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The baryon axial vector current is computed at one-loop order in heavy baryon chiral perturbation
theory in the large-Nc limit, where Nc is the number of colors. Loop graphs with octet and decuplet
intermediate states cancel to various orders in Nc as a consequence of the large-Nc spin-flavor symmetry
of QCD baryons. These cancellations are explicitly shown for the general case of Nf flavors of light
quarks. In particular, a new generic cancellation is identified in the renormalization of the baryon axial
vector current at one-loop order. A comparison with conventional heavy baryon chiral perturbation theory
is performed at the physical values Nc � 3, Nf � 3.
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I. INTRODUCTION

Despite the tremendous progress achieved in the under-
standing of the strong interactions with quantum chromo-
dynamics (QCD), analytic calculations of the spectrum and
properties of hadrons are not possible because the theory is
strongly coupled at low energies, with no small expansion
parameter. One thus has to resort to the implementation of
alternative methods in order to extract low-energy conse-
quences of QCD. Among these methods, chiral perturba-
tion theory and the 1=Nc expansion (where Nc is the
number of colors) have shed much light on the subject.

On the one hand, chiral perturbation theory exploits the
symmetry of the QCD Lagrangian under SU�3�L �
SU�3�R �U�1�V transformations of the three flavors of
light quarks in the limit mq ! 0. Chiral symmetry is
spontaneously broken by the QCD vacuum to the vector
subgroup SU�3�V �U�1�V , giving rise to an octet of
Goldstone bosons. Physical observables can be expanded
order by order in powers of p2=��

2 and m2
�=��

2, or
equivalently, mq=��, where p is the meson momentum,
m� is the mass of the Goldstone boson, and �� is the scale
of chiral symmetry breaking. When chiral perturbation
theory is extended to include baryons, it is convenient to
introduce velocity-dependent baryon fields, so that the
expansion of the baryon chiral Lagrangian in powers of
mq and 1=MB (where MB is the baryon mass) is manifest
[1,2]. This so-called heavy baryon chiral perturbation the-
ory was first applied to compute the chiral logarithmic
corrections to the baryon axial vector current for baryon
semileptonic decays due to meson loops [1,2]. While these
corrections are large when only octet baryon intermediate
states are kept [1], the inclusion of decuplet baryon inter-
mediate states yields sizable cancellations between one-
loop corrections [2]. This phenomenological observation
can be rigorously explained in the context of the 1=Nc
expansion [3–5] and will be illustrated in detail in the
present paper for the case of the baryon axial vector
current.

On the other hand, the generalization of QCD from
Nc � 3 to Nc � 3 colors, known as the large-Nc limit,
has also led to remarkable insights into the understand-
ing of the nonperturbative QCD dynamics of hadrons. In
the large-Nc limit the meson sector of QCD consists of
a spectrum of narrow resonances and meson-meson scat-
tering amplitudes are suppressed by powers of 1=

������
Nc
p

[6].
The baryon sector of QCD, on the contrary, is more
subtle to analyze [7] because in the large-Nc limit an
exact contracted SU�2Nf� spin-flavor symmetry (where
Nf is the number of light quark flavors) emerges [3,8].
This symmetry can be used to classify large-Nc baryon
states and matrix elements. It is then possible to con-
sider physical quantities in the large-Nc limit, where cor-
rections arise at relative orders 1=Nc, 1=N2

c , and so on,
which is precisely the origin of the 1=Nc expansion.
Applications of this formalism to the computation of
static properties of baryons range from masses [5,9,10],
couplings [5,9,11,12] to magnetic moments [11,13], to
name but a few.

In the present paper, we use a combined expansion in
mq and 1=Nc. The 1=Nc chiral effective Lagrangian for
the lowest-lying baryons was constructed in Refs. [14,15]
and describes the interactions of the spin- 1

2 baryon octet
and the spin- 3

2 baryon decuplet with the pion nonet. Within
this framework we then compute the renormalization of
the baryon axial vector current at the one-loop level. As
already pointed out in Refs. [3–5,16], there are large-Nc
cancellations between individual Feynman diagrams,
provided one sums over all baryon states in a complete
multiplet of the large-Nc SU�6� spin-flavor symmetry, i.e.,
over both the octet and decuplet, and uses axial coupling
ratios given by the large-Nc spin-flavor symmetry. In
Ref. [16] the general structure of the various large-Nc
cancellations was analyzed. In particular, a new large-Nc
cancellation was identified. Our work goes beyond this
global analysis as we explicitly evaluate the corresponding
operator expressions that involve complicated structures of
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commutators and/or anticommutators of SU�6� spin-flavor
operators. Although straightforward in principle, the re-
duction of these operator products to a physical operator
basis turns out to be quite tedious due to the considerable
amount of group theory involved. Our final expressions
explicitly demonstrate how these large-Nc cancellations
occur. In particular, we show that the new large-Nc can-
cellation found in Ref. [16] is a generic feature of the
corresponding commutator-anticommutator structure and
does not just occur in the special case considered in this
reference.

Our analysis also contains a comparison of the results
obtained within the framework of large-Nc baryon chiral
perturbation theory with conventional heavy baryon chiral
perturbation theory (including both octet and decuplet
baryons), where no 1=Nc expansion is involved. Both
approaches agree—the large-Nc cancellations are guaran-
teed to occur as a consequence of the contracted SU�6�
spin-flavor symmetry present in the limit Nc ! 1: No
large numerical cancellations between loop diagrams
with intermediate octet states and low-energy constants
of the next-to-leading order effective Lagrangian, contain-
ing the effects of decuplet states, arise.

The present paper is organized as follows. In Sec. II
we give a brief overview of the structure of the 1=Nc chiral
effective Lagrangian for the lowest-lying baryons. In
order to make the paper self-contained, Sec. II also con-
tains the relevant large-Nc formalism. The renormalization
of the baryon axial vector current is considered in Sec. III.
Here, we present in detail our basic calculation, i.e., the
reduction of complicated structures of commutators and/or
anticommutators, and show how the various large-Nc can-
cellations occur. Formulas for the physically interesting
case of three colors and three light quark flavors are given
explicitly. In Sec. IV we discuss the renormalization of
the baryon axial vector current within the framework of
heavy baryon chiral perturbation theory in a form that
allows us to then make the comparison with large-Nc
baryon chiral perturbation theory in Sec. V; we close
this latter section by performing a fit to the experimental
data on baryon semileptonic decays. The inclusion of the
�0, which becomes a Goldstone boson in the limit Nc !
1, is performed in Sec. VI. Finally, we present our
conclusions in Sec. VII. The paper contains three appen-
dices. In Appendix A the most general expressions for
the complicated reduced structures of commutators and/
or anticommutators are given for an arbitrary number of
colors and light quark flavors. Appendix B contains tables
of matrix elements of spin-flavor operators relevant to
discuss eight observed transitions between spin- 1

2 baryons.
In particular, we illustrate how one extracts the axial
vector couplings for the semileptonic processes of physical
interest. Finally, Appendix C lists the chiral coefficients
occurring in the renormalization of the baryon axial vector
current.

II. THE CHIRAL LAGRANGIAN FOR BARYONS IN
THE 1=Nc EXPANSION

The formalism of heavy baryon chiral perturbation the-
ory and the 1=Nc baryon chiral Lagrangian have been
discussed in detail in Ref. [14]. In this section we restrict
ourselves to presenting an overview and introducing our
notation and conventions.

The 1=Nc baryon chiral Lagrangian which correctly
implements nonet symmetry and contracted spin-flavor
symmetry for baryons in the large-Nc limit can be written
in the most general way as

 L baryon � iD0 �Mhyperfine � Tr�Ak�c�Akc

�
1

Nc
Tr
�
Ak 2I���

6
p

�
Ak � . . . ; (1)

where

 D 0 � @01� Tr�V 0�c�Tc: (2)

Each term in Eq. (1) involves a baryon operator which can
be expressed as a polynomial in the SU�6� spin-flavor
generators [9]

 Jk � qy
�k

2
q; Tc � qy

�c

2
q; Gkc � qy

�k

2

�c

2
q;

(3)

where qy and q are SU�6� operators that create and anni-
hilate states in the fundamental representation of SU�6�,
and �k and �c are the Pauli spin and Gell-Mann flavor
matrices, respectively. In Eqs. (1)–(3) the flavor indices
run from one to nine so the full meson nonet �, K, �, and
�0 is considered.

The baryon operator Mhyperfine denotes the spin split-
tings of the tower of baryon states with spins 1=2; . . . ; Nc=2
in the flavor representations. Furthermore, the vector and
axial vector combinations of the meson fields,

 V 0 �
1

2
��@0�y � �y@0��;

Ak �
i
2
��rk�y � �yrk��;

(4)

couple to baryon vector and axial vector currents, respec-
tively. Here � � exp�i��x�=f	, where ��x� stands for the
nonet of Goldstone boson fields (unless explicitly stated
otherwise) and f 
 93 MeV is the meson decay constant.
In particular, the ‘ � 1 flavor octet axial vector pion
combination couples to the flavor octet baryon axial vector
current, denoted by Akc hereafter.

The QCD operators involved in Lbaryon in Eq. (1) have
well-defined 1=Nc expansions. Specifically, the baryon
axial vector current Akc is a spin-1 object, an octet under
SU�3�, and odd under time reversal. Its 1=Nc expansion
can be written as [9]

RUBÉN FLORES-MENDIETA AND CHRISTOPH P. HOFMANN PHYSICAL REVIEW D 74, 094001 (2006)

094001-2



 Akc � a1G
kc �

XNc
n�2;3

bn
1

Nn�1
c

Dkc
n �

XNc
n�3;5

cn
1

Nn�1
c

Okc
n ;

(5)

where the Dkc
n are diagonal operators with nonzero matrix

elements only between states with the same spin, and the
Okc
n are purely off-diagonal operators with nonzero matrix

elements only between states with different spin. The first
few terms in expansion (5) read

 D kc
2 � JkTc; (6)

 O kc
2 � �ijkfJi; Gjcg; (7)

 D kc
3 � fJ

k; fJr; Grcgg; (8)

 O kc
3 � fJ

2; Gkcg � 1
2fJ

k; fJr; Grcgg: (9)

Higher order terms can be obtained via Dkc
n � fJ

2;Dkc
n�2g

and Okc
n � fJ

2;Okc
n�2g for n � 4. From the above defini-

tions it is easy to verify that the operators Okc
2m �m �

1; 2; . . .� are forbidden in the expansion (5) because they
are even under time reversal. Furthermore, the unknown
coefficients a1, bn, and cn in Eq. (5) have expansions in
powers of 1=Nc and are order unity at leading order in the
1=Nc expansion. At the physical value Nc � 3 the series
can be truncated as

 Akc � a1G
kc � b2

1

Nc
Dkc

2 � b3
1

N2
c
Dkc

3 � c3
1

N2
c
Okc

3 :

(10)

The matrix elements of the space components of Akc

between SU�6� symmetric states give the actual values of
the axial vector couplings. For the octet baryons, the axial
vector couplings are gA, as conventionally defined in
baryon �-decay experiments, with a normalization such
that gA 
 1:27 and gV � 1 for neutron decay.

