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The large-x behavior of the transverse-momentum dependent quark distributions is analyzed in the
factorization-inspired perturbative QCD framework, particularly for the naive time-reversal-odd quark
Sivers function which is responsible for the single transverse-spin asymmetries in various semi-inclusive
hard processes. By examining the dominant hard gluon exchange Feynman diagrams, and using the
resulting power-counting rule, we find that the Sivers function has power behavior �1� x�4 at x! 1,
which is one power of (1� x) suppressed relative to the unpolarized quark distribution. These power-
counting results provide important guidelines for the parameterization of quark distributions and quark-
gluon correlations.
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I. INTRODUCTION

Single transverse-spin asymmetries (SSA) have a long
history, starting from the observation of large SSAs in
hadron production in nucleon-nucleon scattering in late
70s and 80s [1]. Since initial or final-state phases are
required to produce these T-odd observables, SSAs pro-
vide a unique window into quantum chromodynamics
(QCD) at the amplitude level as well as the role of quark
orbital angular momentum in the wave functions of had-
rons. Recent experimental observations of sizeable SSAs
in hard scattering reactions such as single-inclusive deep
inelastic scattering ‘p! ‘0��X have greatly motivated
new studies of the underlying mechanisms in QCD. These
experiments include semi-inclusive deep inelastic scatter-
ing at HERMES at DESY [2], COMPASS at CERN [3],
and Jlab [4], and hadron production in nucleon-nucleon
scattering at RHIC [5–7]. Large SSAs have been observed
in semi-inclusive production of hadrons in DIS for trans-
versely polarized proton target at HERMES [2], and
single-inclusive hadron production in the forward direction
in polarized proton-proton scattering at RHIC [5,7].

On the theory side, two mechanisms have been proposed
in the QCD framework to explain these large SSAs in hard
scattering processes. One is based on the QCD collinear
factorization where the asymmetries arise from the higher-
twist quark-gluon correlation effects (Efremov-Teryaev-
Qiu-Sterman mechanism) [8,9]. Another approach explic-
itly takes into account the effects coming from the intrinsic
transverse-momentum of partons in hadrons. For example,
the Sivers function was proposed in [10] to explain the SSA
phenomena in hadronic reactions, where intrinsic trans-
verse momentum plays an important role.

In the last few years, there has been an intensive theo-
retical development of transverse-momentum-dependent
(TMD) parton distributions and their roles in semi-

inclusive processes such as semi-inclusive deep inelastic
scattering (SIDIS) and the small transverse-momentum
Drell-Yan process. The gauge-invariant properties [11–
14] of the TMD parton distributions and the relevant
factorization formalism [15–18] have been studied thor-
oughly. For example, the Sivers effect in SIDIS has been
shown to arise from the interference of amplitudes differ-
ing by one unit of quark orbital angular momentum and the
fact that these amplitudes have different final-state phases
[11]. The phases arise from the Wilson-line associated with
the struck quark as required by gauge invariance [12]. The
SSA reverses sign in Drell-Yan reactions because the
phases in the Drell-Yan reaction arises from initial-state
rather than final-state interactions [11,12]. Remarkably, the
SSA effect in these reactions is leading twist; i.e., it sur-
vives in the Bjorken-scaling limit. Moreover, it was re-
cently shown that the above two mechanisms for SSAs are
unified for physical processes in the kinematical region
where both apply [19].

There has also been a number of phenomenological
studies of the experimental data. Model-dependent param-
eterizations of the relevant nonperturbative parton distri-
butions (twist-3 quark-gluon correlation or the TMD quark
distributions) have been adopted to fit to the data [9,20–
23]. In these studies it has been implicitly assumed the
Sivers function is suppressed at large x relative to the
unpolarized quark distributions [21,22]. In this paper, we
will provide an argument for this suppression based on
power-counting of the leading diagrams in perturbative
QCD. We will utilize the generalized power-counting
rule and adopt a perturbative analysis of the structure
function at large x.

The large-x behavior of both the polarized and unpolar-
ized parton distributions have been studied [24–28] in
PQCD. A generic factorization has recently been used to
justify the power-counting rule by relating parton distribu-
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tions at large x to the quark distribution amplitudes of
hadrons [29]. So far, the power-counting results have
been worked out for the unpolarized and longitudinal
polarized quark distributions. In the present study, we
will extend this analysis to other leading-order TMD quark
distributions, including the naive time-reversal-odd quark
Sivers function which is responsible for the SSAs in vari-
ous semi-inclusive hard processes.

It is important to note that the x! 1 regime where the
struck quark has nearly all of the light-cone momentum of
its parent hadron involves dynamics far-off the mass shell:
the Feynman virtuality of the struck quark becomes highly

spacelike: k2
F �m

2 ��
k2
?
�M2

1�x , where k? and M are the
transverse momentum and invariant mass of the spectator
system. Thus we can use perturbative QCD to analyze the
large-x behavior of parton distributions since the internal
propagators in the relevant Feynman diagrams scale as
1=�1� x�. This behavior leads to a power-counting rule.
This is because more partons in hadron’s wave function
means more propagators in the scattering amplitudes, and
more suppression for the contribution to the parton distri-
butions. Thus the parton distributions at large x depend on
the number of partons in the Fock state wave function of
the hadron. In particular, the valence Fock state with the
minimum number of constituents will dominate the quark
distribution function at large x. For example, the proton
structure function will be dominated by its three-quark
Fock states, which can be further classified according to
its quark orbital angular momentum projection: Lz � 0,
jLzj � 1, or jLzj � 2 [30]. Since nonzero quark orbital
angular momentum light-cone wave function normally
introduces additional suppression of (1� x), we will con-
sider in this paper only Lz � 0 and jLzj � 1 Fock states
contributions. The jLzj � 1 state is needed because some
of the TMD quark distributions involve the interference
between Lz � 0 and Lz � 1 states [11,30,31] (see also the
discussions below).

