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We consider the recent RHIC data on the transverse single spin asymmetry (SSA) AN , measured in
p"p! �0X processes at midrapidity by the PHENIX Collaboration. The measurement is consistent with
a vanishing SSA. We analyze this experimental information within a hard scattering approach based on a
generalized QCD factorization scheme, with unintegrated, transverse momentum dependent (TMD),
parton distribution and fragmentation functions. It turns out that, in the kinematical region of the data,
only the gluon Sivers effect could give a large contribution to AN ; its vanishing value is thus an indication
about the possible size of the gluon Sivers function (GSF). Approximate upper limits on its magnitude are
derived. Additional constraints obtained combining available parameterizations of the quark Sivers
function and the Burkardt sum rule (BSR) for the Sivers distributions are also discussed.
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I. INTRODUCTION AND APPROACH

We have recently discussed a hard scattering approach to
hadronic interactions, based on the assumption of a gener-
alized QCD factorization scheme which involves uninte-
grated TMD parton distribution and fragmentation
functions; the partonic intrinsic motions are also fully
taken into account in the elementary perturbative QCD
(pQCD) processes [1–3]. This scheme has been applied
to the computation of unpolarized cross sections for single-
inclusive particle production, pp! hX, at high energy
and (moderately) large pT [1], and to the computation of
the transverse SSA

 AN �
d�" � d�#

d�" � d�#
(1)

in p"p! hX processes [1–4].
Transverse single spin asymmetries can originate, even

with a short distance helicity conserving pQCD dynamics,
from spin-k? correlations in the soft components of the
hadronic process, the distribution and fragmentation func-
tions. There could be many such correlations. However, the
study of SSA based on the assumption of a generalized
factorization scheme [2,3] shows that the correct treatment
of the elementary pQCD dynamics, with all phases related
to the noncollinear and nonplanar partonic configurations,
leads to a strong suppression of all contributions, with the
exception of the Sivers [5], and, to a lesser extent, the
Collins [6] mechanisms.

The issue of the validity of the factorization scheme with
unintegrated partonic distribution and fragmentation func-

tions is still an open one. Such a scheme has been shown to
hold for semi-inclusive deep inelastic scattering (SIDIS)
and Drell-Yan processes [7–9], while it is not yet clear
whether or not it holds for inclusive one-particle produc-
tion in pp processes; in such a case it is difficult to account
for the gauge links necessary to ensure the gauge invari-
ance of the TMD distribution functions [10–14]. At this
stage we consider our factorized description of pp! �X
processes as a phenomenological model based on a natural
extension of the usual collinear approach for the same
process, and of the factorized scheme with unintegrated
partonic distributions proven for SIDIS and Drell-Yan
processes.

The Sivers function has recently received a lot of atten-
tion: data on azimuthal SSA in semi-inclusive deep inelas-
tic scattering processes from the HERMES Collaboration
at DESY [15] and from the COMPASS Collaboration at
CERN [16] have allowed, for the first time, a direct ex-
traction of the Sivers functions for u and d quarks inside a
proton [17–21]. Similarly, u and d Sivers functions have
been extracted from purely hadronic processes [1], in
qualitative agreement with the SIDIS results. Also the
possibility of accessing the gluon Sivers function has
been investigated [4,22–24]. Although one might expect
that spin-k? correlations are stronger for valence quarks—
as the large xF data from the FNAL-E704 Collaboration
[25] and the STAR Collaboration at RHIC-BNL [26] seem
to indicate—one knows that gluons play a dominant role in
many high energy hadronic processes; it would be very
interesting to see whether or not the gluon density inside a
transversely polarized proton depends on the intrinsic
motion.

We address here the issue of the largely unknown gluon
Sivers function, �Nf̂g=p" �x; k?�, and its possible contribu-
tion to the SSA AN for the p"p! �0X process, in the
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framework of the generalized factorization scheme, with pQCD elementary dynamics, of Refs. [1–3]. In this approach, the
general structure of the cross section for the polarized hadronic process �A; SA� � �B; SB� ! C� X, is given by [3]
 

ECd�
�A;SA���B;SB�!C�X

d3pC
�

X
a;b;c;d;f�g

Z dxadxbdz

16�2xaxbz2s
d2k?ad2k?bd3k?C��k?C � p̂c�J�k?C��

a=A;SA
�a;�0a

f̂a=A;SA�xa; k?a�

� �b=B;SB�b;�0b
f̂b=B;SB�xb; k?b�M̂�c;�d;�a;�bM̂

�
�0c;�d;�0a;�0b

��ŝ� t̂� û�D̂�C;�C
�c;�0c
�z;k?C�; (2)

where all parton intrinsic motions are fully taken into
account, both in the soft, non perturbative components
and in the hard, pQCD interactions.

