. The 7, can be shifted backwards in time even
till the colliding particles are completely separated. It
means that the spontaneous and the induced production
here are supposed to occur during the parton branching,
before hadronization of the pions. So, the Boson that could
cause the Bose-Einstein interference is regarded as gluon
or quark-antiquark pair.

In branching pictures, spontaneous production repre-
sents a production from vacuum. The vacuum may relate
to the flows of initial or colliding particles. The induced
production corresponds to a branching from existing par-
ticles where the branching rate from each particle is sup-
posed equal. In these branching pictures, the NBD may
appear even without any kind of interference if the as-
sumed relations are at least approximately satisfied be-
tween the production from vacuum and from present
particles.

However, as mentioned previously, (iii) and (iv), the
negative binomial parameter k for the multiparticle pro-
ductions remains constant at any ¢ in any events.
Meanwhile, the ratio of the spontaneous and the induced
emission is always 1 for photons of any frequencies and
polarizations that are emitted from any kind of atoms at
any temperatures. This comparison may lead to formula-
tion of a comparable theory for multiparticle production,
where the ratio of the spontaneous and the induced pro-
duction is unchanged but not unity. With the generation
operator, at, which satisfies usual commutation relation
for Bosons, acting on an n particle state, |n),

atln)y=+vn+kln+1),

is expected in those theories.
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IV. STATISTICAL FEATURES AND COMPARISONS
WITH OTHER MODELS

The amount of the spontaneous production in an event
follows a Poisson distribution of average k [ o di'A(f'). The
number of induced particles originating from one sponta-

neously produced particle obeys the Bose-Einstein distri-
bution, NBD(1, ﬁ dr'A(t)),

P,(t;1,) = exp<— ﬁ dt'/\(l")){l - exp(— [ d[/)\(t/)>}n

“

where ¢, denotes the ¢ of the spontaneous production. In
addition, (4) holds for particles originating from an in-
duced particle at t,, instead of spontaneously produced
one.

Because k is the average number of spontaneously pro-
duced particles, it becomes unnecessary to require non-
integer and fixed value of particle numbers for each event.

As seen in Refs. [21,22], a convolution of Poisson and
Bose-Einstein distribution leads to a distribution slightly
different from a negative binomial distribution. The differ-
ence comes from the fact that the Bose-Einstein distribu-
tion (4) depends on ¢, and differs for each spontaneous
production. The Bose-Einstein distribution for each cluster
in the references is assumed identical.

Similarly, we can proceed to a comparison with the
popular clan models [10]. The clan model assumes that
the clans, or clusters, are produced according to a Poisson
distribution, and all the clan decay, producing particles that
follow an identical logarithmic distribution. Then the final
multiplicities obey negative binomial distributions. It is
easily shown that by integrating zero-truncated form of
(4) with 1, after multiplying by the production probability
density A(z,)dt,/ [ i dt' A(¢'), the logarithmic distribution
is obtained. An explanation for the logarithmic distribution
to appear in the clan model is derived from the context of
this report. And the clan is identified as a cluster of
particles originating from a single spontaneous production.

Statistical features of the model provided here is similar
with the clan model. But the physical entity such as clan is
not assumed. Actually, a cluster initiated by an spontane-
ous production at ¢, and that by a induced production at the
same £, are not supposed to be different, except the latter
resides in another cluster. Also, only Bose-Einstein distri-
bution is used, which is derived from a minimal require-
ment in information theory [11].

V. NBD SPACE AND RAPIDITY

The interpretation of negative binomial distributions are
extended using a generating function:
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exp(— [} di'A(t))

fo

1 —{1 —exp(— [} di' A1)}z

G(z) = ( )k. 5)

Suppose that N, independent regions are created at f,. In
the i-th region, the ratio of the spontaneous and the induced
production rates is assumed k;, so that the number of
particles produced in the i-th region, n;, follow a negative
binomial distribution with k;. k; can differ for regions and
N, can be different for events, but the sum k = va;’l k; is
required to be constant for all events. Also, the integral of
the induced production rate [} dt' A(') must be the same

for all regions. Then the total multiplicity n = 7:01 n;
results in negative binomial distribution with k because
the generating function of the sum becomes a product of
generating functions of all regions.