As is the case of the nucleon form factors (Dirac and
Pauli form factors) [32], the transverse-momentum-
dependent quark distributions can be calculated from the
overlap of the light-cone wave functions of three-quark
Fock states [11,30,31]. As we shall demonstrate, the
large-x power counting for the TMD parton distributions
can be obtained in a similar manner. For example, we know
that the unpolarized quark distribution has power counting
of �1� x�3 at large x [24], which comes from the quark
orbital angular momentum projection Lz � 0 Fock states
contribution, whereas the contribution from the overlap of
two light-cone functions for jLzj � 1 states is suppressed
by �1� x�2 [25–28]. On the other hand, since the Sivers
function depends on the interference between Lz � 0 and
jLzj � 1 states, simple counting suggests that that the
Sivers function will have the leading power of �1� x�4.
The detailed calculations in this paper support this intuitive
argument.

The remainder of the paper is organized as follows. In
Sec. II, we present our analysis of the leading-order TMD
quark distributions at large x, where we discuss the power-
counting results for the k?-even, k?-odd, and naive time-
reversal-odd quark distributions, respectively. We will also
derive the power-counting results for the integrated parton
distributions at leading-twist and sub-leading-twist. We
summarize our results in Sec. III.

II. TRANSVERSE-MOMENTUM DEPENDENT
QUARK DISTRIBUTIONS AT LARGE X

The TMD quark distributions can be defined through the
following matrix:
 

M�� � P�
Z d��d2�?
�2��3

e�ix�
�P��i�?�k?

� hPSj ���
v �����

v �0�jPSi; (1)

where the vector P � �P�; 0�; 0?� is along the momentum
direction of the proton, S is the polarization vector, and
�v��� is defined as

 � v��� 	 Lv�1;�� ���; (2)

with the gauge link Lv�1; �� 	 exp��ig
R
1
0 d�v �

A��v� ���. In this paper, we will study the TMD quark
distributions for the semi-inclusive DIS processes, thus the
above gauge link goes to �1. Our results can be simply
extended to the TMD quark distributions for the Drell-Yan
process, where the naive time-reversal-odd TMDs will
have an opposite sign [11–13]. In the following analysis,
no light-cone singularity will be present, thus we can
choose the vector v to be a light-cone vector n �
�0�; n�; 0?� with n � P � 1.

The leading-order expansion of the matrix M contains
eight quark distributions [33]. Among the eight distribu-
tions, three are the so-called k?-even TMD quark distri-
butions: q�x; k?�, �qL�x; k?�, and �qT�x; k?�, which
correspond to the unpolarized, longitudinal polarized,
and transversity distributions, respectively. These distribu-
tions will lead to the three leading-twist integrated quark
distributions [34] after integrating over transverse momen-
tum. The other five distributions are k?-odd, and vanish
when k? are integrated. Two of them, qT�x; k?� (Sivers)
and �q�x; k?� (Boer-Mulders), are odd under naive time-
reversal transformation [35]. The notations for these dis-
tributions follow Ref. [30], which are different than those
in [33]. However, their definitions are identical: q�x; k?� 	
f1�x; k?�, �qL 	 g1, �qT 	 h1, �qT 	 g1T , �qL 	 h1L,
�q0T 	 h?1T ,1 qT 	 f?1T , and �q 	 h?1 .

1In their definition, Ref. [33], h?1T does not vanish when
integrating over k? and contributes to the quark transversity
distribution, whereas our �q0T does vanish when integrating over
k?.
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In this paper we are interested in studying the large-x
behavior of these TMD quark distributions. We will dis-
regard the k? dependence, and further choose k? 
 �QCD

in order to avoid the infrared divergence associated with
low transverse-momentum limit. A typical Feynman dia-
gram contributing to large-x quark distributions is shown in
Fig. 1. At this order, we can write down an inspired
factorization formula for the the parton distributions in
terms of the distribution amplitudes of the nucleon [25,26]

 

f�x; k?� �
Z d2k1?d2k2?

4�2��6
dz1dz2

z1z2
��k? � k1? � k2?�

� ��z1 � z2 � x� 1�
Z
�dyi��dy

0
i���yi��

0�y0i�

�H �yi; y
0
i; ki?; zi�; (3)

where the outside integral represents the phase space in-
tegrals for the final-state two quarks going through the cut
line, with momenta: ki � �ziP�; k�i ; ki?� �i � 1; 2�. The
inside integral measure �dyi� is defined as �dyi� �
dy1dy2dy3��1� y1 � y2 � y3�, and the yi are the momen-
tum fractions of the proton carried by the quarks in the
light-cone wave functions, i.e., pi � yiP and p0i � y0iP in
Fig. 1. Here f represents any of the leading-order TMD
quark distributions. � and �0 represent the quark distribu-
tion amplitudes of nucleon at the left and right sides of the
cut line, respectively. They can be the leading-twist or
higher-twist distribution amplitudes, depending on the
quark orbital angular momentum projection along
z-direction. We list the distribution amplitudes we will
use in this paper in the appendix for reference. H repre-
sents the hard part which can be calculated from the
perturbative Feynman diagram like Fig. 1.

We notice that, in the above equation the phase space
integral for k1 and k2 are strongly constrained in the limit
of x! 1, because of momentum conservation, z1 � z2 �
1� x. We can factor out the (1� x) dependence of this
phase space integral, taking the following parameteriza-
tions: z1 � ��1� x�, z2 � ��1� x�,

 

Z dz1dz2

z1z2
��z1 � z2 � x� 1�

�
1

1� x

Z d�d�
��

��1� �� ��: (4)

This leads to an overall enhancement of 1=�1� x�. After
factoring this out, the remaining measure of the phase
space integral (d�d�) does not contain any additional
factors of (1� x).

Additional (1� x) factors can come from the hard am-
plitude H , but these depend on the structure of the rele-
vant tree diagrams. Since the hard propagators each
contain a (1� x) factor, the least number of active particles
involved in the hard process lead to the least suppression.
Thus the leading contribution to the quark distributions at
large x is dominated by the leading component in the
hadron’s Fock state expansion. For the nucleon, the
three-quark Fock state components will dominate the
quark distributions, while for pion it will be the quark-
antiquark pair states. In the following we will study the
large-x power counting for the above mentioned TMD
quark distributions, including the three k?-even ones: q,
�qL, �qT , and four k?-odd ones: �qL, �qT , qT , and �q.
Since the definition of �q0T explicitly depends on ki?k

j
?,

one must take into account the interference between two
jLzj � 1 Fock states in order to obtain a nonzero contri-
bution, an analysis of which is beyond the scope of this
paper. We will not analyze this distribution here, although
we expect it will be more suppressed than the other k?-odd
distributions at large x.