In Ref. [3] the structure of Eq. (2) was extensively
discussed; its main features are the appearance of several
spin and k? dependent distribution and fragmentation
functions (with a partonic interpretation) and the noncol-
linear partonic configurations which lead to many k?
dependent phases. As a consequence, it was explicitly
shown how the integration over the parton intrinsic mo-
menta leads to strong suppressions of most contributions to
the unpolarized cross sections and to the transverse single
spin asymmetry AN . The only sizeable contributions to the
latter, in the kinematical region (large positive xF) of the
E704 [25] and STAR data [26] come from the Sivers and,
less importantly, from the Collins mechanisms. The domi-
nance of the Sivers effect is even more pronounced in other
xF ranges, namely, at xF 	 0.

In Ref. [3] also the flavour decomposition of the Sivers
effect was performed; while the quark contribution is
totally dominant at large and positive xF values (for polar-
ized protons moving along the positive Z axis), the gluon

contribution may be sizeable at xF ’ 0, the midrapidity
region. This can be easily understood, since xmin

a (the low-
est kinematically accessible value of the light-cone mo-
mentum fraction of parton a inside the transversely
polarized initial proton) must be larger than xF; AN at large
xF is then mainly driven by valence quark properties.
Indeed, an analysis of the E704 data allowed a first extrac-
tion of the Sivers functions for u and d quarks [1]. In
principle, also inclusive production in the negative xF
region might be sensitive to small xa gluons inside the
polarized proton (being hit by large xb partons inside the
unpolarized one). We shall further comment on this point
after Eq. (5).

Data in the midrapidity region are available from the
E704 [27] and PHENIX [28] experiments. The kinematical
regime corresponding to negative values of xF has been
covered by the STAR Collaboration [29]. Preliminary re-
sults for charged pions are also available from the RHIC-
BRAHMS experiment [30].

In these kinematical regions AN�p"p! �X� is largely
dominated by the Sivers effect alone, and Eq. (2) gives [1]:

 

E�d�"

d3p�
�
E�d�#

d3p�
’

X
a;b;c;d

Z dxadxbdz

�xaxbz2s
d2k?ad

2k?bd
3k?���k?� � p̂c�J�k?���f̂a=p" �xa; k?a�f̂b=p�xb; k?b�ŝ

2

�
d�̂ab!cd

dt̂
�xa; xb; ŝ; t̂; û���ŝ� t̂� û�D̂�=c�z; k?��; (3)

where (M denotes the proton mass)

 �f̂a=p" �xa; k?a� 
 f̂a=p" �xa; k?a� � f̂a=p# �xa; k?a�

� �Nf̂a=p" �xa; k?a� cos�a

� �2
k?a
M

f?1T�xa; k?a� cos�a: (4)

�Nf̂a=p" �xa; k?a� [or f?1T�xa; k?a�� is referred to as the
Sivers distribution function of parton a inside a trans-
versely polarized proton. �a is the azimuthal angle of the
intrinsic transverse momentum k?a of parton a. We follow
here the notations and kinematical conventions of Ref. [3],
with the polarized proton moving along the positive Z axis,
in the pp c.m. frame; the observed pion is produced in the
XZ plane, with positive X values; spin " and # are, respec-
tively, along the positive and negative Y axis.