Similarly, the baryon axial current Ak is a spin-1 object,
a singlet under SU�3� so its 1=Nc expansion can be written
as [14]

 Ak �
XNc
n�1;3

b1;1
n

1

Nn�1
c

Dk
n; (11)

where Dk
1 � Jk and Dk

2m�1 � fJ
2;Dk

2m�1g for m � 1.
The superscript on the operator coefficients of Ak denotes
that they refer to the baryon singlet current. For Nc � 3,
Eq. (11) reduces to

 Ak � b1;1
1 Jk � b1;1

3

1

N2
c
fJ2; Jkg: (12)

As for the baryon mass operator M, its 1=Nc expansion
can be written as [3,5,9,15]

 M � m0Nc1�
XNc�1

n�2;4

mn
1

Nn�1
c

Jn; (13)

where mn are unknown coefficients. The first term on the
right-hand side of Eq. (13) is the overall spin-independent
mass of the baryon multiplet and is removed from the
chiral Lagrangian by the heavy baryon field redefinition
[1]. The remaining terms are spin-dependent and define
Mhyperfine introduced in Eq. (1). For Nc � 3 the hyperfine
mass expansion reduces to a single operator

 M hyperfine �
m2

Nc
J2: (14)

III. RENORMALIZATION OF THE BARYON
AXIAL VECTOR CURRENT

One of the earliest applications of Lagrangian (1) con-
sisted in the calculation of nonanalytic meson-loop correc-
tions in Ref. [14]. Specifically, the calculation of the flavor
27 contribution to the baryon masses was presented in this
reference as an example.

The renormalization of the baryon axial vector current is
another problem which can be analyzed within the formal-
ism of Ref. [14]. Aspects of this problem have been dis-
cussed in the framework of heavy baryon chiral
perturbation theory [1,2,17], the 1=Nc expansion [5,9,11],
or in a simultaneous expansion in chiral symmetry break-
ing and 1=Nc [16,18]. This latter approach is implemented
in the present work to the calculation of the renormaliza-
tion of the baryon axial vector current at one-loop order,
following the lines of Ref. [14]. There are, however, some
aspects of this problem which have not been previously
discussed and will be addressed here.

The baryon axial vector current Akc is renormalized by
the one-loop diagrams displayed in Fig. 1. These loop
graphs have a calculable dependence on the ratio �=m�,
where � � M� �MN is the decuplet-octet mass differ-
ence and m� is the meson mass. Let us discuss the dia-

(a) (b)

(d)(c)

FIG. 1. One-loop corrections to the baryon axial vector cur-
rent.
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grams of Figs. 1(a)–1(d) separately, as they involve differ-
ent commutator-anticommutator structures.

A. One-loop correction: Diagrams 1(a)–1(c)

We first consider the one-loop wave function renormal-
ization graph Fig. 2, which is part of the diagrams 1(b) and
1(c). In this section we restrict ourselves to the computa-
tion of the octet meson corrections, such that � denotes �,
K, and � mesons. In Sec. VI we will then include the
singlet �0 correction into the analysis.

The Feynman diagram of Fig. 2 depends on the function
F�m�;�; 	� which is defined by the loop integral

 
ijF�m�;�; 	� �
i

f2

Z d4k

�2��4

�
�ki���kj�

�k2 �m2
���k 
 v��� i��

: (15)

This integral was solved using dimensional regularization
in Ref. [19], so 	 in Eq. (15) denotes the scale parameter.
Therein, only the leading nonanalytic pieces were kept
explicitly [20].

The correction arising from the sum of the diagrams of
Figs. 1(a)–1(c), containing the full dependence on the ratio
�=m�, was derived in Ref. [16] and reads

 
Akc � 1
2�A

ja; �Ajb; Akc		�ab
�1�

� 1
2fA

ja; �Akc; �M; Ajb		g�ab
�2�

� 1
6

�
�Aja; ��M; �M; Ajb		; Akc		

� 1
2��M; Aja	; ��M; Ajb	; Akc		

�
�ab
�3� � . . . (16)

Here �ab
�n� is a symmetric tensor which contains meson-

loop integrals with the exchange of a single meson: A

meson of flavor a is emitted and a meson of flavor b is
reabsorbed. �ab

�n� decomposes into flavor singlet, flavor 8,
and flavor 27 representations as [14]

 �ab
�n� � F�n�1 
ab � F�n�8 dab8 � F�n�27 �


a8
b8 � 1
8


ab

� 3
5d
ab8d888	; (17)

where

 F�n�1 �
1
8�3F

�n��m�; 0; 	� � 4F�n��mK; 0; 	�

� F�n��m�; 0; 	�	; (18)

 F�n�8 �
2
��
3
p

5 �
3
2F
�n��m�; 0; 	� � F�n��mK; 0; 	�

� 1
2F
�n��m�; 0; 	�	; (19)

 F�n�27 �
1
3F
�n��m�; 0; 	� �

4
3F
�n��mK; 0; 	�

� F�n��m�; 0; 	�: (20)

Note that Eqs. (18)–(20) are linear combinations of
F�n��m�; 0; 	�, F�n��mK; 0; 	�, and F�n��m�; 0; 	�, where
F�n��m�; 0; 	� represents the degeneracy limit �=m� �

0 of the general function F�n��m�;�; 	�, defined as

 F�n��m�;�; 	� �
@nF�m�;�; 	�

@�n : (21)

The first two derivatives of the function read

 24�2f2F�1��m�;�; 	� � 3
�

�2 �
1

2
m2

�

�
ln
m2

�

	2 � 6�2 �
11

2
m2

�

�

8>><
>>:

3�
��������������������
m2

� � �2
q �

�� 2 arctan
�

��������������
m2

�
��2

p
��
; m� � j�j

3�
��������������������
�2 �m2

�

q
ln
�

��
�������������
�2�m2

�

p

��
�������������
�2�m2

�

p
�
; m� � j�j

(22)

 24�2f2F�2��m�;�; 	� � 6�
�

ln
m2

�

	2 � 1
�
�

8>>><
>>>:

3�m2
�
�2�2��������������

m2
�
��2

p
�
�� 2 arctan

�
��������������

m2
�
��2

p
��
; m� � j�j

3�2�2�m2
�
��������������

�2�m2
�

p ln
�

��
�������������
�2�m2

�

p

��
�������������
�2�m2

�

p
�
: m� � j�j

(23)

In the degeneracy limit �=m� � 0 they thus reduce to

 F�1��m�; 0; 	� � �
m2

�

16�2f2

�
11

3
� ln

m2
�

	2

�
; (24)

 F�2��m�; 0; 	� � �
m�

8�f2 : (25)

In Eq. (24) the terms involving 11=3 and ln�m2
�=	

2� are
analytic and nonanalytic in the quark mass, respectively.

B BI
B

FIG. 2. One-loop wave function renormalization graph.
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The former is scheme dependent and has the same form as
higher dimension terms in the chiral Lagrangian whereas
the latter is universal.

For Nc � 3, the baryon axial vector current Akc has a
1=Nc expansion in terms of the four operators of Eq. (10).
The correction 
Akc—Eq. (16)—contains n-body opera-
tors [21], with n > Nc, which are complicated commuta-
tors and/or anticommutators of the one-body operators Jk,
Tc, and Gkc. All these higher order operators should be
reduced and rewritten as linear combinations of the opera-
tor basis, with n � Nc. The fact that the operator basis is
complete and independent facilitates this reduction [5,9].
In practice, however, dealing with these expressions be-
comes rather difficult. Before engaging ourselves in this
task, it is convenient to have a useful 1=Nc power-counting
scheme at hand to save a considerable effort.

There is a nontrivial Nc dependence of the matrix ele-
ments of the generators Ji, Ta, and Gia in the weight
diagrams for the SU�3� flavor representations of the
spin- 1

2 and spin- 3
2 baryons [9]. For instance, factors of

Ta=Nc and Gia=Nc are of order 1 somewhere in the weight
diagram, whereas factors of Ji=Nc are of order 1=Nc every-
where. If we restrict ourselves to baryons with spins of
order unity, the Nc counting rules can be summarized as
[16]

 Ta � Nc; Gia � Nc; Ji � 1: (26)

Note that factors of Ji=Nc are 1=Nc suppressed relative to
factors of Ta=Nc and Gia=Nc. Similarly, the meson decay
constant f /

������
Nc
p

, so the functions F�n��m�;�; 	� intro-
duce a 1=Nc suppression.

In order to evaluate the complicated expressions in
Eq. (16), the mathematical groundwork developed in
Ref. [9]—which involves a considerable amount of group
theory—will be used here. First notice that the commuta-
tor of an m-body operator with an n-body operator is an
(m� n� 1)-body operator, namely,

 �O�m�;O�n�	 � O�m�n�1�:

However, the anticommutator of an m-body operator and
an n-body operator is in general an (m� n)-body operator.
The SU�2Nf� Lie algebra commutation relations between
one-body operators are given in Table I. Along with these
commutation relations, we will use the nontrivial two-body
operator identities for SU�2Nf� quark operators and their

transformation properties under SU�2� � SU�Nf�, which
were derived in full in Ref. [9]. Let us now discuss the
various terms occurring in the one-loop correction to the
baryon axial vector current Eq. (16).

1. Diagrams 1(a)–1(c): Degeneracy limit �=m� � 0

The first term in Eq. (16) is the double commutator

 

1
2 �A

ja; �Ajb; Akc		�ab
�1�; (27)

and corresponds to the degeneracy limit �=m� � 0 for the
correction to Akc. Although this term has been already
discussed in the literature [3,5,16,18], its explicit compu-
tation has not been presented in detail so far.

A crucial observation is the fact that the large-Nc con-
sistency conditions derived in Ref. [3] set this double
commutator to be O�Nc�. Naively, one would expect the
double commutator to be O�N3

c�: one factor of Nc from
each Akc. However, there are large-Nc cancellations be-
tween the Feynman diagrams of Figs. 1(a)–1(c), provided
all baryon states in a complete multiplet of the large-Nc
SU�6� spin-flavor symmetry are included in the sum over
intermediate states and the axial coupling ratios predicted
by this spin-flavor symmetry are used [16]. We aim in this
section to show explicitly how these cancellations occur.

For Nc � 3, it suffices taking the lowest-lying baryon
states, which corresponds to the well-known
56-dimensional representation of SU�6�, namely, octet
and decuplet baryons. For larger Nc, there appear more
complex representations containing unphysical states with
spins greater than 3=2 and flavor representations bigger
than the 8 and 10 [18]. It has already been shown in
Ref. [16] that the terms GGG, GGD2, GD2D2, GGD3,
andGGO3 in the product AAA contribute at the same order
to the double commutator. In the present work we go one
step further and also incorporate the terms D2D2D2,
GD2D3, and GD2O3 into the analysis. This then means
that in the correction to the baryon axial vector current (27)
we will also include terms that represent O�1=N2

c� correc-
tions to the tree-level result O�Nc�. Although our compu-
tation will be performed for an arbitrary number of light
quark flavors Nf, without loss of generality, in this section
we will present our results for the physically interesting
case of three light flavors, Nf � 3. Results for arbitrary Nf
are given in Appendix A for completeness.

In order to explicitly show the large-Nc cancellations in
Eq. (27), it is useful to work out a few examples. At leading
order in Nc, Akc is given by a1Gkc so that the double
commutator �a1Gia; �a1Gib; a1Gkc		, for Nf � 3, yields

 

a3
1�G

ia; �Gib; Gkc		 � 1
12a

3
1�3��f

bcdfade � 2dbcddade�Gke

� 4
bcGka � 2dabcJk	; (28)

TABLE I. SU�2Nf� Commutation relations.

�Ji; Ta	 � 0

�Ji; Jj	 � i�ijkJk �Ta; Tb	 � ifabcTc

�Ji; Gja	 � i�ijkGka �Ta;Gib	 � ifabcGic

�Gia;Gjb	 � i
4


ijfabcTc � i
2Nf


ab�ijkJk � i
2 �

ijkdabcGkc
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which is at most O�Nc� according to the counting rules
(26), irrespective of the appropriate contractions of the
flavor indices a and b: The contraction with either 
ab,
dab8, or 
a8
b8 to construct an operator in the flavor

singlet, octet, or 27 representations, respectively [see
Eq. (17)], does not introduce any additional
Nc-dependence.

