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D0- �D0 mixing and significant CP violation in the charm system may indicate the signature of new
physics. In this study, we suggest that the coherent D0 �D0 events from the decay of ��1S� ! D0 �D0 can be
used to measure both mixing parameters and CP violation in charm decays. The neutral D mesons from
��1S� decay are strongly boosted, so that it will offer the possibility to measure the proper-time interval
�t between the fully reconstructed D0 and �D0. Both coherent and time-dependent information can be used
to extractD0- �D0 mixing parameters. The sensitivity of the measurement should be improved at B factories
or at super-B.
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Because of the smallness of the standard model (SM)
�C � 0 amplitude, D0- �D0 mixing offers a unique oppor-
tunity to probe flavor-changing interactions which may be
generated by new physics. The most promising place to
produce D0 �D0 pairs with low backgrounds is the  �3770�
resonance just above the D0 �D0 threshold. The current
experiments, such as CLEO-c and BESIII [1], are all
symmetric D meson factories, on which the time informa-
tion cannot be used. It is very hard to build an asymmetric
�-charm factory in order to separate the two D0 decay
vertices since we need a strong boost of the D meson to
measure the mixing parameters. Although the time-
dependent analyses have been done at B factories, the D
mesons produced there are incoherent. In ��1S� ! D0 �D0

decay, both D mesons are strongly boosted in the rest
frame of the ��1S� with the Lorentz boost factor of
(����D � 2:33), precise determination of the proper-time
interval (�t) between the twoDmeson decays is available.
Both coherence and time information are essential to mea-
sure the D0- �D0 mixing and CP violation.

In this paper, we consider the possible observations of
D0- �D0 mixing and CP violation in the ��1S� ! D0 �D0

decay, in which the coherent D0 �D0 events are generated
with a strong boost. Here we assume that possible strong
multiquark effects that involve seaquarks play no role in
��1S� ! D0 �D0 decays [2]. The ��1S� decays will provide
another opportunity to search for D0- �D0 mixing and
understand the source of CP violation in the charm
system. The amplitude for ��1S� decaying to D0 �D0 is
hD0 �D0jHj��1S�i, and the D0 �D0 pair system is in a state
with charge parity C � �1, which can be defined as [3]

 jD0 �D0iC��1 � 1��
2
p �jD0ij �D0i � j �D0ijD0i�: (1)

Although there is a weak current contribution in ��1S� !
D0 �D0 decay, which may not conserve charge parity, the
D0 �D0 pair cannot be in a state with C � �1. The reason is

that the relative orbital angular momentum of the D0 �D0

pair must be l � 1 because of angular momentum conser-
vation. A boson pair with l � 1 must be in an antisym-
metric state, the antisymmetric state of the particle-
antiparticle pair must be in a state with C � �1.

We shall analyze the time evolution of the D0 �D0 system
produced in ��1S� decay.

In the assumption of CPT invariance, the weak eigen-
states of the D0- �D0 system are jDLi � pjD0i � qj �D0i and
jDHi � pjD0i � qj �D0i with eigenvalues �L � mL �

i
2 �L

and �H � mH �
i
2 �H, respectively, where the mL and �L

(mH and �H) are the mass and width of the ‘‘light (L)’’ D0

(‘‘heavy (H)’’ D0) meson. Following the ��1S� ! D0 �D0

decay, the D0 and �D0 will go separately and the proper-
time evolution of the particle states jD0

phys�t�i and j �D0
phys�t�i

are given by

 jD0
phys�t�i � g��t�jD0i �

q
p
g��t�j �D0i;

j �D0
phys�t�i � g��t�j �D0i �

p
q
g��t�jD

0i;
(2)

where

 g� �
1
2�e
�imHt��1=2��Ht � e�imLt��1=2��Lt�; (3)

with definitions

 m 	
mL �mH

2
; �m 	 mH �mL;

� 	
�L � �H

2
; �� 	 �H � �L:

(4)

Note that here �m is positive by definition, while the sign
of �� is to be determined by experiments.