Equation (3) gives the numerator of AN , Eq. (1); the
denominator is just twice the unpolarized cross section,
which is given by
 

E�d�unp

d3p�
’

X
a;b;c;d

Z dxadxbdz

�xaxbz
2s
d2k?ad

2k?bd
3k?�

���k?� � p̂c�J�k?��f̂a=p�xa;k?a�f̂b=p�xb;k?b�

� ŝ2d�̂
ab!cd

dt̂
�xa;xb; ŝ; t̂; û���ŝ� t̂� û�

� D̂�=c�z;k?��: (5)

The azimuthal phase factor cos�a appearing in the
numerator of AN , Eqs. (3) and (4), plays a crucial role
and deserves a comment. The only other term depending
on �a in Eq. (3) is the partonic cross section, in particular
via the corresponding Mandelstam variable t̂. At large
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positive xF and moderately large pT the (average) values of
t̂ are relatively small. Therefore, the (dominant) t̂-channel
contributions, proportional to 1=t̂2, depend sizeably on�a,
so that the d2k?a cos�a=t̂2 integration in Eq. (3) does not
necessarily suppress AN . Instead, for negative values of xF,
all partonic Mandelstam variables are much less dependent
on �a, so that one is roughly left with the d2k?a cos�a
integration alone, which cancels the potentially large
Sivers contribution. As a consequence, the possibility of
gaining information on the gluon Sivers distribution from
the recent STAR and BRAHMS data at negative values of
xF is frustrated. Notice that, due to the much lower values
of

���
s
p

involved, this suppression caused by the cos�a
dependence would be much less effective for the kinemati-
cal regimes of E704 and of the proposed PAX [31] experi-
ments [3]. However, E704 never measured AN for negative
xF values, while the PAX experiment is still in the proposal
and planning stage.

Similar considerations lead to a strong suppression of
the gluon Sivers contribution to the SSA for p"p! �X
processes at STAR, in the negative xF range and at a
(pseudo)rapidity � ’ �4 [32].

The same arguments do not apply to inclusive hadronic
processes at midrapidity and moderately large pT values,
for which data from PHENIX [28] are already available,
for neutral pions and charged hadron production. For these
processes, the gluon contribution is dominant and the
Sivers effect can survive the phase integration. In the
next section, we shall therefore consider in detail this
case, aiming at a possible derivation, from data, of useful
direct constraints on the gluon Sivers function.

A. Constraints from the Burkardt sum rule

Indirect constraints on the GSF could also be obtained
from a sum rule for the Sivers distribution recently derived
by Burkardt [33]. The BSR states that the total (integrated
over x and k?) transverse momentum of all partons
(quarks, antiquarks, and gluons) in a transversely polarized
proton must be zero,
 

hk?i �
X
a

hk?ia �
Z
dx
Z
d2k?k?

X
a

�f̂a=p" �x;k?� � 0:

(6)

Naively, at the partonic level considered in our ap-
proach, this sum rule simply corresponds to total (trans-
verse) momentum conservation inside a transversely
polarized proton, since the unintegrated distribution func-
tion

 f̂a=p" �xa; k?a� � f̂a=p�xa; k?a� �
1

2
�f̂a=p" �xa; k?a�; (7)

introduced in Eq. (4), has a clear probabilistic interpreta-
tion. On the other hand, it is well known [10,11] that a
nonvanishing Sivers effect requires initial/final state inter-

actions, which might spoil the simple partonic interpreta-
tion. The Burkardt sum rule ensures the nontrivial result
that momentum conservation holds also in this situation.
The validity of the BSR has been explicitly verified in a
diquark spectator model calculation of the Sivers distribu-
tion in Ref. [34]. In this paper, we consider the BSR as an
additional theoretical tool in order to obtain indirect infor-
mation on the gluon Sivers distribution, once the quark
distributions are known.

We notice, however, that a strict use of the BSR requires
integration over the full x range, including the poorly
known small x region, of the single Sivers functions, which
might even result in divergences. Therefore, in the follow-
ing we shall simply check whether or not the parameter-
izations of the Sivers functions, which will turn out from
our phenomenological analysis of the data within the theo-
retical approach of Refs. [1–3], fulfill the BSR in the
limited x range considered, without extrapolating them to
very low x values.

In the next section we present our results on the GSF,
based on the PHENIX [28] experimental data on
AN�p"p! �0X�. Further comments and conclusions are
given in the last section.

II. PHENOMENOLOGY OF THE GLUON SIVERS
FUNCTION

We consider the PHENIX data [28] on AN for the p"p!
�0X process at RHIC, at

���
s
p
� 200 GeV, with pT ranging

from 1.0 to 5:0 GeV=c and midrapidity values, j�j< 0:35.
In this kinematical regime, at the lowest pT values, xmin

a can
be as small as 0.005. Therefore, partonic channels involv-
ing a gluon in the transversely polarized initial proton
dominate over those involving a quark. This gluon domi-
nance, together with the (almost) vanishing of all possible
contributions to AN other than the Sivers effect, allow to
interpret the data—showing tiny values of AN—in terms
of useful constraints (upper bounds) on the gluon Sivers
function, as it will be shown. As pT grows, xmin

a increases
and the dominance of the gluon channels becomes less
prominent.