At the next order in the 1=Nc expansion one has

 

a2
1b2

1

Nc
��Gia; �Gib;Dkc

2 		 � �G
ia; �Dib

2 ; G
kc		 � �Dia

2 ; �G
ib; Gkc		�

� a2
1b2

1

Nc

�
1

6
ifabcJk �

5

4
fbcdfadeDke

2 �
1

3

abDkc

2 �
1

3

acDkb

2 �
1

3

bcDka

2 � d
abeGkeTc � dbceGkeTa

� daceGkeTb �
1

2
�kim�faeddbce � daedfbce�JiGmd � �kim�fbcdGma � facdGmb � fabdGmc�Gid

�
; (29)

which is also at most O�Nc�. As for the additional subleading terms, the calculation is straightforward although tedious in
practice in view of the considerable amount of group theory involved. The explicit expressions for arbitrary Nc andNf may
be found in Appendix A. To the order of approximation adopted here, the different flavor contributions originating from
diagrams 1(a)–1(c), in the degeneracy limit can be organized as follows [22]:

(1) Flavor singlet contribution

 

�Aia; �Aia; Akc		 �
�

23

12
a3

1 �
2�Nc � 3�

3Nc
a2

1b2 �
N2
c � 6Nc � 54

6N2
c

a1b
2
2 �

N2
c � 6Nc � 2

N2
c

a2
1b3

�
N2
c � 6Nc � 3

N2
c

a2
1c3 �

12�Nc � 3�

N3
c

a1b2b3

�
Gkc �

1

Nc

�
101

12
a2

1b2 �
4�Nc � 3�

3Nc
a1b

2
2

�
3�Nc � 3�

Nc
a2

1b3 �
Nc � 3

2Nc
a2

1c3 �
N2
c � 6Nc � 18

6N2
c

b3
2 �

N2
c � 6Nc � 2

N2
c

a1b2b3

�
3�N2

c � 6Nc � 24�

2N2
c

a1b2c3

�
Dkc

2 �
1

N2
c

�
11

4
a1b2

2 �
51

4
a2

1b3 � 2a2
1c3 �

17�Nc � 3�

3Nc
a1b2b3

�
9�Nc � 3�

2Nc
a1b2c3

�
Dkc

3 �
1

N3
c

�
5

2
b3

2 �
11

3
a1b2b3 � 19a1b2c3

�
Dkc

4 �O�GD3D3�: (30)

The symbol O�GD3D3�means that, in the double commutator structure AAA, we have included all terms up to six-
body operators, such as GD2D3, but have neglected contributions which are seven-body operators—like
GD3D3—or higher.

(2) Flavor octet contribution

 dab8�Aia; �Aib; Akc		 �
�

11

24
a3

1 �
2�Nc � 3�

3Nc
a2

1b2 �
9

2N2
c
a1b2

2 �
5

N2
c
a2

1b3 �
3

2N2
c
a2

1c3 �
6�Nc � 3�

N3
c

a1b2b3

�
dc8eGke

�
1

8Nc

�
23a2

1b2 �
2�Nc � 3�

Nc
�6a2

1b3 � a2
1c3� �

12

N2
c
�b3

2 � 2a1b2b3 � 12a1b2c3�

�
dce8Dke

2

�
1

6Nc

�
4a2

1b2 �
Nc � 3

Nc
�a1b

2
2 � 6a2

1b3 � 6a2
1c3� �

36

N2
c
a1b2b3

�
fGkc; T8g �

1

6Nc

�
11a2

1b2

�
2�Nc � 3�

Nc
a1b

2
2 �

48

N2
c
a1b2b3

�
fGk8; Tcg �

1

24N2
c

�
27a1b

2
2 � 65a2

1b3 � 8a2
1c3

�
36�Nc � 3�

Nc
a1b2b3 �

46�Nc � 3�

Nc
a1b2c3

�
dc8eDke

3 �
1

6N2
c

�
3a1b

2
2 � 2a2

1b3 � 30a2
1c3
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�
4�Nc�3�

Nc
a1b2b3

�
fGkc;fJr;Gr8gg�

1

6N2
c

�
3a1b2

2�28a2
1b3�15a2

1c3�
4�Nc�3�

Nc
a1b2b3

�
fGk8;fJr;Grcgg

�
1

3N2
c

�
12a2

1b3�2a2
1c3�

2�Nc�3�

Nc
a1b2c3

�
fJk;fGrc;Gr8gg�

1

12N2
c

�
2a1b

2
2�9a2

1b3�
3

2
a2

1c3

�
Nc�3

Nc
�b3

2�6a1b2b3�9a1b2c3�

�
fJk;fTc;T8gg�

1

3N3
c
�3b3

2�21a1b2b3�20a1b2c3�fD
kc
2 ;fJ

r;Gr8gg

�
1

6N3
c
�24a1b2b3�23a1b2c3�fD

k8
2 ;fJ

r;Grcgg�
1

3N3
c
�a1b2b3�2a1b2c3�fJ

2;fGkc;T8gg�
1

6N3
c
�20a1b2b3

�11a1b2c3�fJ2;fGk8;Tcgg�
1

128N3
c
�10a1b2b3�71a1b2c3��fJ2;�Gk8;fJr;Grcg	g�fJ2;�Gkc;fJr;Gr8g	g

�fJk;�fJm;Gmcg;fJr;Gr8g	g��
1

4N3
c
�3b3

2�6a1b2b3�24a1b2c3�dc8eDke
4 �O�GD3D3�: (31)

(3) Flavor 27 contribution
 

�Ai8;�Ai8;Akc		�
��

1

4
a3

1�
1

N2
c
�2a1b

2
2�2a2

1b3�a
2
1c3�

�
fc8ef8eg�

1

2

�
a3

1�
1

N2
c
�2a2

1b3�a
2
1c3�

�
dc8ed8eg

�
Gkg

�
1

Nc

�
1

12
a2

1b2�4

cg�21fc8ef8eg��

1

N2
c
��b3

2�9a1b2b3�f
c8ef8eg

�
Dkg

2

�
1

2Nc
a2

1b2�2d
c8efGke;T8g�d88efGke;Tcg��

1

Nc

�
a2

1b2�
4

N2
c
a1b2b3

�
ifc8e�Gk8;fJr;Greg	

�
4

N3
c
a1b2b3if

c8e�Gke;fJr;Gr8g	�
1

12N2
c
�9a1b

2
2f

c8ef8eg�a2
1b3�8


cg�9fc8ef8eg�6dc8ed8eg�

�6a2
1c3d

c8ed8eg	Dkg
3 �

1

N2
c
a2

1c3d
88efGkc;fJr;Gregg�

1

2N3
c
b3

2fD
kc
2 ;fT

8;T8gg�
1

2N3
c
��2a1b2b3

�a1b2c3��2dc8efDk8
2 ;fJ

r;Gregg�d88efDkc
2 ;fJ

r;Gregg��
1

2N2
c
a1b2

2�fG
kc;fT8;T8gg

�2fGk8;fTc;T8gg��
1

N2
c
�4a2

1b3�a2
1c3�dc8efGke;fJr;Gr8gg�

1

2N2
c
�6a2

1b3�a2
1c3�dc8efJk;fGre;Gr8gg

�
1

N2
c
�2a2

1b3�a2
1c3�fGrc;fGr8;Gk8gg�

1

N2
c
�2a2

1b3�a2
1c3�fGkc;fGr8;Gr8gg

�
1

2N2
c
��2a2

1b3�3a2
1c3�dc8efGk8;fJr;Gregg�

1

2N2
c
�2a2

1b3�a2
1c3��d88efJk;fGrc;Gregg

�d88efGke;fJr;Grcgg��
2

N3
c
a1b2b3�ffJr;Gr8g;fGk8;Tcgg�ffJr;Gr8g;fGkc;T8gg

�ffJr;Grcg;fGk8;T8gg��
2

N3
c
a1b2c3�2fD

k8
2 ;fG

rc;Gr8gg�fDkc
2 ;fG

r8;Gr8gg��
1

2N3
c
�2a1b2b3

�a1b2c3��d88efJ2;fGke;Tcgg�2dc8efJ2;fGke;T8gg��
1

N3
c

�
2

3
a1b2c3
cg�

1

2
�b3

2�9a1b2c3�fc8ef8eg
�

�Dkg
4 �

2

N3
c
a1b2c3ifc8efJ2;�Gk8;fJr;Greg	g�

1

N3
c
�2a1b2b3�a1b2c3�ifc8efJ2;�Gke;fJr;Gr8g	g

�
2

N3
c
�a1b2b3�a1b2c3�ifc8efJk;�fJi;Gieg;fJr;Gr8g	g�O�GD3D3�: (32)

In order for Eq. (32) to be a truly 27 contribution it is
understood that flavor singlet and octet contributions
should be subtracted off from this equation. For computa-
tional purposes the one-body operators T8 and Gi8 can be
written in terms of the strange quark number operator Ns

and the strange quark spin operator Jis as [9]

 T8 � 1
2
��
3
p �Nc � 3Ns�; (33)

 Gi8 � 1
2
��
3
p �Ji � 3Jis�: (34)

These operators are order Nc and order 1, respectively.
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Equations (30)–(32) have been rearranged to display
leading and subleading terms in 1=Nc explicitly. Notice
that only baryon operators with nonvanishing matrix ele-
ments between octet baryons have been kept in these
equations (for the full expressions see Appendix A).
Although the resulting expressions are rather lengthy,
they are indeed enlightening. It is now evident that
large-Nc cancellations occur in the evaluation of the double
commutator so that it is at most O�Nc�, according to the
counting rules (26). The loop integrals are inversely pro-
portional to f2, which introduces a 1=Nc suppression.
Therefore the net one-loop correction Eq. (27) is O�1�, or
1=Nc times the tree-level value, which is O�Nc�. The
large-Nc cancellations in the renormalization of the baryon
axial vector current to one-loop have thus been explicitly
shown to occur in the degeneracy limit �=m� � 0.

2. Diagrams 1(a)–1(c): Nondegeneracy case �=m� � 0

Let us now discuss the additional terms that contribute to
the renormalization of the baryon axial vector current for
finite �=m�. The procedure for obtaining these terms is
discussed in Ref. [16]. Specifically, let us consider the
second term in Eq. (16),

 

1
2 fA

ja; �Akc; �M; Ajb		g�ab
�2�: (35)

This expression contains one insertion of the baryon mass

matrix M introduced in Eq. (13) and thus represents the
leading term in the nondegenerate case. The large-Nc
counting rules imply that multiple insertions of the J2

factor in M constitute the dominant 1=Nc corrections
from the baryon mass splittings: In Ref. [16], it has been
shown that one insertion of J4 in the term linear in M is
1=Nc suppressed relative to two insertions of J2 in the term
quadratic in M—the third term in Eq. (16). Moreover, in
the same reference it was concluded that the quantities
GGGJ2 and GGD2J2 in the product AAAM contribute at
the same order in Eq. (35) and should be retained in the
series Eq. (16).