In practice, one defines the following mixing parameters

 x 	
�m
�
; y 	

��

2�
: (5)

Then we consider aD0 �D0 pair in ��1S� decay with definite
charge-conjugation eigenvalue. The time-dependent wave
function of the D0 �D0 system with C � �1 can be written

*Electronic address: lihb@mail.ihep.ac.cn
†Electronic address: yangmz@mail.ihep.ac.cn

PHYSICAL REVIEW D 74, 094016 (2006)

1550-7998=2006=74(9)=094016(7) 094016-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.094016


as

 jD0 �D0�t1; t2�i �
1��
2
p �jD0

phys�k1; t1�ij �D0
phys�k2; t2�i

� j �D0
phys�k1; t1�ijD

0
phys�k2; t2�i�; (6)

where k1 and k2 are the three-momentum vector of the two
D mesons. We now consider decays of these correlated
systems into various final states. An early study of corre-
lated D0 �D0 decays into specific flavor final states, at a
�-charm factory, was carried out by Bigi and Sanda [4].
Xing [5] had considered time-dependent decays into cor-
related pairs of states at  �3770� and  �4140� peaks. The
amplitude of such joint decays, one D decaying to a final
state f1 at proper time t1, and the other D to f2 at proper
time t2, is given by [5]

 A���1S� ! D0
physD

0
phys ! f1f2�

	 1��
2
p 
 fa��g��t1�g��t2� � g��t1�g��t2��

� a��g��t1�g��t2� � g��t1�g��t2��g; (7)

where

 a� 	 �Af1
Af2
� Af1

�Af2
� Af1

Af2

p
q
��f1
� �f2

�;

a� 	
p
q
Af1

Af2
�
q
p

�Af1
�Af2
� Af1

Af2

p
q
�1� �f1

�f2
�;

(8)

with Afi 	 hfijH jD
0i, �Afi 	 hfijH j

�D0i, and define

 �fi 	
q
p
hfijH j �D0i

hfijH jD
0i
�
q
p

�Afi
Afi

; (9)

 

�� �fi 	
p
q
h �fijH jD0i

h �fijH j �D0i
�
p
q

A �fi
�A �fi

: (10)

In the process e�e� ! ��1S� ! D0 �D0 the center-of-
mass energy is far above the threshold of the D0 �D0 pairs,
so that the decay-time difference (t � �t� � �t2 � t1�)

between D0
phys ! f1 and �D0

phys ! f2 can be measured
easily. From Eq. (7), one can derive the general expression
for the time-dependent decay rate, in agreement with [6]:
 

d����1S� ! D0
phys

�D0
phys ! f1f2�

dt

�N e��jtj 
 ��ja�j
2 � ja�j

2� cosh�y�t�

� �ja�j
2 � ja�j

2� cos�x�t� � 2Re�a��a��


 sinh�y�t� � 2 Im�a��a�� sin�x�t��; (11)

where N is a common normalization factor, in Eq. (11),
terms proportional to ja�j2 are associated with decays that
occur without any net oscillation, while terms proportional
to ja�j2 are associated with decays following a net oscil-
lation. The other terms are associated with the interference
between these two cases. In the following discussion, we
define

 R�f1; f2; t� 	
d����1S� ! D0

phys
�D0

phys ! f1f2�

dt
: (12)

The time-dependent rate expression simplifies if one of
the states (say, f2) is a CP eigenstate S� with eigenvalue
� � �:
 

R�f1; S�; t� �N jAS� j
2jAf1

j2e��jtj


 �2j�f1
� �j2 cosh�y�t�

� 2��j�f1
� �j2� sinh�y�t��; (13)

where AS� � hS�jH j
�D0i, and we have used CPjD0i �

�j �D0i and �S� � �� � � by neglecting CP violation in
decay, D0- �D0 mixing, and the interference of the decay
with and without mixing.

Now we consider the following cases for the D meson
decays to various final states, such as semileptonic, had-
ronic, and CP eigenstates.