Another set of data, for comparable rapidity and pT
ranges, has been collected several years ago by the E704
Collaboration [27], at a lower energy,

���
s
p
’ 20 GeV. In this

case, however, even at the smallest pT values, xmin
a remains

large enough so that gluon channels are not dominating; a
possible mixing with quark initiated contributions then
prevents to get clean constraints on the GSF from E704
lower energy data.

Before analyzing in detail the reliable (for our purpose)
PHENIX data, let us summarize what we know so far about
the Sivers functions. As already discussed, the E704 and
STAR Collaborations have measured large SSA for the
p"p! �X process at large positive xF and moderate pT
values. In this kinematical regime, since xmin

a > xF, gluon
and sea-quark contributions should be negligible. Indeed,
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in Ref. [1] we have shown that reasonable fits to the SSA
can be obtained by using valencelike Sivers functions for u
and d quarks, which turn out to have opposite signs. In
addition, fits to the weighted azimuthal asymmetries mea-
sured for pion production in SIDIS with a transversely
polarized target [15,16], lead to independent comparable
parameterizations of the u and d Sivers distributions
[17,18,20,21].

Notice that in all these phenomenological analyses the
Sivers functions for gluons and sea-quarks have been as-
sumed to be vanishing. That is a reasonable assumption,
considering the kinematical region of the available data,
and the lowest order decoupling of gluons in SIDIS. A
natural question arising at this point is the following: how
do the valence u and d Sivers functions alone, so far
extracted, perform with the midrapidity PHENIX and
E704 data? The answer is that they predict an almost
vanishing SSA, compatible with both sets of data (see
Fig. 1, for the PHENIX results). Not only, but their param-
eterizations [1,17] are also compatible with the Burkardt

sum rule, Eq. (6), yielding hk?i ’ 0 within a 10% accu-
racy. It looks like there is no need to introduce other
contributions to the Sivers effect in addition to that coming
from valence quarks.

Of course, this cannot be a definite, although simple and
appealing, conclusion, as the data used for the extraction of
the u and d quark Sivers functions are insensitive to the
small x region. A large gluon Sivers function would not
affect the analysis of the SIDIS, E704, and STAR data at
large positive xF; however, it would strongly affect the
description of the midrapidity PHENIX data. The real
question is now: how much does the small value of AN
measured by PHENIX suppress the gluon Sivers function?

In order to answer this question we compute AN accord-
ing to Eqs. (1) and (3)–(5), imposing different conditions
on the gluon Sivers function, trying to understand what is
the maximum value of j�Nf̂g=p" �x; k?�j=2f̂g=p�x; k?� al-
lowed by the PHENIX data. We follow Ref. [1], adopting
the same factorized gaussian k? dependence for distribu-
tion and fragmentation functions and the same parameteri-
zation for the Sivers distributions, which are related to the
unpolarized parton densities; the latter are given by the
MRST01 set [35], and the fragmentation functions by the
KKP set [36]. The valence u and d quark Sivers functions
are the same as extracted from E704 data in Ref. [1].

Our results are shown in Figs. 1 and 2 and require some
comments.
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 0.2

 1  2  3  4  5  6

A
N

pT (GeV/c)

FIG. 1 (color online). The SSA AN , computed according to
Eqs. (1) and (3)–(5) of the text, and compared with PHENIX
data [28], with different choices for the gluon and sea-quark
Sivers functions. The thin, red, solid line shows the results given
by the valence u and d Sivers functions alone. The cyan, dot-
dashed curve shows the contribution of the maximized GSF
alone, �Nf̂g=p" � �2f̂g=p. The thick, red, solid curve is obtained
by requesting results within one standard deviation from data in
two different ways: no sea-quark contribution and maximized
sea-quark contribution. In the latter case the blue, dotted curve
shows the contribution of the sea (maximized) � valence quarks,
while the green, dashed curve shows the contribution of the GSF.
The valence quark Sivers distributions are taken from Ref. [1],
while the unpolarized PDF’s and FF’s from Refs. [35,36] re-
spectively. Further detail can be found in the text.
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FIG. 2 (color online). The value of the normalized GSF,
j�Nfg=p" �x�j=2fg=p�x�, as obtained from fitting, within one stan-
dard deviation, the PHENIX data on AN . The red, solid curve
corresponds to the case of vanishing sea-quark contribution; the
green, dashed curve shows the GSF corresponding to the ex-
treme scenario in which the sea-quark contributions are all
maximized and sum up to balance the negative GSF contribu-
tion. Further detail can be found in the text.
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(i) The thin, red, solid line in Fig. 1, is the result of
computing AN using only the valence u and d Sivers
functions, as extracted in Ref. [1].