Returning to Eq. (35), a new large-Nc cancellation for
the specific commutator-anticommutator structure GGGJ2

was found in Ref. [16]. Naively, one would expect this
contribution to be of O�N3

c�: The two operators J may be
eliminated with the two commutators, such that we are left
with a product of three operators GGG, each one contrib-
uting a factor of Nc. However, the explicit calculation of
the singlet contribution of the operator expression GGGJ2

shows that it is of O�N2
c�, i.e., suppressed by one factor of

Nc. We would like to see whether the same pattern repeats
itself in the octet and the 27 piece of GGGJ2, and whether
new large-Nc cancellations also occur in the operator
structure GGD2J2. The expressions, when retaining both
structures GGGJ2 and GGD2J

2 in the product AAAM,
read:

(1) Flavor singlet contribution

 

fAja; �Akc; �M; Aja		g �
m2

2Nc

��
�a3

1 �
4�Nc � 3�

Nc
a2

1b2

�
Gkc �

�
�Nc � 3�a3

1 �
N2
c � 6Nc � 29

Nc
a2

1b2

�
Dkc

2

�

�
�a3

1 �
Nc � 3

Nc
a2

1b2

�
Dkc

3 �
4

Nc
a2

1b2D
kc
4

�
� . . . (36)

(2) Flavor octet contribution

 

dab8fAja; �Akc; �M; Ajb		g �
m2

Nc

��
1

4
a3

1 �
Nc � 3

Nc
a2

1b2

�
dc8eGke �

1

4

�
�Nc � 3�a3

1 �
25

Nc
a2

1b2

�
dc8eDke

2

�
1

4

�
a3

1 �
Nc � 3

Nc
a2

1b2

�
dc8eDke

3 �
1

2
a3

1fG
kc; fJr; Gr8gg �

1

8

�
a3

1 �
2�Nc � 3�

Nc
a2

1b2

�

� fJk; fTc; T8gg �
1

6

�
2a3

1 �
Nc � 3

Nc
a2

1b2

�
�fJk; fGrc; Gr8gg � fGk8; fJr; Grcgg�

�
1

Nc
a2

1b2

�
�

3

2
fTc;Gk8g � fGkc; T8g �

1

2
dc8eDke

4 �
1

2
fDk8

2 ; fJ
r; Grcgg

�
4

3
fDkc

2 ; fJ
r; Gr8gg �

1

6
fJ2; fGk8; Tcgg

��
� . . . (37)
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(3) Flavor 27 contribution

 

fAj8; �Akc; �M; Aj8		g �
m2

Nc

�
a3

1

�
1

3
Gkc�

1

2
�dc8ede8d� dcedde88� fc8efe8d�Gkd�

1

2
dc8efGk8; fJr;Gregg

�
1

2
dc8efJk; fGre;Gr8gg

�
�

1

Nc
a2

1b2

�
�

15

4
fc8ef8egDkg

2 �
i
2
fc8e�Gke; fJr;Gr8g	

� ifc8e�Gk8; fJr;Greg	 �
1

2
fc8ef8egDkg

4 � fD
kc
2 ; fG

r8;Gr8gg� fDk8
2 ; fG

rc;Gr8gg

�
1

2
ffJr;Grcg; fGk8; T8gg �

1

2
ffJr;Gr8g; fGk8; Tcgg�

i
2
fc8efJk; �fJi;Gieg; fJr;Gr8g	g

��
� . . .

(38)

Again, in Eq. (38), the singlet and octet pieces need to be
subtracted off in order to have a purely 27 contribution.

First of all, as can be seen in Appendix A, the new
cancellation observed in the singlet piece of GGGJ2 in-
deed repeats itself in the octet and the 27: the three ex-
pressions (A25), (A27), and (A29) are indeed of O�N2

c�.
Furthermore, it is evident from the expressions (A26),
(A28), and (A30) in the same appendix, that the new
large-Nc cancellation identified in GGGJ2 does not occur
in GGD2J2. As one would expect, GGD2J2 is of O�N3

c�:
Eliminating two J’s with the two commutators, one is left
with the operator product GGJT, which is O�N3

c�, accord-
ing to the counting rules (26).

This then means that the correction to 
Akc originating
from Eq. (35) is O�1� and thus consistent with being a
quantum correction: Naively, one would expect the opera-
tor expression fAja; �Akc; �M; Ajb		g to be O�N2

c� so that
the correction Eq. (35) would be O�Nc�, since f /

������
Nc
p

.
However, a close inspection of Eqs. (36)–(38) reveals that
these equations exhibit at most a linear dependence in Nc,
i.e., large-Nc cancellations occur in the structure of the
operator factor in such a way that it is at most O�Nc�.
Therefore, the correction Eq. (35) is O�1�, or 1=Nc times
the tree-level value and contributes to the same order as
Eq. (27). The general structure of these cancellations was
analyzed in Ref. [16] and has been shown explicitly here.

Finally, there are the two remaining terms in Eq. (16)
with two mass insertions,

 

1
6 ��A

ja; ��J2; �J2; Ajb		; Akc		

� 1
2��J

2; Aja	; ��J2; Ajb	; Akc		��ab
�3�; (39)

which are both of O�N3
c�: eliminating the four J’s with the

four commutators, we are left with three G’s, each one
contributing a factor of Nc, according to the counting rules
(26). Interestingly, as shown below for the singlet contri-
bution, there is a new large-Nc cancellation in the first term
of Eq. (39):
 

�Gia; ��J2; �J2; Gia		; Gkc		 � �3
2�Nc � 3�Dkc

2 � 2Dkc
3

� 3Okc
3 : (40)

The right-hand side is at most of O�N2
c�: The order N3

c part
vanishes. We have checked that the same pattern repeats
itself in the octet and the 27 piece—the explicit expres-
sions will be given elsewhere.

As for the second term in Eq. (39), there is no new
cancellation as can be seen in the singlet piece
 

��J2; Gia	; ��J2; Gia	; Gkc		 � ��Nc�Nc � 6� � 3	Gkc

� 5
2�Nc � 3�Dkc

2 � 2Dkc
3

� 2Okc
3 ; (41)

where the right-hand side is of O�N3
c�, as one would

naively expect. The octet and 27 pieces are of the same
order N3

c .

B. One-loop correction: Diagram 1(d)

The one-loop correction to the baryon axial vector cur-
rent from the diagram of Fig. 1(d) is given by the expres-
sion

 
Akc � �1
2�T

a; �Tb; Akc		�ab; (42)

where �ab is a symmetric tensor with a structure similar to
the one introduced in Eq. (17), namely,

 �ab � I1
ab � I8dab8 � I27�
a8
b8 � 1
8


ab � 3
5d
ab8d888	:

(43)

Again, the flavor singlet, octet, and 27 tensors in Eq. (43)
are proportional to flavor singlet I1, flavor octet I8, and
flavor 27 I27 linear combinations of the loop integrals
I�m�;	�, I�mK;	�, and I�m�;	�, reading

 I�m�; 	� �
i

f2

Z d4k

�2��4
1

k2 �m2
�

�
m2

�

16�2f2

�
ln
m2

�

	2 � 1
�
: (44)

They enter the linear combinations as

 I1 �
1
8�3I�m�;	� � 4I�mK;	� � I�m�;	�	; (45)
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 I8 �
2
��
3
p

5 �
3
2I�m�;	� � I�mK;	� �

1
2I�m�;	�	; (46)

 I27 �
1
3I�m�;	� �

4
3I�mK;	� � I�m�;	�: (47)

A straightforward computation yields the following fla-
vor contributions for Nf � 3:

(1) Flavor singlet contribution

 �Ta; �Ta; Akc		 � 3Akc; (48)

(2) Flavor octet contribution

 dab8�Ta; �Tb; Akc		 � 3
2d
c8eAke; (49)

(3) Flavor 27 contribution

 �T8; �T8; Akc		 � fc8ef8egAkg: (50)

The double commutators in Eqs. (48)–(50) are propor-
tional to Akc so they are O�Nc�; thus the one-loop correc-
tion of Fig. 1(d) is at most O�1� since f2 scales like Nc.
Consequently, this correction is of the same order as the
one arising from the sum of Figs. 1(a)–1(c), i.e., it is of
order 1=Nc relative to the tree-level contribution and does
not involve any cancellations between octet and decuplet
states.

C. Total one-loop correction in the degeneracy limit
�=m� � 0

In the limit �=m� � 0 the one-loop correction to Akc

becomes

 
Akc � 1
2�A

ja; �Ajb; Akc		�ab
�1� �

1
2�T

a; �Tb; Akc		�ab:

(51)

The matrix elements between spin- 1
2 baryon states of the

space components of the renormalized baryon axial vector
current, Akc � 
Akc, are discussed in detail in Appendix B.
These matrix elements yield the coupling constants gA.
Our interest in computing these quantities relies on the fact
that our calculations can be compared with results obtained
within other approaches. Specifically, a direct comparison
can be carried out with gA obtained within the framework
of heavy baryon chiral perturbation theory originally in-
troduced in Refs. [1,2]. In these references the calculation
was performed assuming mu � md � 0 and vanishing
decuplet-octet mass difference. In the next section we shall
redo the calculation for arbitrary quark masses [23]. This
will allow us to identify individual contributions of �, K,
and � mesons in the loops.

IV. THE BARYON AXIAL VECTOR CURRENT IN
HEAVY BARYON CHIRAL PERTURBATION

THEORY

The heavy baryon chiral Lagrangian was constructed
[1,2] in terms of the octet meson field, the baryon octet
Bv, and the baryon decuplet T	abc fields. The lowest order
Lagrangian is given by

 L baryon � iTr �Bv�v 
D�Bv � i �T	v �v 
D�Tv	

� � �T	v Tv	 � 2DTr �BvS
	
v fA	; Bvg

� 2F Tr �BvS
	
v �A	; Bv	 � C� �T	vA	Bv

� �BvA	T
	
v � � 2H �T	v S�vA�Tv	; (52)

where D, F, C, and H are the baryon-pion couplings and
� is the decuplet-octet mass difference as defined in the
preceding sections.

Chiral corrections to the baryon axial vector current

The one-loop corrections to the axial vector current arise
from the Feynman graphs displayed in Fig. 1. The renor-
malized current [24] can be written as

 hBjjJ
A
	jBii �

�
�BjBi �

X
�

� ���
BjBi

� ���
BjBi

�BjBi�F
�1��m�; 0; 	�

�
X
�


�
BjBi

I�m�; 	�
�

�uBj
	
5uBi ; (53)

where �BjBi is the tree-level result, ���
BjBi
� ��

BjBi
� �0�BjBi

is the contribution from the Feynman graph in Fig. 1(a),
���
BjBi
� ��

BjBi
� �0�BjBi is the one-loop correction due to

wave function renormalization, Figs. 1(b) and 1(c),
 ��������������

ZBjZBi
q

� 1�
X
�

���
BjBi

F�1��m�; 0; 	�;

���
BjBi
� 1

2�
���
Bi
� ���

Bj
�;

(54)

and 
�
BjBi

is the correction arising from Fig. 1(d). Here �

stands for �, K, and � mesons and F�1��m�; 0; 	� and
I�m�; 	� denote the loop functions defined in Eqs. (24)
and (44). The unprimed and primed quantities are contri-
butions with intermediate octet and decuplet baryons, re-
spectively. Finally, u is a spinor referring to the initial and
final baryon states Bi and Bj. The explicit formulas for the
chiral coefficients �BjBi ,

���
BjBi

, ���
BjBi

, and 
�
BjBi

are listed in
Appendix C for the sake of completeness. Observe that if
we restrict ourselves to the case of nonanalytic corrections
in the limit mu � md � 0, and use the Gell-Mann-Okubo
mass formula to rewrite m2

� as �4=3�m2
K, Eq. (53) reduces

to results already obtained [1,2].
In close analogy to Eq. (17), Eq. (53) can also be split

into flavor singlet, flavor octet, and flavor 27 contributions
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in terms of flavor singlet, flavor octet, and flavor 27 linear
combinations of F�1��m�; 0; 	� and I�m�; 	�. Thus, in
order to keep our formulas compact, the renormalized
baryon axial vector current can be cast into the form

 hBjjJA	jBii � ��BjBi � b
BjBi
1 F�1�1 � b

BjBi
8 F�1�8 � b

BjBi
27 F�1�27

� c
BjBi
1 I1 � c

BjBi
8 I8 � c

BjBi
27 I27	 �uBj
	
5uBi ;

(55)

where the new coefficients are

 b
BjBi
1 � ��a�BjBi � a

K
BjBi
� a�BjBi�; (56)

 b
BjBi
8 � � 1��

3
p �a�BjBi �

1
2a
K
BjBi
� a�BjBi�; (57)

 b
BjBi
27 � � 3

40�a
�
BjBi
� 3aKBjBi � 9a�BjBi�; (58)

 c
BjBi
1 � 
�BjBi � 


K
BjBi
� 
�BjBi ; (59)

 c
BjBi
8 � 1��

3
p �
�BjBi �

1
2


K
BjBi
� 
�BjBi�; (60)

 c
BjBi
27 � 3

40�

�
BjBi
� 3
KBjBi � 9
�BjBi�; (61)

and the various a�
BjBi

are expressed in terms of the chiral
coefficients as

 a�
BjBi
� ���

BjBi
� ���

BjBi
�BjBi : (62)

Equations (56)–(61) will be particularly useful in the
comparison with the results obtained in the framework of
large-Nc heavy baryon chiral perturbation theory. This will
be done in the next section.