A. k?-even quark distributions

The unpolarized quark distribution is defined as
 

q�x; k?� �
1

2

Z d��d2�?
�2��3

e�ix�
�P��i�?�k?

� hPj ��v����
��v�0�jPi: (5)

The large-x power counting for this distribution function
has been studied in the literature [24,25]. In the following,
we will repeat these arguments as guideline for the analysis
of other quark distributions.

We calculate the above matrix element in the proton
helicity basis

 q�x; k?� �
1

2

Z d��d2�?
�2��3

e�ix�
�P��i�?�k?

1

2

��hPSz"jÔjPSz"i � hPSz#jÔjPSz#i�; (6)

where the operator Ô is defined as Ô � ��v������v�0�.
This operator is chiral-even, and conserves the quark he-
licity in the partonic scattering matrix elements, and so that
the dominant contributions come from the leading Fock
state wave function (Lz � 0) at both sides of the cut in
Fig. 1. The matrix element hPSz"jÔjPSz"i will have the

 

k1

k2

p1

p2

p3

p1

p2

p3P P

FIG. 1. Typical Feynman diagram contributing to the large-x
quark distribution in nucleon. The blobs at the left and right sides
represent the three-quark light-cone wave function distribution
amplitudes of the nucleon.
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contributions from the following quark spin configura-
tions: "#" and #"" , where in the first one the probed quark
has the same helicity as the proton and in the second case it
is opposite. If the probed quark’s spin is parallel to the
proton spin, the two spectator quarks will form a scalar.

In the following, we are only interested in obtaining the
power counting for the quark distributions, and the explicit
dependence on the distribution amplitudes will not be
discussed. According to the factorization formula Eq. (3)
and the reduced integral Eq. (4), the unpolarized quark
distribution depends on the leading-twist distribution am-
plitudes of the nucleon
 

q�x; k?�jx!1 /
1

1� x

Z d�d�
��

�3�yi��3�y
0
i�

�H �yi; y0i;�;�; �1� x��: (7)

The power counting of the hard factor H can be evaluated
from the partonic scattering matrix elements, which in-
clude a set of propagators and traces of the Dirac matrices.
As mentioned above, the propagators are far off-shell in the
limit of x! 1, which will lead to suppression in terms of
(1� x). For example, One of the gluon propagator in Fig. 1
goes like

 

1

�p3 � k2�
2 �

1

2p3 � k2
 �

1

hk2
?i

1� x
y3

; (8)

at large x. In the above expression, we have omitted all
higher order terms suppressed by (1� x). hk2

?i represents a
typical momentum scale in order of transverse momentum
k?. Besides the propagators, the traces of the Dirac matrix
contains (1� x) factors as well, which will depend on the
spin structure of the quarks in the scattering matrix ele-
ments. For example, the traces of the Dirac matrices for the
scattering "#"!"#" in Fig. 1 will contribute to the matrix
element hPSz"jÔjPSz"i as

 

1

�1� x�4
; (9)

in the leading power, where the probed quark has the same
helicity as the proton. If the probed quark has an opposite
helicity as the proton, e.g., in the spin structure #"" , the
Dirac trace for the diagram of Fig. 1 vanishes. We have
checked all other diagrams, and found that the Dirac traces
for those diagrams with spin-one configuration for the
spectator quarks ( "" or ## for the two spectator quarks)
either vanish or are suppressed by at least �1� x�2 as
compared to the scalar configuration ( "# or #" ). This
property has long been noticed in the literature
[24,25,27]. In Fig. 2, we showed all leading diagrams for
the spin structure of "#" , where only left half sides of the
relevant diagrams are shown. The contributions will be the
amplitudes square of these diagrams, including their
interferences.

In summary, the leading contribution to the matrix ele-
ment in Eq. (6) comes from the quark spin structure with
probed quark’s helicity equal to the nucleon’s helicity. If
they differ, the contribution will be suppressed by �1� x�2.
This is to say, the quark distribution is dominated by the
quark spin parallel to the nucleon spin, and the quark spin
antiparallel distribution will be suppressed by �1� x�2.

The final power-counting result will depend on the
above factors, including the Dirac matrix traces, the power
counting of the propagators, and the phase spaces integrals.
For example, the diagram in Fig. 1 contains eight propa-
gators, with overall power counting

 �
�1� x�8

y3�1� y1�
2y03�1� y

0
1�

2 : (10)

Combining the above with the contribution from the Dirac
matrix traces in Eq. (9) and the phase spaces integral factor
in Eq. (4), we find that the contribution of this diagram to
the unpolarized quark distribution is

 q�x; k?�jx!1 � �1� x�3: (11)

All other diagrams in Fig. 2 will contribute the same power
to the unpolarized quark distribution. For example, the
amplitude square of Fig. 2(d) contribute a power of �1�
x��2 from the Dirac matrix traces, a power of �1� x�6 from
the propagators, plus a power of �1� x��1 from the phase
space integral Eq. (4), which leads to a power of �1� x�3

contribution to the quark distribution.
The longitudinal polarized quark distribution can be

analyzed accordingly, which is defined through the follow-
ing matrix element,
 

�qL�x; k?� �
1

2

Z d��d2�?
�2��3

e�ix�
�P��i�?�k?

� hPSzj ��v������5�v�0�jPSzi: (12)

 

(a () b () c)

(d) (e)

↑

↓

↑

↑

↓

↑

FIG. 2. Leading diagrams contributing to the k?-even quark
distributions at large x: left half of the relevant diagrams are
shown. The contributions will be the amplitudes squared of these
diagrams, including the interference between them. These dia-
grams also contribute to the k?-odd and naive time-reversal-odd
TMD quark distributions.
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Again, if we calculate in the proton helicity states, we will
obtain

 �qL�x; k?� �
1

2

Z d��d2�?
�2��3

e�ix�
�P��i�?�k?

1

2

��hPSz"jÔLjPSz"i � hPSz#jÔLjPSz#i�;

(13)

where the operator ÔL is defined as ÔL �
��v����

��5�v�0�. We can interpret longitudinal polarized
quark distribution as the quark spin parallel to the nucleon
spin distribution minus the antiparallel distribution.
According to the above analysis for the unpolarized quark
distribution, we know that the quark spin parallel to the
nucleon spin distribution dominates over the antiparallel
distribution, and the latter is suppressed by an extra factor
of �1� x�2. In conclusion, we will obtain the same power
behavior for the longitudinal polarized quark distribution
as the unpolarized quark distribution,

 �qL�x; k?�jx!1 � �1� x�
3: (14)

The transversity distribution for the quarks can be ana-
lyzed in the same way. It is defined as
 

�qT�x; k?� �
1

2

Z d��d2�?
�2��3

e�ix�
�P��i�?�k?