(ii) The cyan, dot-dashed curve in Fig. 1 corresponds to
the extreme case of the largest (in magnitude) gluon Sivers
distribution, obtained by saturating the natural positivity
bound, see Eq. (4),

 �Nf̂g=p" �x; k?� � �2f̂g=p�x; k?�: (8)

The sea-quark Sivers functions are assumed to vanish. This
leads to a SSA definitely in contradiction with the data. It
also leads to a strong violation of the BSR. As expected,
from PHENIX data a much more stringent constraint than
the simple positivity bound for the (absolute value of the)
gluon Sivers function can be obtained. The maximized (in
magnitude) GSF in Eq. (8) has been chosen negative as the
data hint at a possible small negative value of AN. The
opposite choice would lead to very similar conclusions,
actually with an even stronger disagreement with data.

(iii) The thick, red, solid curve in Fig. 1 has been
obtained still assuming that there is no sea-quark Sivers
contribution, and looking for a parameterization of
�Nf̂g=p" yielding values of AN falling, approximately,
within one-sigma deviation below the lowest pT data.
This somehow corresponds to the largest (in magnitude)
acceptable gluon Sivers function, in the sense that any
larger GSF would cause the SSA to lie outside the error
bars.

The corresponding x-dependent part of the GSF, nor-
malized to its positivity bound, j�Nfg=p" �x�j=2fg=p�x�, is
shown as the red, solid curve in Fig. 2, as a function of x.
PHENIX data on AN clearly impose a stringent upper
bound on the magnitude of the gluon Sivers function in
the region of small x, where gluons play a crucial role. The
constraint is much less significant at larger x values, as it is
natural: there cannot be any strong correlation between
gluon distributions at large x (where they are anyway
negligible), and a physical observable, like AN at midra-
pidity, which is mainly sensitive to small x values.

The GSF obtained here, the red, solid curve of Fig. 2,
leads, within the x range covered by the data, to a strong
violation of the BSR. This could be avoided by imposing
an even smaller (in size) GSF, giving a strong role to the
BSR.

(iv) As a last attempt, we have released the assumption
of vanishing sea-quark Sivers distributions. With the aim of
exploring how large a GSF can be, we have done that in an
extreme scenario, i.e. assuming that all sea-quarks
�us; �u; ds; �d; s; �s� have a nonvanishing positive Sivers func-
tion which saturates the positivity bound [that is,
�Nf̂qs=p" �x; k?� 
 2f̂qs=p�x; k?�]. Their contribution could
then cancel the negative contribution to AN of a possibly
large GSF.

Again, we look for the largest negative GSF which,
together with a positive maximized sea-quark contribution,

gives a SSA approximately lying within one-sigma stan-
dard deviation below the data points, represented again by
the thick, red, solid line of Fig. 1. This curve results now as
the sum of the (maximized) sea and valence quark contri-
bution (blue, dotted curve) and that of the new GSF (green,
dashed curve).

The corresponding, normalized, new GSF is plotted as
the green, dashed curve in Fig. 2. It is the largest gluon
Sivers function compatible with PHENIX data: actually, it
is strongly artificially enhanced by the extreme (or rather,
unrealistic) assumption about the opposite contribution
from saturated (and all summing up) sea-quark Sivers
functions. Nevertheless, it still indicates a rather modest
GSF in the important small x region. Notice that the
opposite choice, a negative contribution from the sea-quark
Sivers distributions balancing a positive one from the GSF,
would lead to an even smaller GSF.

Finally, we notice that, concerning the BSR, within the x
range covered by the data, the (over)maximized sea-quark
Sivers distributions give a positive contribution which
strongly suppresses the negative contribution of the GSF,
so that in this scenario the BSR is satisfied within a 10%
level accuracy.