V. COMPARISON BETWEEN THE TWO
APPROACHES IN THE LIMIT �=m� � 0

The matrix elements of the space components of the
renormalized baryon axial vector current between initial
and final baryon states Bi and Bj can be denoted as

 hBjj � 
k
5T
c jBii � �A

kc
ren	BjBi : (63)

Here Akcren � Akc � 
Akc,  are the QCD quark fields, and
Bi and Bj are baryons in the lowest-lying irreducible
representation of contracted SU�6� spin-flavor symmetry,
namely, the spin- 1

2 octet and the spin- 3
2 decuplet baryons. If

the initial and final baryon states are restricted to the spin- 1
2

octet baryons, the matrix elements �Akcren	BjBi yield the

actual values of g
BjBi
A , the axial vector couplings of the

baryons.
In the degeneracy limit the renormalization to the

baryon axial vector current reads

 
Akcdeg �
1
2�A

ja; �Ajb; Akc		�ab
�1� �

1
2�T

a; �Tb; Akc		�ab:

(64)

At the physical value Nc � 3, there is a one-to-one corre-
spondence between the different flavor contributions of
�Akcren	BjBi and those contained in Eq. (55). The comparison
can be made through

 �12�A
ia; �Aia; Akc			BjBi � b

BjBi
1 ; (65)

 �12d
ab8�Aia; �Aib; Akc			BjBi � b

BjBi
8 ; (66)

 �12�A
i8; �Ai8; Akc			BjBi � b

BjBi
27 ; (67)

 � �12�T
a; �Ta; Akc			BjBi � c

BjBi
1 ; (68)

 � �12d
ab8�Ta; �Tb; Akc			BjBi � c

BjBi
8 ; (69)

 � �12�T
8; �T8; Akc			BjBi � c

BjBi
27 : (70)

It is understood that flavor singlet and octet pieces must be
subtracted off Eqs. (67) and (70) in order to have a truly 27
contribution.

For instance, for the process n! p� e� ��e, the sin-
glet component of the renormalized axial vector cou-
pling—diagrams 1(a)–1(c)—reads (see Appendix B),
 

�12�A
ia; �Aia; Akc			pn �

115
144a

3
1 �

7
48a

2
1b2 �

19
48a1b2

2 �
31
432a

2
1b3

� 11
12a

2
1c3 �

7
144b

2
2 �

169
216a1b2b3

� 37
36a1b2c3: (71)

To the order of approximation implemented in this work,
this corresponds exactly to bpn1 , Eq. (65), given in terms of
�pn, ��pn, and ��pn, whose explicit expressions can be
found in Appendix C. Note that, in order to make the
comparison, the baryon-meson couplings have to be ex-
pressed in terms of the coefficients of the 1=Nc expansion
at Nc � 3 as [14]

 D � 1
2a1 �

1
6b3; F � 1

3a1 �
1
6b2 �

1
9b3;

C � �a1 �
1
2c3; H � �3

2a1 �
3
2b2 �

5
2b3:

(72)

The agreement between the two approaches can be seen
term by term in all expressions given by Eqs. (65)–(70):
Both approaches yield the same results. An analogous
comparison for the baryon mass relations, using the above
identifications, was performed in Ref. [14].

To close this section, a fit to baryon semileptonic decays
by using the measured decay rates and gA=gV ratios [25] is
performed. Our motivation here is not really to be defini-
tive about the predictions of our expressions for gA but
rather to explore the quality of our working assumptions.
To the order of approximation we implemented here, the fit
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[26] gives a1 � 0:32� 0:04, b2 � �0:46� 0:03, b3 �
3:04� 0:13, and c3 � 2:49, with �2 � 38:18 for 11 de-
grees of freedom, or equivalently F � 0:37� 0:01, D �
0:66� 0:01, and H � �7:39� 0:25. The proton matrix
element of the T8 component of the axial vector current
(which is equal to 3F�D in the SU�3� symmetry limit) is
found to be 0:45� 0:01, which is smaller than its SU�6�
symmetric value of 1. The coefficient c3 was determined
indirectly through the relation jCj � 1:6, which was ob-
tained by a fit to the �! N� decay rate [2]. It should be
pointed out that the coupling H obtained in the fit is not
close to its SU�6� value, which is 3D� 9F; this is mainly
due to the order of approximation used here.

The predicted values of gA are listed in Table II, where
the different flavor contributions are given separately. As
one might have anticipated, the 27 contribution to gA is
suppressed relative to the octet contribution, which in turn
is suppressed relative to the singlet one. It is also instruc-
tive to remark that the highest contributions to �2 come
from the decay rate and gA=gV ratio of the process �� !
�e� ��e (18.91 and 7.46, respectively), which might suggest
some inconsistencies in these data.

Evidently, a more complete analysis which can yield a
better fit should also incorporate seven-body operators—
like GD3D3 —or higher in the correction to the baryon
axial vector current (27). These terms represent O�1=N3

c�
corrections or higher to the tree-level result O�Nc�.
Although a substantial improvement of the value of H ,
for instance, is expected, the algebraic manipulations to
reduce the double commutator �Aia; �Aib; Akc		�ab

�1� to the
operator basis require a formidable effort which goes
beyond the scope of the present paper. One can also, of
course, follow a more pragmatic approach and evaluate
directly the matrix elements of the double commutator
between octet baryon states and observe the agreement
with heavy baryon chiral perturbation theory pointed out
above. This procedure, however, does not allow to show
the large-Nc cancellations explicitly.

VI. INCLUSION OF THE �0

So far, the renormalization of the baryon axial vector
current has been performed by taking into account the
contribution of the octet mesons in the loops, Eq. (16). In

the large-Nc limit, however, the quark loop responsible for
the axial U�1� anomaly is suppressed and the chiral sym-
metry is extended from SU�3�R � SU�3�L �U�1�V to
U�3�R �U�3�L. As a consequence, the contribution from
the �0 should be included in the analysis.

Planar QCD flavor symmetry implies that the baryon
1=Nc chiral Lagrangian (1) possesses a SU�2� �U�3�
spin-flavor symmetry at leading order in the 1=Nc expan-
sion and constrains this Lagrangian by forming a nonet
baryon axial vector current out of the singlet and octet
baryon axial vector currents at leading order in the 1=Nc
expansion [14], namely,

 Ak � Ak9 �O�1=Nc�; (73)

where Ak is the flavor singlet baryon axial vector current
given in Eq. (11). In Ref. [14] the constraint (73) was
imposed through the relation

 b1;1
n ! �b1;1

n �
1

Nc
b1;1
n ; (74)

where the coefficients �b1;1
n are determined by exact nonet

symmetry, whereas the others are not constrained and
violate nonet symmetry at first subleading order 1=Nc.
Thus, for Nc � 3, nonet symmetry implies that
 

�b1;1
1 �

1��
6
p �a1 � b2�; (75a)

�b1;1
3 �

1��
6
p �2b3�; (75b)

where a1, b2, and b3 are the operator coefficients of the
octet axial vector current expansion Eq. (10). The above
relations can be easily obtained by using the ninth flavor
components of Gia and Ta given by [14]

 Gi9 � 1��
6
p Ji; T9 � 1��

6
p Nc1: (76)

One should notice that the coefficients of the diagonal
operators Di

n in the singlet expansion do not depend on
the coefficients cn of the off-diagonal operators Oia

n of the
octet expansion.

The inclusion of the �0 meson into the renormalization
of Akc is now straightforwardly obtained in the degeneracy
limit. Let us first discuss the contribution from
diagrams 1(a)–1(c):

TABLE II. Values of gA for various semileptonic processes.

Process Total value Tree level Singlet piece Octet piece 27 piece

n! pe� ��e 1.272 1.031 0.279 �0:040 0.002
�� ! �e��e 0.653 0.542 0.168 �0:057 0.000
�� ! �e� ��e 0.624 0.542 0.113 �0:031 �0:000
�! pe� ��e �0:904 �0:720 �0:134 �0:055 0.005
�� ! ne� ��e 0.375 0.298 0.080 �0:002 �0:001
�� ! �e� ��e 0.139 0.178 �0:034 �0:004 �0:001
�� ! �0e� ��e 0.869 0.729 0.128 0.014 �0:002
�0 ! ��e� ��e 1.312 1.031 0.246 0.041 �0:006
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Akc � 1
2�A

i9; �Ai9; Akc		F�1��m�0 ; 0; 	�: (77)

To the order of approximation implemented here, one has
to evaluate the following commutator-anticommutator
structures:

 �Ji; �Ji; Akc		 � 2Akc; (78)

 �Ji; �fJ2; Jig; Gkc		 � �fJ2; Jig; �Ji; Gkc		 � 2Dkc
3 � 8Okc

3 ;

(79)

and

 �Ji; �fJ2; Jig;Dkc
2 		 � �fJ

2; Jig; �Ji;Dkc
2 		 � 4Dkc

4 : (80)

The correction due to the inclusion of the �0 thus amounts
to
 


Akc �
1

6

�
a1� �b

1;1
1 �

2Gkc �
1

Nc
b2� �b

1;1
1 �

2Dkc
2

�
1

N2
c
b3� �b

1;1
1 �

2Dkc
3 �

1

N2
c
c3� �b

1;1
1 �

2Okc
3

�
1

N2
c
a1� �b

1;1
1 ��

�b1;1
3 ��D

kc
3 � 4Okc

3 �

�
2

N3
c
b2� �b

1;1
1 ��

�b1;1
3 �D

kc
4

�
F�1��m�0 ; 0; 	�: (81)

On the other hand, as far as conventional baryon chiral
perturbation theory (i.e., without 1=Nc-expansion) is con-
cerned, the flavor singlet baryon-�0 couplings can be in-
corporated into the chiral effective Lagrangian Eq. (52) by
adding the two terms [14]

 2SB TrA	 Tr �BvS
	
vBv � 2ST TrA�

�T	v S�vTv	; (82)

where SB and ST are the singlet axial vector coupling
constants of the octet and decuplet, respectively. The con-
dition of nonet symmetry for the baryon axial vector
couplings implies

 SB !
1
3�3F�D�; ST ! �

1
3H : (83)

The contribution of the �0 meson to the correction (53) can
be written as

 
hBjjJA	jBii � ��
�0

BjBi
F�1��m�0 ; 0; 	�	 �uBj
	
5uBi ; (84)

where ��
0

BjBi
are the chiral coefficients which emerge from

Fig. 1(a)–1(c) and can be found in Appendix C.
As in the previous section, a direct comparison between

Eqs. (77) and (84) can be performed. In this case, the
comparison can be made through

 �12�A
i9; �Ai9; Akc			BjBi � ��

0

BjBi
; (85)

by using the identifications (72) and (75). We have checked
that, for the eight decays considered in the present study,
the two approaches yield the same result.