� hPS?j ��v������?�5�v�0�jPS?i: (15)

Here, the proton is transversely polarized. We can choose
the polarization vector along x-direction, and the polariza-
tion states can be constructed from the proton helicity
states,

 jPSx"i �
1���
2
p �jPSz"i � jPSz#i�;

jPSx#i �
1���
2
p �jPSz"i � jPSz#i�:

(16)

Substituting the above into the definition of the transversity
distribution, we will obtain

 �qT�x; k?� �
1

2

Z d��d2�?
�2��3

e�ix�
�P��i�?�k?

1

2

��hPSz"jÔtjPSz#i � hPSz#jÔtjPSz"i�; (17)

where the operator Ôt is defined as Ôt �
��v��

�; 0; ~b?��
��?�5�v�0�. From this equation, we see

that the quark transversity distribution depends on the
matrix elements with hadron helicity flip. On the other
hand, because the operator Ôt is chiral-odd, it changes
the quark helicity in the partonic scattering process as
well. If we keep the leading Fock state contribution, the
matrix element in the bracket of the above equation will
reduce to

 1
2
hPSz"jÔtjPSz#i�1=2 � �1

2
hPSz#jÔtjPSz"i1=2; (18)

where the subscripts � 1
2 represents the total quark helicity

in the three-quark wave function used in the calculations.
From this equation, we can easily see that it will be the
same set of diagrams in Fig. 2 contributing to the trans-
versity quark distributions. The same power-counting re-
sults will be obtained,

 �qT�x; k?�jx!1 � �1� x�3: (19)

From the above analysis, all the three k?-even quark
distributions have the same power behavior at large x,
which is certainly consistent with the inequality condition
for them [36].

B. k?-odd and naive time-reversal-even quark
distributions

In this subsection, we will study two k?-odd but naive
time-reversal-even TMD quark distributions: �qT and
�qT , which represent the longitudinal polarized quark
distribution in a transversely polarized proton and the
transversely polarized quark distribution in a longitudinal
polarized proton, respectively. �qT can be calculated from
the following matrix element
 

�qT�x; k?� �
MP

2S? � k?

Z d��d2�?
�2��3

e�ix�
�P��i�?�k?

� hPS?jÔLjPS?i; (20)

where the operator ÔL as defined above. Following the
above calculation for the transversity distribution, we
choose the transverse polarization vector along the
x-direction, and the above equation can be reduced to

 �qT�x; k?� �
MP

2kx?

Z d��

�2��3
e�ix�

�P��i�?�k?
1

2

��hPSz"jÔLjPSz#i � hPSz#jÔLjPSz"i�:

(21)

ÔL is a chiral-even operator, and it conserves the quark
helicity. On the other hand, the above matrix element has
hadron helicity flip, thus the total quark helicity and the
hadron helicity will mismatch on either side of the above
matrix element. If the total quark helicity and the proton
helicity is mismatching, the wave function for the three-
quark state must have nonzero quark orbital angular mo-
mentum. It is the interference between the Lz � 0 and
jLzj � 1 states contributing to the TMD quark distribution
�qT .

In order to proceed, we further decompose the proton
spin state into the Fock states containing Lz � 0 and
jLzj � 1. For example,

 jPSz"i � jPSz"i1=2 � jPSz"i�1=2; (22)
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where the subscript �1=2 denotes the total quark helicity.
The first term in the above equation represents the Lz � 0
state, while second one for the Lz � 1 state. The wave
function parameterizations for these states have been given
in Eq. (A1). Similarly, for jPSz#i we have

 jPSz#i � jPSz#i�1=2 � jPSz#i1=2; (23)

where the first one is for Lz � 0, and the second one for
Lz � �1. Because the partonic matrix element conserves
the quark helicity, in the calculation of the matrix element
of Eq. (21), the quarks helicities will remain the same at the
left and right sides of the cut line in the Feynman diagram
like Fig. 1. From the experience in the last subsection, we
know that the partonic processes where the two spectator
quarks have opposite helicities dominate the quark distri-
butions at large x. So, for the leading contributions we will
have two typical partonic processes: "#"!"#" with total
quark helicity 1=2 and #"#!#"# with total quark helicity
�1=2. These two actually will contribute opposite sign to
the matrix element in Eq. (21), because of the �5 in the
operator ÔL. Taking into account this fact, and substituting
the above decomposition into Eq. (21), we find that the
matrix element becomes

 1
2
hPSz"jÔLjPSz#i1=2 � �1

2
hPSz#jÔLjPSz"i�1=2

�
�1

2
hPSz"jÔLjPSz#i�1=2 � 1

2
hPSz#jÔLjPSz"i1=2: (24)

It is easy to see that the above two lines are complex
conjugates. In the following, we will consider the contri-
bution from the first line, and the other one can be obtained
immediately.

For the subprocess "#"!"#" , the contribution to the
matrix element will be
 

1
2
hPSx"jÔjPSx#i1

2
/
Z

~ �1��y0i� ~ 
�3��yi; pi?��p

x
1 � ip

y
1�

� TH�yi; y
0
i;pi?�; (25)

where ~ �1� is the wave function for Lz � 0 Fock state and
~ �3� for jLzj � 1 (their definitions are listed in the appen-
dix). Here we only show the contribution from the inter-
ference between ~ �1� and ~ �3� wave functions, and other
interference contributions (e.g., the one with ~ �1� and ~ �4�)
can be calculated similarly. Because proton is stable, the
light-cone wave functions are real, i.e., � ~ �� � ~ .
Meanwhile, for the #"#!#"# partonic process, we will have
 

�1
2
hPSx#jÔjPSx"i�1=2 /

Z
~ �1��y0i� ~ 

�3��yi; pi?���p
x
1 � ip

y
1�

� TH�yi; y
0
i;pi?�: (26)

The hard partonic parts TH in the above two equations are
identical to each other for the same diagram if we change
all the quarks helicities. Thus we can sum their contribu-
tions together, and the matrix element will be

 hPSx"jÔjPSx#i � hPSx#jÔjPSx"i

/
Z

~ �1��y0i� ~ 
�3��yi; pi?��px1�TH�yi; y

0
i;pi?� � H:c:

(27)

The linear expansion term of pi? from TH will be crucial to
obtain nonzero contribution to the above matrix element
when integrating over pi?. Otherwise, it will vanish. This
expansion will introduce an additional suppression factor
in (1� x). For example, one of the propagators in Fig. 1
has the following expansion result:

 

1

�p3 � k2�
2 �

1

�y3P� k2 � p3?�
2

�
��1� x�

y3k
2
2?