III. COMMENTS AND CONCLUSIONS

Unintegrated, TMD parton distribution and fragmenta-
tion functions may help in explaining several puzzling
measurements for spin observables in inclusive particle
production at high energy and moderately large pT (for
hadronic collisions) or Q2 (for SIDIS). In particular, the
quark Sivers distributions and the Collins fragmentation
functions have recently raised a lot of interest. Azimuthal
and single spin asymmetries measured by several experi-
mental collaborations unambiguously indicate that these
effects are sizeable, at least in some kinematical regions.

A combined analysis of inclusive pion production in
hadronic collisions and in SIDIS has given useful informa-
tion on the quark Sivers distributions in the valence region.
On the contrary, sea-quark and gluon Sivers functions are
largely unknown. In this paper, we have performed a
phenomenological analysis of the available data for the
SSA AN�p

"p! �X�, in particular regarding the recent
PHENIX data obtained at midrapidity and moderate pT
values; this SSA is dominated by the Sivers effect and
explores the low x region, resulting very sensitive to gluon
contributions. To this end, we have adopted the theoretical
approach of Refs. [1–3].

A first result of our analysis is that all available data,
including the PHENIX ones, are compatible with valence-
like quark Sivers distributions and vanishing sea-quark and
gluon contributions. The parameterizations required to
reasonably reproduce the observed asymmetries also ful-
fill, within a 10% accuracy, the Burkardt sum rule. Since
these parameterizations have a valencelike nature, the sum
rule can be checked both over the fully integrated x range
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and in the limited x range effectively covered by data, with
the same conclusions.

The main issue of this paper was, however, that of
discussing to what extent the available data can bind the
magnitude of the gluon Sivers function, in particular in the
small x region, where gluons play an important role. Our
analysis shows that the PHENIX data on AN are presently
the only ones that allow to reach quantitative conclusions
on the magnitude of the GSF. The weakest upper bound
(that is, the largest GSF), is obtained by balancing the
gluon contribution to AN with (over)maximized sea-quark
contributions, opposite in sign. The resulting GSF is rep-
resented by the green, dashed line of Fig. 2. This scenario
corresponds to a SSA lying approximately within one-
sigma deviation below the data, as shown by the thick,
red, solid line of Fig. 1. Even in this extreme case, the
bound obtained significantly reduces the magnitudes avail-
able from the simple positivity bound implicit in the defi-
nition of the Sivers function, at least in the x region where
gluon contributions are relevant.

Some comments are still in order:
(1) Following Refs. [1–3], we have assumed for the

TMD functions a simple factorized expression, with a
Gaussian k? dependence. The same hk2

?i ’

0:64 �GeV=c�2 has been used for all partons (quarks and
gluons). It has been suggested that gluons may have a
larger hk2

?i than quarks [37]. We have found that, using
smaller values of hk2

?iq and, e.g., hk2
?ig ’ 2hk2

?iq would
lead to a more stringent bound on the GSF.

(2) In our calculations we have used the MRST01-LO
set for distribution functions and the KKP-LO set of frag-
mentation functions. Since low-x values are relevant in the
kinematical configuration of RHIC experiments, one may

wonder whether the choice of unpolarized PDF’s and FF’s
affects the bounds. We have checked that there is indeed
some residual dependence of this type. As an example,
using the CTEQ6 PDF’s [38], which have a larger gluon
component than the MRST01 set, would lead to a slightly
more stringent bound. On the contrary, the use of the
Kretzer FF set [39], which has a smaller gluon fragmenta-
tion component, would lead to a slightly less stringent
bound. These small changes are well within the overall
uncertainty of our results and do not alter our main
conclusions.

Future measurements covering the negative xF range,
but at smaller c.m. energies, e.g. at RHIC with

���
s
p
�

63 GeV or at the proposed PAX experiment at GSI, with���
s
p
� 14 GeV, will certainly help in clarifying the size and

relevance of the GSF. SSA measurements for inclusive
photon production might also give useful information. A
detailed analysis of the phenomenological interest of these
processes is in progress [40].
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Note added in proof.—Just after submission of our paper
an interesting work appeared [41] in which similar con-
clusions about the smallness of the gluon Sivers function
are obtained from the smallness of the Sivers effect in
SIDIS off a deuteron target.
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