Finally, we briefly discuss the remaining diagram 1(d).
The corresponding one-loop correction to the baryon axial
vector current in large-Nc chiral perturbation theory was
derived in Sec. III, Eq. (42). Including the �0 thus amounts
to the extra term

 
Akc � �1
2�T

9; �T9; Akc		I�m�0 ; 	�: (86)

However, the flavor operator T9 is proportional to the unit
matrix (76), such that the commutators are zero and there is
thus no contribution from diagram 1(d). Likewise, in con-
ventional baryon chiral perturbation theory, the additional
piece in the axial vector current due to the term involving
SB in (82) does not contribute. Again, in the degeneracy
limit, the two approaches agree.

VII. CONCLUSIONS

In this paper we have computed the renormalization of
the baryon axial vector current in the framework of heavy
baryon chiral perturbation theory in the large-Nc limit. The
analysis was performed at one-loop order, where the cor-
rection to the baryon axial vector current is given by an
infinite series, each term representing a complicated com-
bination of commutators and/or anticommutators of the
baryon axial vector current Akc and mass insertions M.
We have explicitly evaluated the first four terms in this
expansion: The contribution AAA in the degeneracy limit
�=m� � 0, the leading (AAAM), and the two next-to-
leading (AAAMM) order contributions for nonzero octet-
decuplet mass difference, respectively. The general struc-
ture of these large-Nc cancellations was already discussed
in Ref. [16], where also a new large-Nc cancellation in the
singlet piece of the structure AAAM was identified.

Our motivation to go beyond this general analysis and to
engage ourselves into the reduction of these rather in-
volved operator products, including up to six SU�6� spin-
flavor operators Jk, Tc, and Gkc, was to explicitly demon-
strate how these large-Nc cancellations occur. It has al-
ready been pointed out in Refs. [3–5,16], that there are
large-Nc cancellations between individual Feynman dia-
grams in the degeneracy limit, provided one sums over all
baryon states in a complete multiplet of the large-Nc SU�6�
spin-flavor symmetry, i.e., over both the octet and decuplet,
and uses axial coupling ratios given by the large-Nc spin-
flavor symmetry. Indeed, our final expressions referring to
the degeneracy limit explicitly demonstrate that the double
commutator AAA is of order Nc rather than of order N3

c , as
one would naively expect. As for the nondegenerate case
we have shown that the new large-Nc cancellation found in
Ref. [16] is a generic feature of the corresponding
commutator-anticommutator structure GGGJ2: The new
cancellation observed in the singlet piece of GGGJ2 in-
deed repeats itself in the octet and the 27. On the other
hand, in the structure GGD2J2, no new large-Nc cancella-
tions are detected: the expression is of order N3

c , consistent
with the global analysis of Ref. [16]. However, in one of
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the two commutator-anticommutator structures GGGJ2J2

with two mass insertions, a new large-Nc cancellation was
identified: Although naively one would expect this struc-
ture to be of order N3

c , our explicit calculation for the
singlet, octet, and 27 piece shows that it is of order N2

c .
In the degeneracy limit, we have also performed a

comparison of the renormalized baryon axial vector cur-
rent, obtained within two different schemes: Large-Nc
baryon chiral perturbation theory on the one hand, and
conventional heavy baryon chiral perturbation theory (in-
cluding both octet and decuplet baryons), where no 1=Nc
expansion is involved, on the other hand. Both approaches
agree—the large-Nc cancellations are guaranteed to occur
as a consequence of the contracted spin-flavor symmetry
present in the limit Nc ! 1. By keeping the large- Nc
spin-flavor symmetry manifest, one thus avoids large nu-
merical cancellations between loop diagrams with inter-
mediate octet states and low-energy constants of the next-
to-leading order effective Lagrangian, containing the ef-
fects of decuplet states [27].

In the present paper, we have taken into account the
octet-decuplet mass difference, but neglected the SU�3�
splittings of the octet and decuplet baryons. Moreover, the
comparison between large-Nc baryon chiral perturbation
theory and conventional heavy baryon chiral perturbation
theory, was performed for the degeneracy limit only. The
extension to the nondegenerate case, as well as the incor-
poration of SU�3� mass splittings is currently in progress.
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APPENDIX A: REDUCTION OF BARYON
OPERATORS

Here we present the most general expressions, up to the
order of approximation implemented in this work, for the
two commutator-anticommutator structures involved in the
analysis. The computation was performed by keeping Nf
and Nc arbitrary, although the physical values Nf � 3 and
Nc � 3 are used in the evaluation of gA.

1. Degeneracy limit �=m� � 0

The flavor singlet, octet, and 27 contributions of the
double commutator

 �Aia; �Aib; Akc		

can be organized as follows:

(1) Flavor singlet contribution

 �Gia; �Gia; Gkc		 �
3N2

f � 4

4Nf
Gkc; (A1)

 �Gia; �Gia;Dkc
2 		 � �G

ia; �Dia
2 ; G

kc		 � �Dia
2 ; �G

ia; Gkc		 � �
2

Nf
�Nc � Nf�Gkc �

9N2
f � 8Nf � 4

4Nf
Dkc

2 ; (A2)

 �Gia; �Dia
2 ;D

kc
2 		 � �D

ia
2 ; �G

ia;Dkc
2 		 � �D

ia
2 ; �D

ia
2 ; G

kc		

�
Nc�Nc � 2Nf��Nf � 2� � 6N2

f

2Nf
Gkc �

2

Nf
�Nc � Nf��Nf � 1�Dkc

2 �
3Nf � 2

4
Dkc

3 �
Nf
2
Okc

3 ; (A3)

 �Gia; �Gia;Dkc
3 		 � �G

ia; �Dia
3 ; G

kc		 � �Dia
3 ; �G

ia; Gkc		 � ��Nc�Nc � 2Nf� � 2Nf � 8	Gkc � 3�Nc � Nf�Dkc
2

�
13N2

f � 16Nf � 12

4Nf
Dkc

3 �
N2
f � 2Nf � 8

Nf
Okc

3 ;

(A4)

 �Gia; �Gia;Okc
3 		 � �G

ia; �Oia
3 ; G

kc		 � �Oia
3 ; �G

ia; Gkc		 � ��Nc�Nc � 2Nf� � Nf	Gkc �
1

2
�Nc � Nf�Dkc

2

�
Nf � 1

2
Dkc

3 �
15N2

f � 12Nf � 4

4Nf
Okc

3 ; (A5)
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 �Dia
2 ; �D

ia
2 ;D

kc
2 		 �

Nc�Nc � 2Nf��Nf � 2� � 2N2
f

2Nf
Dkc

2 �
Nf � 2

2
Dkc

4 ; (A6)

 

�Gia;�Dia
2 ;D

kc
3 		 � �G

ia; �Dia
3 ;D

kc
2 		 � �D

ia
2 ; �G

ia;Dkc
3 		 � �D

ia
2 ; �D

ia
3 ; G

kc		

� �Dia
3 ; �G

ia;Dkc
2 		 � �D

ia
3 ; �D

ia
2 ; G

kc		

� �12�Nc � Nf�G
kc � �Nc�Nc � 2Nf� � 2Nf � 8	Dkc

2 �
7Nf � 4

Nf
�Nc � Nf�D

kc
3

�
2�3Nf � 4�

Nf
�Nc � Nf�O

kc
3 �

3N2
f � 4Nf � 4

Nf
Dkc

4 ; (A7)

 

�Gia;�Dia
2 ;O

kc
3 		 � �G

ia; �Oia
3 ;D

kc
2 		 � �D

ia
2 ; �G

ia;Okc
3 		 � �D

ia
2 ; �O

ia
3 ; G

kc		

� �Oia
3 ; �G

ia;Dkc
2 		 � �O

ia
3 ; �D

ia
2 ; G

kc		

� �
3

2
�Nc�Nc � 2Nf� � 8Nf	Dkc

2 �
9

2
�Nc � Nf�Dkc

3 �
2

Nf
�Nc � Nf�Okc

3 � �3Nf � 10�Dkc
4 : (A8)

(2) Flavor octet contribution

 dab8�Gia; �Gib;Gkc		 �
3N2

f � 16

8Nf
dc8eGke �

N2
f � 4

2N2
f


c8Jk; (A9)

 

dab8��Gia; �Gib;Dkc
2 		 � �G

ia; �Dib
2 ; G

kc		 � �Dia
2 ; �G

ib; Gkc		�

� �
2

Nf
�Nc � Nf�d

c8eGke �
5Nf � 8

8
dc8eDke

2 �
2

Nf
fGkc; T8g �

N2
f � 2Nf � 4

2Nf
fGk8; Tcg

�
Nf � 2

4
�J2; �T8; Gkc		 �

�Nc � Nf��Nf � 2�

N2
f


c8Jk; (A10)

 

dab8��Gia; �Dib
2 ;D

kc
2 		 � �D

ia
2 ; �G

ib;Dkc
2 		 � �D

ia
2 ; �D

ib
2 ; G

kc		�

� �
3

2
Nfdc8eGke �

�Nc � Nf��Nf � 2�

Nf
fGk8; Tcg �

�Nc � Nf��Nf � 4�

2Nf
fGkc; T8g �

3

8
Nfdc8eDke

3

�
Nf � 2

4
dc8eOke

3 �
1

2
fGkc; fJr; Gr8gg �

1

2
fGk8; fJr; Grcgg �

Nf � 2

2Nf
fJk; fTc; T8gg

�
1

4
�Nc � Nf��J

2; �T8; Gkc		; (A11)

 

dab8��Gia; �Gib;Dkc
3 		 � �G

ia; �Dib
3 ; G

kc		 � �Dia
3 ; �G

ib; Gkc		�

� �Nf � 8�dc8eGke �
3

2
�Nc � Nf�dc8eDke

2 � �Nc � Nf�fG
kc; T8g �

5N2
f � 12Nf � 16

8Nf
dc8eDke

3

�
N2
f � 2Nf � 24

2Nf
dc8eOke

3 �
3

4
fJk; fTc; T8gg � �Nf � 1�fJk; fGrc; Gr8gg �

Nf � 4

Nf
fGkc; fJr; Gr8gg

�
N2
f � 3Nf � 4

Nf
fGk8; fJr; Grcgg �

3

2
�Nc � Nf��J2; �T8; Gkc		 �

3Nc�Nc � 2Nf� � 8Nf � 16

2Nf

c8Jk

�
N2
f � 3Nf � 4

N2
f


c8fJ2; Jkg; (A12)
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 dab8��Gia; �Gib;Okc
3 		 � �G

ia; �Oib
3 ; G

kc		 � �Oia
3 ; �G

ib; Gkc		�

�
Nf
2
dc8eGke �

1

4
�Nc � Nf�d

c8eDke
2 � �Nc � Nf�fG

kc; T8g �
N2
f � Nf � 8

4Nf
dc8eDke

3

�
7N2

f � 8Nf � 16

8Nf
dc8eOke

3 �
1

8
fJk; fTc; T8gg �

N2
f � Nf � 8

2Nf
fJk; fGrc; Gr8gg � �Nf � 2�fGkc; fJr; Gr8gg

�
Nf � 2

2
fGk8; fJr; Grcgg �

Nc�Nc � 2Nf�

4Nf

c8Jk �

2N2
f � Nf � 8

2N2
f


c8fJ2; Jkg � �Nc � Nf��J
2; �T8; Gkc		;

(A13)

 dab8�Dia
2 ; �D

ib
2 ;D

kc
2 		 � �

Nf
2
dc8eDke

2 �
Nf � 4

4Nf
�Nc � Nf�fJk; fTc; T8gg �

Nf
4
dc8eDke

4 � fD
kc
2 ; fJ

r; Gr8gg;