�
1�

��1� x�

y3k
2
2?

2p3? � k2?

�
:

(28)

Substituting the above into Eq. (27), and using the fact that
p3? � �p1? � p2?, we find that the above expansion will
lead to a contribution as �1� x�

R
d2p1?p

x
1?�p1? �

k?� ~ 
�3� � �1� x�kx?��3;4�, where ��34� represents a com-

bination of twist-four distribution amplitudes �4 and �4,
and the kx? factor will cancel out the same kx? in the
denominator in Eq. (21). This suppression feature applies
to every propagator expansion containing the linear term of
the intrinsic transverse momentum p?. Similarly, the Dirac
wave function expansion in terms of p? will also be sup-
pressed by (1� x).

The above analysis can be repeated for every diagrams
in Fig. 2, and they contribute the same. So, the final power-
counting result for the TMD quark distribution �qT will be

 �qT�x; k?�jx!1 � �1� x�
4: (29)

Similar analysis can be performed for the TMD quark
distribution �qL, which is defined through the following
matrix element:
 

�qL�x; k?� �
MP

2ki?

Z d��d2�?
�2��3

e�ix�
�P��i�?�k?

� hPSzj ��v������i�5�v�0�jPSzi: (30)

If we choose �i � �x in the above equation, the TMD �qL
will become,
 

�qL�x; k?� �
MP

2kx?

Z d��d2�?
�2��3

e�ix�
�P��i�?�k?

� hPSzjÔtjPSzi; (31)

where the operator Ôt follows the definition in the sub-
section Sec. II B. In the above definition, the proton is
longitudinal polarized, and we can further write down
explicitly in terms of the proton helicity states
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 �qL�x; k?� �
MP

2kx?

Z d��d2�?
�2��3

e�ix�
�P��i�?�k?

1

2

��hPSz"jÔtjPSz"i � hPSz#jÔtjPSz#i�: (32)

Since the operator Ôt is chiral-odd, it changes the quark
helicity. However, in the above equation, we are calculat-
ing the hadron helicity conserved matrix elements, thus the
nonzero quark orbital angular momentum projection must
be taken into account in order to obtain nonzero results, as
in the case of �qT in the above. Following the above
analysis, we find the power-counting result for the TMD
quark distribution �qL,

 �qL�x; k?�jx!1 � �1� x�
4; (33)

which is one power of (1� x) suppressed relative to the
unpolarized quark distribution. It is interesting to note that
the above two TMD quark distributions �qL and �qT have
the same power behavior at large x; this is consistent with
arguments based on the Lorentz invariance relations be-
tween twist-three and integrated twist-two distribution
functions [33,37].

C. Naive time-reversal-odd quark distributions

Now, we turn to the naive time-reversal-odd quark dis-
tributions. At leading order, we have two: the quark Sivers
function and the Boer-Mulders function. The Sivers func-
tion represents the unpolarized quark distribution in a
transversely polarized target, while the Boer-Mulders
function represents the transversely polarized quark distri-
bution in a unpolarized proton target. These two distribu-
tions are naive time-reversal-odd, and their existence
require final-state interactions [11]. The quark Sivers func-
tion is defined as
 

qT�x; k?� �
M

2	ijSi?k
j
?

Z d��d2�?
�2��3

e�ix�
�P��i�?�k?

� hPSjÔjPSi; (34)

where the operator O follows the above definition. Because
the target is transversely polarized, again we will choose
the x-direction for its polarization, and the Sivers function
then becomes
 

qT�x; k?� �
M

2ky?

Z d��d2�?
�2��3

e�ik��
1

2

� �hPSz"jÔjPSz#i � hPSz#jÔjPSz"i�: (35)

The above equation shows that the Sivers function is
proportional to the matrix elements involving hadron he-
licity flip. Because the operator Ô is chiral-even, it con-
serves the quark helicities. To obtain the hadron helicity
flip, we have to take into account the nucleon’s light-cone
wave function with nonzero quark orbital angular momen-
tum, as in the previous two examples.

Following the calculations in the last subsection for
k?-odd distribution �qT , we find that the Sivers function
will depend on the following matrix element:

 1
2
hPSz"jÔjPSz#i1=2 � �1

2
hPSz#jÔjPSz"i�1=2

�
�1

2
hPSz"jÔjPSz#i�1=2 � 1

2
hPSz#jÔjPSz"i1=2: (36)

Comparing with Eq. (24), we find that only the sign
changes in the above sum. This is because here we are
probing the unpolarized quark, and we have to sum up
different quark helicity contribution, while in Eq. (24) we
are probing the longitudinal polarized quark and different
quark helicity will contribute differently. From Eqs. (25)
and (26), we find that the final result for the above matrix
element will be

 hPSx"jÔjPSx#i � hPSx#jÔjPSx"i

/
Z

~ �1��y0i� ~ 
�3��yi���ip

y
1�TH�yi; y

0
i;pi?� � H:c:: (37)

From this equation, we find that in order to generate a
nonzero Sivers function, the hard scattering factor TH has
to have an imaginary part. In a partonic hard scattering
amplitude, the only imaginary part comes from the on-shell
pole of some propagator. As we showed in the above
analysis all the propagators in Fig. 2 are far off-shell except
for the eikonal propagator from the gauge link. Thus, in
order to obtain nonzero contribution to the Sivers function,
we have to have eikonal propagator in the partonic
Feynman diagrams. We have shown all leading-order dia-
grams contribution to the Sivers function in Fig. 3, all of
which have at least one eikonal propagator. For example,
the eikonal propagator in Fig. 3(a) reads

 