(1) �l�X�; K���; t�:

 R�l�X�; K���; t� �N jAlj
2j �AK���j

2

��������
q
p

��������
2
e��jtj 
 ��1� j ��K���j

2� cosh�y�t� � �1� j ��K���j
2� cos�x�t�

� 2Re� ��K���� sinh�y�t� � 2 Im� ��K���� sin�x�t��: (14)

(2) �l�X�; K���; t�:

 R�l�X�; K���; t� �N jAlj2jAK���j
2

��������
p
q

��������
2
e��jtj 
 ��1� j�K���j

2� cosh�y�t� � �1� j�K���j
2� cos�x�t�

� 2Re��K���� sinh�y�t� � 2 Im��K���� sin�x�t��: (15)

(3) �l�X�; K���; t�:
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 R�l�X�; K���; t� �N jAlj
2j �AK���j

2e��jtj 
 ��1� j ��K���j
2� cosh�y�t� � �1� j ��K���j

2� cos�x�t�

� 2Re� ��K���� sinh�y�t� � 2 Im� ��K���� sin�x�t��: (16)

(4) �l�X�; K���; t�:

 R�l�X�; K���; t� �N jAlj
2jAK���j

2e��jtj 
 ��1� j�K���j
2� cosh�y�t� � �1� j�K���j

2� cos�x�t�

� 2Re��K���� sinh�y�t� � 2 Im��K���� sin�x�t��: (17)

(5) �l�1 X
�; l�2 X

�; t�:

 R�l�1 X
�; l�2 X

�; t� �N jAl1 j
2jAl2 j

2e��jtj 
 �cosh�y�t� � cos�x�t��; (18)

where l1 and l2 could be electron or muon.
(6) �l�X�; S�; t�:

 R�l�X�; S�; t� � R�l�X�; S�; t�q,p

�N jAlj2jAS� j
2e��jtj 


�
2 cosh�y�t� � 2�Re

�
q
p

�
sinh�y�t� � 2�Im

�
q
p

�
sin�x�t�

�
; (19)

where q, p indicates the exchange of q and p, and jq=pj � 1 is taken.
(7) �K���; S�; t�: For this case, it is the same as the result in Eq. (13) for f1 � K��� when CP violation is neglected.
(8) �K���; K���; t�: For the given final states f1f2 � �K�����K����, the situation becomes more complicated; one

can obtain the following expression after a lengthy calculation:
 

R�K���; K���; t� �N jAK��� �AK���j
2e��jtj 
 ��j1� �K��� ��K���j

2 � j�K��� � ��K���j
2� cosh�y�t�

� �j1� �K��� ��K���j
2 � j�K��� � ��K���j

2� cos�x�t�

� 2�Re��K��� ��K��� � 1�Re��K��� � ��K���� � Im��K��� ��K����


 Im��K��� � ��K����� sinh�y�t� � 2�Re��K��� ��K��� � 1� Im��K��� � ��K����

� Im��K��� ��K����Re��K��� � ��K����� sin�x�t��: (20)

(9) �K���; K���; t�:

 R�K���; K���; t� �N jAK���j
4

��������
p
q

��������
2
e��jtj 
 j�2

K��� � 1j2�cosh�y�t� � cos�x�t��: (21)

Mixing is the necessary condition for this process to occur.
(10) �K���; K���; t�:

 R�K���; K���; t� �N j �AK���j
4

��������
q
p

��������
2
e��jtj 
 j ��2

K��� � 1j2�cosh�y�t� � cos�x�t��: (22)

(11) �l�1 X
�; l�2 X

�; t�:

 R�l�1 X
�; l�2 X

�; t� �N e��jtj

��������
p
q

��������
2
jAl�1 X�j

2jAl�2 X�j
2 
 �cosh�y�t� � cos�x�t��: (23)

(12) �l�1 X
�; l�2 X

�; t�:

 R�l�1 X
�; l�2 X

�; t� �N e��jtj

��������
q
p

��������
2
j �Al�1 X�j

2j �Al�2 X�j
2 
 �cosh�y�t� � cos�x�t��: (24)
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In deriving the above formulas from Eqs. (14)–(24), we
have assumed that: (1) �Q � �C rule holds, Al� �
hl�X�jH jD0i � �Al� � hl

�X�jH j �D0i � 0; (2) CPT in-
variance holds. The results in Eqs. (14)–(17) are in agree-
ment with those in Ref. [5].