(A14)

 

dab8��Gia; �Dib
2 ;D

kc
3 		 � �G

ia; �Dib
3 ;D

kc
2 		 � �D

ia
2 ; �G

ib;Dkc
3 		 � �D

ia
2 ; �D

ib
3 ; G

kc		

� �Dia
3 ; �G

ib;Dkc
2 		 � �D

ia
3 ; �D

ib
2 ; G

kc		�

� �6�Nc � Nf�dc8eGke � �3Nf � 6�dc8eDke
2 � 2�Nf � 1�fGk8; Tcg � 6fGkc; T8g �

N2
f � 8

Nf
�J2; �T8; Gkc		

�
3

2
�Nc � Nf�dc8eDke

3 �
Nf � 4

Nf
�Nc � Nf�dc8eOke

3 �
3

2
�Nf � 2�dc8eDke

4 �
Nc � Nf

2
fJk; fTc; T8gg

�
2

Nf
�Nf � 2��Nc � Nf�fG

kc; fJr; Gr8gg �
2

Nf
�Nf � 2��Nc � Nf�fG

k8; fJr; Grcgg

�
N2
f � 3Nf � 8

Nf
fJ2; fGk8; Tcgg �

3Nf � 8

Nf
fJ2; fGkc; T8gg � 4fDk8

2 ; fJ
r; Grcgg � �Nf � 4�fDkc

2 ; fJ
r; Gr8gg

�
5

64
fJ2; �Gk8; fJr; Grcg	g �

5

64
fJ2; �Gkc; fJr; Gr8g	g �

5

64
f�J2; Gkc	; fJr; Gr8gg �

5

64
f�J2; Gk8	; fJr; Grcgg

�
5

64
fJk; �fJm;Gmcg; fJr; Gr8g	g �

N2
f � 4Nf � 8

2Nf
fJ2; �J2; �T8; Gkc		g; (A15)

 

dab8��Gia; �Dib
2 ;O

kc
3 		 � �G

ia; �Oib
3 ;D

kc
2 		� �D

ia
2 ; �G

ib;Okc
3 		� �D

ia
2 ; �O

ib
3 ;G

kc		

� �Oia
3 ; �G

ib;Dkc
2 		 � �O

ia
3 ; �D

ib
2 ;G

kc		�

� 6Nfd
c8eDke

2 �
5Nf� 8

4Nf
�Nc�Nf�d

c8eDke
3 �

2

Nf
�Nc�Nf�d

c8eOke
3 �

2

Nf
�Nf� 2��Nc�Nf�fJ

k; fGrc;Gr8gg

�
3

4
�Nc�Nf�fJk; fTc;T8gg �

2

N2
f

�Nf� 2��Nc�Nf�
c8fJ2; Jkg �
Nf� 9

2
dc8eDke

4

�
N2
f� 2Nf� 4

2Nf
fJ2; fGk8; Tcgg �

2

Nf
fJ2; fGkc;T8gg�

9Nf� 4

2Nf
fDk8

2 ; fJ
r;Grcgg

�
N2
f� 9Nf� 4

2Nf
fDkc

2 ; fJ
r;Gr8gg �

71

128
f�J2;Gkc	; fJr;Gr8gg�

71

128
f�J2;Gk8	; fJr;Grcgg

�
71

128
fJk; �fJm;Gmcg; fJr;Gr8g	g �

Nf� 2

4
fJ2; �J2; �T8;Gkc		g �

71

128
fJ2; �Gkc; fJr;Gr8g	g

�
71

128
fJ2; �Gk8; fJr;Grcg	g; (A16)
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(3) Flavor 27 contribution

 �Gi8; �Gi8; Gkc		 �
1

4
�fc8ef8eg � 2dc8ed8eg�Gkg �

1

Nf

c8Gk8 �

1

2Nf
dc88Jk; (A17)

 �Gi8; �Gi8;Dkc
2 		 � �G

i8; �Di8
2 ; G

kc		 � �Di8
2 ; �G

i8; Gkc		 �

�
1

Nf

88
cg �

7

4
fc8ef8eg

�
Dkg

2 �
2

Nf

c8Dk8

2

� dc8efGke; T8g �
1

2
d88efGke; Tcg

� ifc8e�Gk8; fJr; Greg	; (A18)

 

�Gi8; �Di8
2 ;D

kc
2 		 � �D

i8
2 ; �G

i8;Dkc
2 		 � �D

i8
2 ; �D

i8
2 ; G

kc		 � �2fc8ef8egGkg �
3

4
fc8ef8egDkg

3 �
1

2
fc8ef8egOkg

3

�
1

2
fGkc; fT8; T8gg � fGk8; fTc; T8gg

�
1

2
fc8e�kimfTe; fJi; Gm8gg; (A19)

 

�Gi8;�Gi8;Dkc
3 		 � �G

i8; �Di8
3 ; G

kc		 � �Di8
3 ; �G

i8; Gkc		

� �dc8ed8eg � 2fc8ef8eg�Gkg �
2

Nf

c8Gk8 �

1

Nf
dc88Jk �

2

Nf

88Dkc

3 �
1

4
�3fc8ef8eg � 2dc8ed8eg�Dkg

3

�
1

Nf

c8Dk8

3 � d
c8ed8egOkg

3 � 2fGkc; fGr8; Gr8gg � 2fGrc; fGr8; Gk8gg � 4dc8efGke; fJr; Gr8gg

� dc8efGk8; fJr; Gregg � d88efGke; fJr; Grcgg � 3dc8efJk; fGre; Gr8gg � d88efJk; fGrc;Gregg

�
1

Nf
dc88fJ2; Jkg �

1

2
fc8e�kimfTe; fJi; Gm8gg; (A20)

 

�Gi8;�Gi8;Okc
3 		 � �G

i8; �Oi8
3 ; G

kc		 � �Oi8
3 ; �G

i8; Gkc		

� �
1

2
�dc8ed8eg � 2fc8ef8eg�Gkg �

1

Nf

c8Gk8 �

1

2Nf
dc88Jk �

1

2
dc8ed8egDkg

3 �
1

Nf

c8Dk8

3 �
2

Nf

88Okc

3

�
5

Nf

c8Ok8

3 �
1

4
�3fc8ef8eg � 4dc8ed8eg�Okg

3 � fG
kc; fGr8; Gr8gg � fGrc; fGr8; Gk8gg

� dc8efGke; fJr; Gr8gg �
3

2
dc8efGk8; fJr; Gregg �

1

2
d88efGke; fJr; Grcgg � d88efGkc; fJr; Gregg

�
1

2
dc8efJk; fGre; Gr8gg �

1

2
d88efJk; fGrc; Gregg �

1

Nf
dc88fJ2; Jkg �

3

4
fc8e�kimfTe; fJi; Gm8gg; (A21)

 �Di8
2 ; �D

i8
2 ;D

kc
2 		 � �f

c8ef8egDkg
2 �

1
2f
c8ef8egDkg

4 �
1
2fD

kc
2 ; fT

8; T8gg; (A22)
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�Gi8;�Di8
2 ;D

kc
3 		 � �G

i8; �Di8
3 ;D

kc
2 		 � �D

i8
2 ; �G

i8;Dkc
3 		 � �D

i8
2 ; �D

i8
3 ; G

kc		

� �Di8
3 ; �G

i8;Dkc
2 		 � �D

i8
3 ; �D

i8
2 ; G

kc		

� 4ifc8e�Gk8; fJr; Greg	 � 4ifc8e�Gke; fJr; Gr8g	 � 2dc8efJ2; fGke; T8gg � d88efJ2; fGke; Tcgg

� 2dc8efDk8
2 ; fJ

r; Gregg � d88efDkc
2 ; fJ

r; Gregg � 2ffJr; Grcg; fGk8; T8gg � 2ffJr; Gr8g; fGkc; T8gg

� 2ffJr; Gr8g; fGk8; Tcgg � 2ifc8efJ2; �Gke; fJr; Gr8g	g � 2ifc8effJr; Greg; �J2; Gk8	g

� 2ifc8efJk; �fJi; Gieg; fJr; Gr8g	g; (A23)

 

�Gi8;�Di8
2 ;O

kc
3 		 � �G

i8; �Oi8
3 ;D

kc
2 		 � �D

i8
2 ; �G

i8;Okc
3 		 � �D

i8
2 ; �O

i8
3 ; G

kc		

� �Oi8
3 ; �G

i8;Dkc
2 		 � �O

i8
3 ; �D

i8
2 ; G

kc		

� 9fc8ef8egDkg
2 �

2

Nf

88Dkc

4 �
9

2
fc8ef8egDkg

4 �
4

Nf

c8Dk8

4 � 2fDkc
2 ; fG

r8; Gr8gg � 4fDk8
2 ; fG

rc;Gr8gg

� dc8efDk8
2 ; fJ

r; Gregg �
1

2
d88efDkc

2 ; fJ
r; Gregg � dc8efJ2; fGke; T8gg �

1

2
d88efJ2; fGke; Tcgg

� 2ifc8efJ2; �Gk8; fJr; Greg	g � ifc8efJ2; �Gke; fJr; Gr8g	g � ifc8effJr; Gr8g; �J2; Gke	g

� ifc8effJr; Greg; �J2; Gk8	g � 2ifc8efJk; �fJi; Gieg; fJr; Gr8g	g: (A24)

2. Nondegenerate case �=m� � 0

Similarly, the evaluation of the commutator-anticommutator structure

 fAja; �Akc; �M; Ajb		g;

which represents the leading contribution to the renormalized baryon axial vector current for finite octet-decuplet mass
difference, yields the following terms:

(1) Flavor singlet contribution

 fGia; �Gkc; �J2; Gia		g � �1
2�Nf � 2�Gkc � 1

2�Nc � Nf�D
kc
2 �

1
2D

kc
3 �Okc

3 ; (A25)

 fGia; �Dkc
2 ; �J

2; Gia		g � fGia; �Gkc; �J2;Dia
2 		g � fD

ia
2 ; �G

kc; �J2; Gia		g

� 2�Nc � Nf�Gkc � 1
2�Nc�Nc � 2Nf� � 9Nf � 2	Dkc

2 �
1
2�Nc � Nf�D

kc
3 � 2Dkc

4 ; (A26)

(2) Flavor octet contribution

 

dab8fGia; �Gkc; �J2; Gib		g � �
1

4
�Nf � 4�dc8eGke �

1

4
�Nc � Nf�d

c8eDke
2 �

1

4
dc8eDke

3 �
1

2
dc8eOke

3

�
1

2
fGkc; fJr; Gr8gg �

1

Nf
fGk8; fJr; Grcgg �

1

8
fJk; fTc; T8gg �

1

Nf
fJk; fGrc; Gr8gg

�
1

4
�Nc � Nf��J2; �T8; Gkc		 �

Nc�Nc � 2Nf� � 2Nf � 4

4Nf

c8Jk �

1

2Nf

c8fJ2; Jkg;

(A27)
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dab8�fGia; �Dkc
2 ; �J

2; Gib		g � fGia; �Gkc; �J2;Dib
2 		g � fD

ia
2 ; �G

kc; �J2; Gib		g�

� �Nc � Nf�d
c8eGke �

7Nf � 4

4
dc8eDke

2 �
Nf
2
fTc; Gk8g � fGkc; T8g �

1

4
�Nc � Nf�d

c8eDke
3

�
Nf � 2

2Nf
�Nc � Nf��fJk; fGrc; Gr8gg � fGk8; fJr; Grcgg� �

1

4
�Nc � Nf�fJk; fTc; T8gg

�
N2
f � 4

4Nf
�J2; �T8; Gkc		 �

1

2
fDk8

2 ; fJ
r; Grcgg �

Nf � 2

2Nf
fJ2; fGk8; Tcgg �

1

2
dc8eDke

4

�
Nf � 1

Nf
fDkc

2 ; fJ
r; Gr8gg; (A28)