1

n � �k� p1� � i	
� P

1

x� y1
� i���x� y1�; (38)

where the first term is the principal value of the pole, and
does not contribute to the Sivers function. Only the second
term contribute to an imaginary part, which contains a

 

(c)

(d) (f )

(g) (h) (i)

(e)

(a) (b)

FIG. 3. Leading Feynman diagrams contributing to the naive
time-reversal-odd TMD quark distributions at large x.
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delta function. This delta function will affect the power
counting for the various factors in the evaluation of the
matrix element of Eq. (37). This is because the delta
function can be written as ��x� y1� � ��y2 � y3 � �1�
x��, which means that the variables y2 and y3 are limited to
be order of (1� x), i.e., y2 � y3 �O�1� x�. All factors
which depend on y2 and y3 will have to be examined
carefully to get the right power-counting results. For ex-
ample, in Fig. 3(a), the propagators at the left side of the cut
will be affected by the above constraints. One of the gluon
propagator reads,

 

1

�p3 � k2�
2 

1

�y3
~k2
2?

��1�x�


1

hk2
?i
; (39)

because y3 �O�1� x� and � is order of unit. Unlike the
case studied in the above subsections, this propagator does
not lead to a suppression in (1� x) for the Sivers function.
Similarly, another gluon propagator and the quark propa-
gator at the left side of the cut line are also finite at x! 1.
However, all the propagators at the right hand side of the
cut line still scale as (1� x), and the total four propagators
there will contribute to a suppression factor of �1� x�4.

Another consequence of this delta function is that the
intrinsic p? expansion in the hard part has no additional
suppression in (1� x), which is very different from what

we have in the last subsection for the k?-odd but naive
time-reversal-even quark distributions. For example, in one
of the above propagators, we can keep the intrinsic
transverse-momentum dependence and expand it up to
the linear term,

 

1

�p3 � k2�
2 

1

�2k2 � p3
�

1

� y3

��1�x� k
2
2? � 2k2? � p3?

 �
1

hk2
?i

�
1�

k2? � p3?

hk2
?i

�
: (40)

The last equation of the above comes from the fact that
y3 � o�1� x�. After combining this expansion with the
light-cone wave function, we get

R
py1?k2? � p3?

~ �3� /
ky?y3�4�yi� or y2�4�yi�, where the ky? factor will cancel
that in the denominator in Eq. (35).

The final step in this analysis will be to factor out (1� x)
from the wave function integral. Because the variables y2

and y3 are constrained to be order of (1� x) in the x! 1
limit, we have to examine the wave function integral where
the end-point behavior of the light-cone wave function will
be important. For example, one contribution in the above
analysis is the integral of y3�4�y1; y2; y3�. We can factor
out the overall dependence on (1� x) from the integral,

 Z
dy1dy2dy3��1� y1 � y2 � y3���y1 � x�y3�4�y1; y2; y3�

� �1� x�3
Z
d
d
 0��1� 
 � 
 0�
 0�1� x��4�x; 
�1� x�; 
 0�1� x��=�1� x�2; (41)

where we have reparameterized y2 � 
�1� x� and y3 �

 0�1� x�. The above integral depends on the end-point
behavior of the twist-four distribution amplitudes. As we
showed in the appendix, the twist-four distribution ampli-
tude behaviors as y3�4�y1; y2; y3� / y1y2y3 at the end-
point region. From this, we find that

 lim
x!1


 0�1� x��4�x; 
�1� x�; 
 0�1� x��

�1� x�2
� finite: (42)

Thus the wave function integral indeed contains a suppres-
sion factor �1� x�3. In addition, the Dirac matrix traces
will also result into a power dependence on (1� x). This
can be calculated straightforwardly, and we find the Dirac
traces from Fig. 3(a) contribute to a power term as �1�
x��2. By summarizing the power-counting results from the
above analysis and also taking into account the phase
spaces integral factor �1� x��1 in Eq. (4), we find the
Sivers function will have the following power behavior:

 qT�x; k?�jx!1 / �1� x�4; (43)

which is (1� x) suppressed relative to the unpolarized
quark distribution. Similar calculations can be performed

for all other diagrams in Fig. 3, and they all contribute to a
power behavior of �1� x�4 for the quark Sivers function.

The same analysis can be performed for another naive
time-reversal odd distribution, the so-called Boer-Mulders
function �q, which is defined as

 

�q �
MP

2	ijkj?

Z d��

�2��3

� e�ix�
�P��i�?�k?hPj ��v������i�5�v�0�jPi: (44)

If we choose �i � �x in the above equation, the TMD �q
will become,

 �q�x; k?� �
MP

2ky?

Z d��

�2��3
e�ix�

�P��i�?�k?hPjÔtjPi;

(45)

where the operator Ôt follows the definition in the above.
Unlike the TMD quark distribution �qL, in the above
definition the proton is unpolarized. Thus the explicit ex-
pression for �q in the proton helicity states is
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 �q�x; k?� �
MP

2kx?

Z d��

�2��3
e�ix�

�P��i�?�k?
1

2

��hPSz"jÔtjPSz"i � hPSz#jÔtjPSz#i�: (46)

Comparing this expression to Eq. (32) in the last subsec-
tion, we find that �q depends on the sum of the two matrix
elements, whereas for �qL it is the difference. As in the
analysis for the Sivers function, we find that we need an
imaginary part from the hard part, and the same set of
diagrams in Fig. 3 contribute. The final result for its power
counting will be

 �q�x; k?�jx!1 � �1� x�4; (47)

which is again one power of (1� x) suppressed relative to
the unpolarized quark distribution.

D. Comparison with the power counting for the GPD E

Summarizing the results in the last two subsections, we
find that the k?-odd TMD quark distributions are sup-
pressed by a relative factor (1� x) to the k?-even ones
(e.g., the unpolarized quark distributions). As we men-
tioned in the introduction, this can also be understood by
the interpretation of these TMD quark distributions in
terms of the overlaps of the light-cone wave functions of
Lz � 0 and jLzj � 1 Fock states.