In order to simplify the above formula, we make the
following definitions:

 

q
p
	 �1� AM�e�i�; (25)

where � is the weak phase in mixing and AM is a real-
valued parameter which indicates the magnitude of CP
violation in the mixing, and for f � K���, we define

 

�AK���

AK���
	 �

���
r
p
e�i�;

AK���
�AK���

	 �
����
r0
p

e�i�
0
; (26)

where r and � (r0 and �0) are the ratio and relative phase of
the doubly Cabibbo-suppressed (DCS) decay rate and the
Cabibbo-favored (CF) decay rate. Then, �K��� and ��K���
can be parametrized as

 �K��� � �
���
r
p
�1� AM�e�i�����; (27)

 

��K��� � �
����
r0
p 1

1� AM
e�i��

0���: (28)

In order to demonstrate the CP violation in decay, we
define

���
r
p
	

�������
RD
p 1

1�AD
and

����
r0
p
	

�������
RD
p

�1� AD�. Thus,
Eqs. (27) and (28) can be expressed as

 �K��� � �
�������
RD

p 1� AM
1� AD

e�i�	�
�; (29)

 

�� K��� � �
�������
RD

p 1� AD
1� AM

e�i�	�
�; (30)

where 	 � ���0
2 is the averaged phase difference between

DCS and CF processes, and 
 � ���0
2 � �.

We can characterize the CP violation in the mixing
amplitude, the decay amplitude, and the interference be-
tween mixing and decay, by real-valued parameters AM,
AD, and 
 as in Ref. [7]. In the limit of CP conservation,
AM, AD, and
 are all zero. AM � 0 means no CP violation
in mixing, namely, jq=pj � 1; AD � 0 means no CP
violation in decay, for this case, r � r0 � RD �
j �AK���=AK���j

2 � jAK���= �AK���j
2; 
 � 0 means no

CP violation in the interference between decay and
mixing.

Taking into account that �K��� ; ��K��� 
 1 and x; y

1, keeping terms up to order x2, y2, and RD in the expres-
sions, neglecting CP violation in mixing, decay, and the
interference between decay with and without mixing
(AM � 0, AD � 0, and 
 � 0), expanding the time depen-
dent for xt; yt & ��1, we can write the results from
Eqs. (14)–(24) as

(1) �l�X�; K���; t�:

 R�l�X�; K���; t� �N jAlj2j �AK���j
2e��jtj


 �2RD � 2
�������
RD

p
y0�t

� RM�2t2�; (31)

where RM 	
x2�y2

2 is the mixing rate, and y0 	
y cos	� x sin	.

(2) �l�X�; K���; t�:

 R�l�X�; K���; t� �N jAlj
2jAK���j

2e��jtj


 �2RD � 2
�������
RD

p
y0�t

� RM�2t2�; (32)

since the mixing in neutralD is tiny, it is much more
likely that x2; y2 
 RD, cases (1) and (2) can be
used for measuring RD.

(3) �l�X�; K���; t�:

 

R�l�X�; K���; t� �N jAlj
2j �AK���j

2e��jtj
�
2� 2

�������
RD

p
�y cos�	� � x sin�	���t�

y2 � x2

2
�2t2

�
: (33)

(4) �l�X�; K���; t�:

 R�l�X�; K���; t� �N jAlj2jAK���j
2e��jtj 


�
2� 2

�������
RD

p
�y cos�	� � x sin�	���t�

y2 � x2

2
�2t2

�

� R�l�X�; K���; t�: (34)

In the limit of no CP violation, case (3) is the same as (4).
(5) �l�1 X

�; l�2 X
�; t�:

 R�l�1 X
�; l�2 X

�; t� �N jAl1 j
2jAl2 j

2e��jtj 


�
2�

y2 � x2

2
�2t2

�
: (35)

(6) �l�; S�; t�:
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 R�l�; S�; t� �N jAlj
2jAS� j

2e��jtj 
 �2� 2��y cos�� x sin���t� y2�2t2�; (36)

where y may be determined because the phase � � arg��VusV�cs=�VcsV�us�� � 0.
(7) �K���; S�; t�:

 R�K���; S�; t� �N jAK���j
2jAS� j

2e��jtj 
 ���
�������
RD

p
cos	�2�1� �y�t� 1

2y
2��t�2�; (37)

where cos	 can be measured in this case by combing � � �1 and �1 final states.
(8) �K���; K���; t�:

 R�K���; K���; t� �N jAK��� �AK���j
2e��jtj 


�
2�

y2 � x2

2
�2t2 � 4RD cos�2	�

�
: (38)

(9) �K���; K���; t�:

 R�K���; K���; t� �N jAK���j
4e��jtj 
 �1� 2RD cos�2	��

x2 � y2

2
�2t2: (39)

This process is proportional to the mixing rate RM, and can be used to measure the mixing parameter directly.
(10) �K���; K���; t�: The result is the same as R�K���; K���; t� when CP violation is neglected.
(11) �l�1 X

�; l�2 X
�; t�:

 R�l�1 X
�; l�2 X

�; t� �N e��jtjjAl�1 X�j
2jAl�2 X�j

2 

x2 � y2

2
�2t2: (40)

One can also definitely measure the mixing rate in
the like-sign processes as in case (9) and (10).

(12) �l�1 X
�; l�2 X

�; t�: The result is the same as
�l�1 X

�; l�2 X
�; t� when CP violation in mixing and

decay is neglected.
Note that in all the above cases, when CP violation in

decay is neglected, there is jAK���j � j �AK���j.
The experimental data from CLEO-c yield that the

allowed values for the mixing parameters x and y are: y �
�0:058� 0:066, x < 0:094 [6]. The ratio of the DCS
decay rate to the CF decay rate is RD � �VcsVcd�2 �
0:0026. The illustrative plot of the decay rate
R�l�X�; K���; t� is shown in Fig. 1 by taking 	 � 10�.
The decay rate R�l�X�; K���; t� is very sensitive to the
mixing parameters x, y and the ratio of RD in the region
�t� 1� 6. The other decay rates in Eqs. (33)–(38) are not
sensitive to the mixing parameters and RD, because in
these decay rates, the x, y and RD are only a small correc-
tion to the dominant contributions.

In the Cabibbo-Kobayashi-Maskawa (CKM) framework
CP violation in the neutral D system is very small and can
be safely neglected. However extension of the SM could
induce new physics of CP violation [4,8]. The most likely
sizable effect is a possible new CP violation phase, 
 �
arg�q �A=pA�, occurring in the interference between mixing
and decay amplitudes. Thus, in the presence of CP viola-
tion in the interference, we can construct the following CP
observable based on the previous calculations. We can look
at the difference between the cases (3) and (4), and define:

 A��CP �t� 	
R�l�X�; K���� � R�l�X�; K����
R�l�X�; K���� � R�l�X�; K����

: (41)

As discussed in Ref. [5], the signal is due to the interplay of
DCS decay and mixing. With the help of Eqs. (16) and
(17), we obtain

 A��CP �t� � �
�������
RD

p
�y sin	� x cos	� sin

 �t: (42)

Here we keep both x and y terms since the current experi-
ments indicate that they may be at the same order, this is
different from Ref. [5]. The above asymmetry depends on
the nonvanishing phase
, and also the mixing parameters.
Within the SM, it is of order O�10�3� [9], which makes
such an asymmetry unmeasurably tiny unless there is new

 

0 2 4 6 8 10

1

2

3

4

5

6

FIG. 1. Illustrative plot of the sensitivity of the decay rate
R�l�X�; K���; t� to the mixing parameters of x, y and the ratio
RD, where 	 � 10� is taken.
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physics [10]. By looking at the difference between
R�l�; S�; t� and R�l�; S�; t� in case (6), we get the follow-
ing asymmetry

 A
S�
CP�t� 	

R�l�; S�� � R�l
�; S��

R�l�; S�� � R�l�; S��
: (43)

With the help of Eq. (19), we obtain:

 A
S�
CP�t� � �x sin�
 �t; (44)

where � is defined in Eq. (25). This CP term depends on
the mixing parameter x and the phase in the mixing
amplitude.