By advancing the above arguments with the generating
function (5), “NBD space” will be defined in the follow-
ing. Experiments show that the parameter k varies when
the size of rapidity region to observe particles is changed
[1-3]. It requires a mathematical framework of a space of
particle production, where the number of particles pro-
duced in its subspace follows NBD with different
parameters.

Setting the number of the independent regions N, to
infinity, Ny — o0, and introducing a continuous coordinate
r, the NBD parameter k is expressed as k = [ drk(r) with
a density function «(r).

In the r — ¢ plane, the spontaneous production rate at a
point (r, t) is expressed x(r)A(t)drdt. Each r = const line
on the plane is regarded as an independent region of
particle productions. It means that if a particle is produced
spontaneously at a point (r, f,), induced productions or
particle branchings follow on the same line of r = const,
according to (4). And all particles from the successive
productions should be observed with the same r. Total
number of particles in the whole space obeys the
NBD(k, [ o dt'A(¢')). The number of particles, produced
in any rectangular region of [r, r,] X [#o, ¢] in the r — ¢
plane, or observed in any range of [r,r,] at any ¢, follows
the NBD( [72 drx(r), [i dt'A(f')). By changing the detec-
tion area [r;,r,], the NBD parameter k varies.

In the Ref. [10], the behavior of their variables, a and b,
estimated by the results of the UAS experiments, are shown
with respect to the size of the rapidity windows. As the size
is enlarged, a increases and b becomes flat. Here, a and
b are replaced by k(1 —exp(— [; d'A(¢))) and 1—
exp(— [}, d’A(t')). Then the behavior obtained by the
experiment implies that k(= [ 2 drk(r)) increases with
the rapidity window size and the other NBD parameter
[i, dt'A(#') is independent of rapidity. It means that rapidity
possesses common features with the variable r for the NBD
space.

However, particles branched from the same origin are
not detected with the same rapidity in real situations. So
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rapidity does not have the ideal feature of r. Instead,
particles from a common origin, or cluster, exhibits a
spread in rapidity. This is the reason why the variable b
in [10] gradually decreases as the rapidity region become
small enough. Variable b relates to the number of particles
in a cluster, and it decreases when a part of them is lost
outside of the region.

In spite of the differences, the variation of the parameter
k with the size of rapidity regions implies the necessity of a
coordinate, », on which a density function of spontaneous
production, «(r), is defined. The coordinate r could be just
a rapidity of a spontaneous production. In that case, the
number of observed particles in a limited rapidity window
does not obey negative binomial distributions in a strict
sense, because particles move in or out at the window
edges. But the multiplicity can be approximated by NBD
when the window size is large enough compared to the
spread of a cluster. By narrowing the size, the NBD fit is
expected to be gradually deteriorated, because the effect
from the edges of the window can not be ignored.

Let us assume that clustering of observed particles
stemmed from the same spontaneous production is enabled
in experiments. Then, by counting all particles in a cluster
only if the center of the cluster resides in the window, the
NBD approximation for limited rapidity window would be
improved.

In addition, suppose that particles initiated by a common
origin, regardless of spontaneous or induced production,
form a cluster in some phase space, and suppose that the
spread size of the cluster correlates with ¢ of the original
production. Then, the details of the model in this report,
such as A(#) and «(r), as well as differences from the clan
model, can be investigated from experimental data.

VI. CONCLUSIONS

In this report, representations (2) and (3) for the negative
binomial distributions are derived by integrating the sto-
chastic Eq. (1). By interpreting the formulas, conditions on
multiparticle production processes, (i)-(iv), are listed. Then
it is proposed that multiparticle production processes are
composed of spontaneous and induced production. The
parameter k of negative binomial distributions is inter-
preted as a constant ratio of the two production rates.

Comparisons with the other models, especially with the
clan model, are performed. The clan results in a cluster of
particles originating from a spontaneous production. But
no differece is expected from a cluster initiated by an
induced production, if # of the productions is the same.

The generating function (5) of negative binomial distri-
butions is used to introduce a continuous coordinate r on
which a density function of k is defined. Then, the “NBD
space” is constructed where particles produced in its sub-
spaces follow negative binomial distributions of various
parameters. Also, the relation between r and rapidity is
discussed.
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The understanding of negative binomial distributions
here would contribute to the interpretations of NBD phe-
nomena in a variety of fields.
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