As in the case of the Pauli form factor, the generalized
parton distribution (GPD) E and the Sivers function qT
involve the overlap of initial- and final-state light-front-
wave-functions (LFWFS) which differ by one unit of
orbital angular momentum [38]. In contrast to the Sivers
function which is suppressed by one power of (1� x)
relative to the unpolarized distribution, one finds the
GPD E falls as two-powers �1� x�2 faster than the spin-
conserving GPD H at large x [39]. The power of �1� x�n

thus differs when we compare the E GPD arising in spin-
flip deeply virtual Compton scattering (DVCS) ��p# !
�p" and the Sivers function qT arising in polarized electro-
production ��pl ! �X. In the following, we will briefly
comment why this happens.

It is useful to use the symmetric light-front (LF) frame
where the transverse momenta of the initial and final-state
proton momentum changes from ~pinitial

? � � ~p? �
1
2 �?� to

~pfinal � � ~p? �
1
2 �?�. The struck quark in DVCS is eval-

uated at ~k? �
1
2 �1� x�

~�? in the final-state LFWF and
~k? �

1
2 �1� x�

~�? in the initial-state LFWF, as in the
Drell-Yan-West (DYW) formula for current matrix ele-
ments [40].

The E GPD requires evaluating the spin-flip deeply
virtual Compton amplitude which is linear in the transverse
momentum transfer to the proton ~�?. This kinematic
factor arises from the extra angular momentum of the
initial- or final-state LFWF with argument � 1

2 �

�1� x� ~�?. In addition, the orbital angular momentum

dynamics of the LFWF introduces a factor of (1� x).
Thus E� �1� x�2H as x! 1.

In contrast, when we evaluate the Sivers SSA for SIDIS
��p! �p0, the dynamics of the orbital angular momen-
tum in the LFWF gets expressed as the transverse momen-
tum ~p�? of the produced pion, not the change in the
transverse momentum ~�? of the proton. Thus the second
factor of (1� x) does not appear in the Sivers function. We
thus have the power-counting rule: E� �1� x�qT � �1�
x�2H as x! 1.

E. Power counting for the integrated quark
distributions at leading and higher-twist

From the power-counting results for the TMD quark
distributions in the last subsections, we can further derive
the power-counting rule for the integrated quark distribu-
tions at large x when integrating over the transverse mo-
mentum. For example, the integrated unpolarized quark
distribution can be written as

 q�x� �
Z
d2 ~k?q�x; k?�: (48)

Similar equations also hold for the longitudinal polarized
quark distribution and transversity quark distribution.
From the power counting of these relevant TMD quark
distributions, we can immediately see that the integrated
quark distributions have the following power-counting rule
at x! 1,

 q�x� � �1� x�3; �qL�x� � �1� x�3;

�qT�x� � �1� x�
3:

(49)

To obtain the above power-counting results for the inte-
grated quark distributions, we have assumed that the
k?-integral decouples from the x-distributions of the par-
tons [25,27]. Although the upper limit of the k? integral
might depend on (1� x), the bulk of this integration comes
from the lower bound, which will not affect the (1� x)
power counting for the integrated parton distributions [29].
The latest comparison of the above power-counting pre-
dictions with experiment can be found in [41].

The k?-moment of the k?-odd TMD quark distributions
are related to the twist-three parton distributions. For ex-
ample, the twist-three parton distribution gT�x� is related to
the TMD quark distribution �gT (see, for example, [33]),

 gT�x� �
1

2xM2

Z
d2 ~k? ~k

2
?�qT�x; k?�; (50)

and for hL�x�,

 hL�x� �
�1

xM2

Z
d2 ~k? ~k

2
?�qL�x; k?�: (51)

Of course, caution has to be taken when we apply the above
equations: they are derived (for example in [30]) by ne-
glecting the gluon potential in the covariant derivative of
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the definition for the associated twist-three distributions.
However, in the power-counting analysis, the gluon poten-
tial contribution will be suppressed at large x, and we can
thus consistently use the above relations to derive the
power-law behavior for the twist-three parton distributions.
From the power-counting rule for the relevant TMD quark
distributions, we find the following power behavior for
these two twist-three parton distributions,

 gT�x� � �1� x�
4; hL�x� � �1� x�

4: (52)

k?-moment of the naive-time-reversal-odd TMD quark
distributions are also related to the twist-three parton dis-
tributions, which have been shown in literature [14], for
example,

 TF�x� �
1

MP

Z
d2 ~k? ~k

2
?qT�x; k?�; (53)

where TF is the so-called Qiu-Sterman matrix element [9],
and is responsible to the SSA for inclusive hadron produc-
tion in hadronic collisions. Similarly, the k?-moment of �q
corresponds to

 T���F �x� �
1

MP

Z
d2 ~k? ~k

2
?�q�x; k?�; (54)

where T���F is defined as
 

T���F �x1; x2� �
Z d
�d��

8�
eix1P���ei�x2�x1�P�
�

� hPj � �0����gF���
�� ����jPi; (55)

and T���F �x� 	 T���F �x; x�. From the power-counting rule of
the relevant naive-time-reversal-odd TMD quark distribu-
tions, we find the power-counting rule for these two twist-
three parton distributions,

 TF�x� � �1� x�
4; T���F �x� � �1� x�

4; (56)

which are (1� x) suppressed relative to the unpolarized
quark distribution. We note that the above power-law
results are also consistent with the generalized positivity
bounds for the TMD quark distributions [42].

F. TMD quark distributions in pion

A similar analysis can be carried out for the TMD quark
distributions of pion. Because the pion is a spin-0 particle,
there are only two leading-order TMD quark distributions:
the unpolarized quark distribution q��x; k?� and the Boer-
Mulders function �q��x; k?�. At large x, their dependence
on x can be calculated from the diagrams shown in Fig. 4.
The unpolarized quark distribution at large x will have
contributions from all of the four diagrams,
 

u��x; k?� �
f2
�

�k2
?�

2 �1� x�
2�2

sCF
Z dz1

z1

dz2

z2
���z1����z2�

�T H�z1; z2�; (57)

where f� is the decay constant of pion, and ���z� is the
leading-twist quark distribution amplitude. Obviously, the
quark distribution has �1� x�2 power behavior at large x.
This is consistent with the Gribov-Lipatov relation [43].