In experiments, the KEK-B can move to the ��1S� peak
without losing luminosity, more than 330 fb�1 data per
year could be taken [11]. The measured cross section at the
��1S� peak is �R � 21:5� 0:2� 0:8 nb by CLEO [12].
One can estimate the total ��1S� events with 1 yr running
of KEK-B are about 7:1
 109. While, at super-KEK-B,
about 1011 ��1S� events can be obtained with 1 yr data
taking if the design luminosity is 8
 1035 [13]. More
recently, a super-B factory based on the concepts of the
linear collider (LC) is proposed [14], the low energy beam
and high energy beam are 4.0 and 7.0 GeV, respectively.
The machine can run at both ��4S� and ��1S� peaks with
luminosity about 1:0
 1036. Then about 1012 ��1S�
events can be collected with 1 yr’s run. In Ref. [15], one
had estimated the ratio of BR���1S� ! D�D�� and
BR���1S� ! K�K�� as

 

BR���1S� ! D�D��
BR���1S� ! K�K��

�

�
1

0:2

�
2
� 1:0; (45)

where the current upper limit of BR���1S� ! K�K�� is
5:0
 10�4 at 90% confidence level. One can expect that
the decay rate of ��1S� ! K�K�� is at the order of 10�6

[15], so that we can estimate BR���1S� ! D�D�� �
10�4 � 10�5. At the super-B factory, around 107–108

D0 �D0 pairs can be collected in 1 yr’s data taking, which
is comparable with that at the BESIII with four years
integrated luminosity [16].

It is known that one has to fit the proper-time distribution
in experiments to extract both the mixing and the CP
parameters; we discuss the following two cases:
(1) Case-I: at a symmetric ��1S� factory, namely, the
��1S� is at rest in the central-mass (CM) frame. Then,
the proper-time interval between the two D mesons is
calculated as

 �t � �rD0 � r �D0�
mD

cjPj
; (46)

where rD0 and r �D0 are the D0 and �D0 decay length, re-
spectively, and P is the three-momentum vector of D0.
Since the momentum can be calculated with ��1S� decay

in the CM frame, all the joint D0 �D0 decays in this paper
can be used to studyD0- �D0 mixing and the CP violation in
the symmetric ��1S� factory. (2) Case-II: while, at an
asymmetric ��1S� factory, the ��1S� will be produced
with a boost. In this case, the momentum of D0 and �D0

will be different from each other, and one has to fully
reconstruct at least one of the two D mesons, since the
proper-time interval between the two D mesons is calcu-
lated as

 �t � rD0

mD

cjPD0 j
� r �D0

mD

cjP �D0 j
; (47)

where jPD0 j and jP �D0 j are the momentum of D0 and �D0,
respectively. In this case, the joint decays to dilepton in
Eq. (18) will not work, since both the D mesons cannot be
fully reconstructed. One cannot obtain the proper time
from such a kind of experiment.

The average decay length of the D0 meson in the rest
frame of ��1S� is c�D0 
 ����D0 � 290 �m. At B facto-
ries, such as the Belle detector, the impact parameter
resolution of the vertex detector, which is directly related
to the decay vertex resolution of D0, is described in
Ref. [17], from which we can get that the resolution for
the reconstructed D0 decay length should be less than
100 �m within the coverage of the detector. This means
the Belle detector is good enough to separate the two D0

decay vertices, so that the mixing parameters can be mea-
sured by using time information.

All the results in this paper can also be applied to the
following processes,

 e�e� ! ��1S� ! �0�D0 �D0�C��1; (48)

where the D0 �D0 pair are in a C � �1 state, for example,
��1S� ! D�0 �D0 ! �0D0 �D0.

In conclusion, we suggest that the coherent D0 �D0 events
from the decay of ��1S� ! D0 �D0 can be used to measure
both the mixing parameters and the CP violation in charm
decays. The neutral D mesons from the ��1S� decay are
strongly boosted, so that it will offer the possibility to
measure the proper-time interval �t between the fully
reconstructed D0 and �D0. Both coherent and time-
dependent information can be used to extract D0- �D0 mix-
ing parameters, in which the sensitivity of the measure-
ments could be improved by comparing to the future
measurement at the BESIII with the same amount of
D0 �D0 pairs.
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