For the Boer-Mulders function, because it is naive-time-
reversal-odd, we have to take into account the interference
between Lz � 0 and jLzj � 1 Fock states of pion light-
cone wave functions, and also the gauge link is important
to obtain a phase difference. Following the same analysis
in the previous subsections, we find that the Boer-Mulders
function of pion has the same power-counting result as the
unpolarized quark distribution

 �q��x; k?� � �1� x�
2: (58)

These two distribution functions having the same power
behavior at large x, is not because the Boer-Mulders func-
tion of pion gets enhancement, but because the unpolarized
quark distribution of pion is suppressed by one power of
(1� x) compared to the usual power-counting results for
parton distributions of hadrons [24,27].

III. CONCLUSION

In this paper, we have performed a perturbative analysis
of the transverse-momentum-dependent quark distribu-
tions at large x. A generalized power-counting rule has
been derived for the leading-order TMD quark distribu-
tions, and we have found that the k?-even distributions all
scale as �1� x�3, whereas the k?-odd ones as �1� x�4,
including the naive time-reversal-even and -odd distribu-
tions. In particular, we have shown that the quark Sivers
function has power behavior of �1� x�4, which is (1� x)
suppressed relative to the unpolarized quark distribution.
For the TMD quark distributions of pion, we find that the
Boer-Mulders function has the same power behavior as the
unpolarized quark distribution, scaling as �1� x�2 in the
limit. These results provide important guidelines for the
parameterizations of the transverse-momentum-dependent
parton distributions and the quark-gluon correlation func-
tions in the phenomenological studies.

 

(a)
(b)

(c) (d)

(x, k⊥)

FIG. 4. Feynman diagrams contribution to the transverse-
momentum-dependent quark distribution in Pion at large x.
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In our analysis we have not included the effects of
perturbative QCD evolution. In fact, the evolution of par-
ton distributions at large x with photon virtuality Q2 is
suppressed compared to the usual DGLAP evolution [25]
because the struck quark is a bound constituent of the
target hadron. In particular, in the limit of x! 1, the
virtuality of the struck quark becomes highly spacelike,
and evolution is effectively quenched. Thus the power
counting of structure functions at large x is not affected
by evolution [25], allowing duality with the power-law
falloff of exclusive channels at fixed W2. Another impor-
tant point has to be kept in mind is the large logarithms
associated with the parton distributions in the x! 1 limit,
in terms of �ns logm�1=�1� x�� for m � 2n [25,26,44,45].
All these effects will of course introduce additional theo-
retical uncertainties when we apply the power-counting
rule to the parton distributions at large x.
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APPENDIX: LIGHT-CONE WAVE FUNCTIONS
AND DISTRIBUTION AMPLITUDES OF NUCLEON

In this appendix we list the light-cone wave functions for
the three-quark Fock states of nucleon as Ref. [30],

 

jPSz"i �
Z
d�1�d�2�d�3�f ~ �1��1; 2; 3�uy" �1��u

y
# �2�d

y
" �3� � d

y
# �2�u

y
" �3��j0i � ��p

x
1 � ip

y
1�

~ �3��1; 2; 3�

� �px2 � ip
y
2�

~ �4��1; 2; 3���uy" �1�u
y
# �2�d

y
# �3� � d

y
" �1�u

y
# �2�u

y
# �3��j0ig;

jPSz#i �
Z
d�1�d�2�d�3�f� ~ �1��1; 2; 3�uy# �1��u

y
" �2�d

y
# �3� � d

y
" �2�u

y
# �3��j0i � ��p

x
1 � ip

y
1�

~ �3��1; 2; 3�

� �px2 � ip
y
2�

~ �4��1; 2; 3���uy# �1�u
y
" �2�d

y
" �3� � d

y
# �1�u

y
" �2�u

y
" �3��j0ig;

(A1)

where the argument i is the shorthand for quark momentum variables yi and pi?, and the measure for the quark momentum
integrations is

 d�1�d�2�d�3� �
���
2
p dy1dy2dy3����������������������

2y12y22y3

p
d2 ~p1?d2 ~p2?d2 ~p3?

�2��9
2���1� y1 � y2 � y3��2��

2��2�� ~p1? � ~p2? � ~p3?�: (A2)

~ �1;3;4� are the light-cone wave function amplitudes for the three-quark Fock state expansion of nucleon. ~ �1� corresponds to
the Lz � 0 Fock state component, and ~ �3;4� for jLzj � 1 ones. These light-cone wave functions were used in our analysis
for the large x quark distributions.

In order to get Eq. (3), the light-cone wave functions have to be converted into the quark distribution amplitudes [25].
For example, we can integrate out the transverse momentum in the leading Fock state light-cone wave function, and define
the twist-three amplitude,

 �3�yi� � 2
���
6
p Z d2 ~p1?d

2 ~p2?d
2 ~p3?

�2��6
��2�� ~p1? � ~p2? � ~p3?� ~ 

�1��1; 2; 3�: (A3)

For jLzj � 1 states, we have to keep linear term in the p? expansion of the hard factor, and combine them with the light-
cone wave function, which will lead to the twist-four distribution amplitudes of the nucleon [46,47],

 �4�y1; y2; y3� �
2
���
6
p

y2M

Z d2 ~p1?d
2 ~p2?d

2 ~p3?

�2��6
��2�� ~p1? � ~p2? � ~p3?� ~p2? � � ~p1?

~ �3��1; 2; 3� � ~p2?
~ �4��1; 2; 3��:

�4�y2; y1; y3� �
2
���
6
p

y3M

Z d2 ~p1?d2 ~p2?d2 ~p3?

�2��6
��2�� ~p1? � ~p2? � ~p3?� ~p3? � � ~p1?

~ �3��1; 2; 3� � ~p2?
~ �4��1; 2; 3��:

(A4)

The explicit expressions for these distribution amplitudes are not necessary for the power-counting analysis. However, the
end-point behavior at yi ! 1 is needed for the power counting of the naive time-reversal-odd TMD quark distributions. We
note that in the end-point region, these distribution amplitudes have the following behaviors: �3�yi� / y1y2y3, y2�4�yi� /
y1y2y3, and y3�4�yi� / y1y2y3 [46]. From this, we immediately find that the end-point behavior of the p?-moment of the
light-cone wave functions. For example,
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Z
d2 ~p1?d

2 ~p2?d
2 ~p3?�

�2�� ~p1? � ~p2? � ~p3?�� ~pi? � ~pj?� ~ 
�3;4��y1; y2; y3�jend point � y1y2y3; (A5)

where i, j � 1, 2, 3. These properties have been used in our analysis.
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