(3) Flavor 27 contribution

 fGi8; �Gkc; �J2; Gi8		g �
1

Nf
�
88
bc � 
b8
c8�Gkb �

1

2
�dc8ede8d � dcedde88 � fc8efe8d�Gkd

�
1

2
dc8efGk8; fJr; Gregg �

1

2
dc8efJk; fGre; Gr8gg �

1

4
�kijfc8efTe; fJi; Gj8gg

�
1

2Nf

c8fJk; fJr; Gr8gg �

1

Nf

c8fJ2; Gk8g; (A29)

 fGi8; �Dkc
2 ; �J

2; Gi8		g � fGi8; �Gkc; �J2;Di8
2 		g � fD

i8
2 ; �G

kc; �J2; Gi8		g

� �
15

4
fc8ef8egDkg

2 �
i
2
fc8e�Gke; fJr; Gr8g	 � ifc8e�Gk8; fJr; Greg	 �

1

2
fc8ef8egDkg

4 � fD
kc
2 ; fG

r8; Gr8gg

� fDk8
2 ; fG

rc; Gr8gg �
1

2
ffJr; Grcg; fGk8; T8gg �

1

2
ffJr; Gr8g; fGk8; Tcgg �

i
2
fc8efJk; �fJi; Gieg; fJr; Gr8g	g:

(A30)

APPENDIX B: MATRIX ELEMENTS OF BARYON OPERATORS

In order to produce results of straightforward applicability, here we present the evaluation of the matrix elements of the
baryon operators that constitute Akc. A glance at Eqs. (30)–(32) reveals that one can identify the basic operators

 Xc0 � fJ
r; Grcg; Xkc1 � Gkc; Xkc2 �Dkc

2 ; Xkc3 �Dkc
3 ; Xkc4 � Okc

3 ; Xkc5 � fG
kc; T8g;

Xkc6 � fG
k8; Tcg; Xkc7 � fG

kc; fJr; Gr8gg; Xkc8 � fG
k8; fJr; Grcgg; Xkc9 � fJ

k; fGrc; Gr8gg;

Xkc10 � fJ
k; fTc; T8gg; Xkc11 � �G

k8; fJr; Grcg	; Xkc12 � �G
kc; fJr; Gr8g	; Xkc13 � fG

kc; fT8; T8gg;

Xkc14 � fG
k8; fTc; T8gg; Xkc15 � fG

rc; fGr8; Gk8gg; Xkc16 � fG
kc; fGr8; Gr8gg;

Xkc17 � fD
kc
2 ; fG

r8; Gr8gg; Xkc18 � fD
k8
2 ; fG

rc; Gr8gg:

Among all the allowed operators, Okc
3 and �J2; Gkc	

connect states of different spin only, whereas
�J2; �T8; Gkc		 connects states which change both spin
and strangeness and along with fc8e�kimfTe; fJi; Gm8gg,
they do not contribute to any observed decay. Thus, the
nonvanishing matrix elements of the operators Xkcm for
initial and final spin- 1

2 baryon states for eight physically
relevant processes are listed in Table III. Notice that op-
erators of the form fc8eXkem , dc8eXkem , fc8ddd8eXkem ; . . . , can
be trivially obtained from Xkcm and are not listed in
Table III.

We now proceed further to obtain theoretical expres-
sions for the axial vector couplings g

BjBi
A . For any given

process, g
BjBi
A is composed of three terms. The first one is

the tree-level value �BjBi ; the next one is the contribution
of Figs. 1(a)–1(c); and the last one is the contribution of
Fig. 1(d). The tree-level value can be written as a sum of
the three parameters a1, b2, and b3 times coefficients
obtained from the appropriate matrix elements of the
baryon operators that accompany them; these coefficients
are listed in Table IV for the processes of interest here. The
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contribution of Fig. 1(a)–1(c) contains cubic products of
a1, bj, and ck, but to the order of approximation imple-
mented here this contribution can be expressed as a sum of
the eight quantities a3

1, a2
1b2, a1b2

2, a2
1b3, a2

1c3, b3
2, a1b2b3,

and a1b2c3 times coefficients arising from the matrix
elements of their respective operators, multiplied by a
global factor containing the integrals over the loops; in
Table V we have listed these coefficients. Finally, the
contribution of Fig. 1(d) can be expressed as a sum of
the three parameters a1, b2, and b3 times coefficients from
the matrix elements of the corresponding operators, also
multiplied by a global factor containing the integrals over
the loops. For completeness these coefficients can be found
in Table VI. However, a few clarifying notes are instructive
here. In Tables V and VI, the singlet, octet, and 27 con-
tributions are explicitly separated so that the interested
reader can reproduce our results. Besides, the singlet and

octet pieces have been subtracted from the entries corre-
sponding to the 27 piece so that it is a purely 27 contribu-
tion. In order to simplify our notation, a coefficient that
multiplies the entries of each flavor representation has been
factored out.

Accordingly, for the process n! pe� ��e for instance,
gpnA can be constructed by reading off the appropriate
coefficients from Tables IV, V, and VI, namely,
 

gpnA � �pn � C
pn
1 �345a3

1 � 63a2
1b2 � 171a1b

2
2 � 31a2

1b3

� 396a2
1c3 � 21b3

2 � 338a1b2b3 � 444a1b2c3�F
�1�
1

� Cpn8 �165a3
1 � 381a2

1b2 � 33a1b2
2 � 419a2

1b3

� 564a2
1c3 � 15b3

2 � 218a1b2b3 � 708a1b2c3�F
�1�
8

� Cpn27 �45a3
1 � 267a2

1b2 � 231a1b2
2 � 107a2

1b3

� 92a2
1c3 � 25b3

2 � 314a1b2b3 � 204a1b2c3�F
�1�
27

�Dpn
1 �15a1 � 3b2 � 5b3�I1 �D

pn
8 �15a1 � 3b2

� 5b3�I8 �D
pn
27 �15a1 � 3b2 � 5b3�I27; (B1)

where the tree-level value reads

 �pn �
5
6a1 �

1
6b2 �

5
18b3: (B2)

Note that the coefficients Cpn1 � 1=432, Cpn8 �
���
3
p
=2592,

Cpn27 � 1=5760, Dpn
1 � �1=12, Dpn

8 � �
���
3
p
=72, and

Dpn
27 � 1=480 are the common factors that multiply each

entry referred to above. Analogous expressions can be
obtained for the axial vector couplings of the remaining
processes.

TABLE III. Matrix elements of the operators Xkcm for some observed transitions between spin- 1
2 baryons.

pn ��� �0�� p� n�� ��� �0�� ���0

�Xc0	BjBi 5=2
��������
3=2

p
1=2 �

�����������
27=8

p
1=2

��������
3=8

p
5
���
2
p
=4 5=2

�Xkc1 	BjBi 5=6 1=
���
6
p

1=6 �
��������
3=8

p
1=6 1=

������
24
p

5=
������
72
p

5=6

�Xkc2 	BjBi 1=2 0 �1=2 �
��������
3=8

p
�1=2

��������
3=8

p
1=

���
8
p

1=2

�Xkc3 	BjBi 5=2
��������
3=2

p
1=2 �

�����������
27=8

p
1=2

��������
3=8

p
5=

���
8
p

5=2

�Xkc5 	BjBi 5=
������
12
p

0 �1=
������
12
p

�3=
������
32
p

1=
������
48
p

�1=
������
32
p

�5=
������
96
p

�5=
������
48
p

�Xkc6 	BjBi 1=
������
12
p

0
���
3
p
=2 1=

������
32
p

�
���
3
p
=4 �5=

������
32
p

�1=
������
96
p

�1=
������
48
p

�Xkc7 	BjBi 5=
������
48
p

0 �
���
3
p
=4 3

���
2
p
=16

���
3
p
=8 �5

���
2
p
=16 �5

���
6
p
=48 �5

���
3
p
=24

�Xkc8 	BjBi 5=
������
48
p

0 �
���
3
p
=4 3

���
2
p
=16

���
3
p
=8 �5

���
2
p
=16 �5

���
6
p
=48 �5

���
3
p
=24

�Xkc9 	BjBi 5=
������
48
p

�1=
���
2
p

�11=
������
48
p

3
���
2
p
=16 11

���
3
p
=24 �13

���
2
p
=16 �5

���
6
p
=48 �5

���
3
p
=24

�Xkc10	BjBi
���
3
p

0
���
3
p

�3=
���
8
p

�
���
3
p
=2 �3=

���
8
p

�
��������
3=8

p
�

���
3
p
=2

�Xkc11	BjBi 0 1=
���
2
p

0 �9
���
2
p
=16 �

���
3
p
=24

���
2
p
=16 25

���
6
p
=48 25

���
3
p
=24

�Xkc12	BjBi 0 �1=
���
2
p

0 9
���
2
p
=16

���
3
p
=24 �

���
2
p
=16 �25

���
6
p
=48 �25

���
3
p
=24

�Xkc13	BjBi 5=2 0 1=2 �
�������������
27=32

p
1=4

�����������
3=32

p
5=

������
32
p

5=4
�Xkc14	BjBi 1=2 0 �3=2

���
6
p
=16 �3=8 5

���
6
p
=16

���
2
p
=16 1=8

�Xkc15	BjBi 5=72 �
���
6
p
=36 97=72 �5

���
6
p
=96 53=144 101

���
6
p
=288 25

���
2
p
=288 25=144

�Xkc16	BjBi 5=24
��������
2=3

p
17=24 �5

���
6
p
=32 13=48 7

���
6
p
=32 145

���
2
p
=96 145=48

�Xkc17	BjBi 1=8 0 �17=8 �5
���
6
p
=32 �13=16 21

���
6
p
=32 29

���
2
p
=32 29=16

�Xkc18	BjBi 5=8 0 11=8 3
���
6
p
=64 11=32 13

���
6
p
=64 5

���
2
p
=64 5=32

TABLE IV. Coefficients for the axial vector couplings of the
baryons: tree-level values.

BjBi a1 b2 b3

pn 5=6 1=6 5=18
��� 1=

���
6
p

0
���
6
p
=18

�0�� 1=6 �1=6 1=18
p� �

��������
3=8

p
�

���
6
p
=12 �

���
6
p
=12

n�� 1=6 �1=6 1=18
���

���
6
p
=12

���
6
p
=12

���
6
p
=36

�0�� 5=
������
72
p ���

2
p
=12 5

���
2
p
=36

���0 5=6 1=6 5=18
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APPENDIX C: CHIRAL COEFFICIENTS

In this appendix, for completeness, the explicit formulas for the chiral coefficients introduced in Eq. (53) are given.
The lowest order coefficients �BjBi are

 �pn � D� F; ���� �
2��
6
p D; �p� � �

1��
6
p �D� 3F�; �n�� � D� F;

���� � �
1��
6
p �D� 3F�; ��0�� � D� F; ��0�� �

1��
2
p �D� F� � 1��

2
p ����0 :

TABLE V. Coefficients for the axial vector couplings of the baryons, Figs. 1(a)–1(c).

Singlet

BjBi C
BjBi
1 a3

1 a2
1b2 a1b

2
2 a2

1b3 a2
1c3 b3

2 a1b2b3 a1b2c3

pn 1=432 345 63 171 �31 �396 21 338 �444
���

���
6
p
=432 69 �48 15 37 �72 0 40 �108

�0�� 1=432 69 �351 �81 253 �36 �21 �98 �204
p�

���
6
p
=288 �69 �53 �47 35 84 �7 �86 76

n�� 1=432 69 �351 �81 253 �36 �21 �98 �204
���

���
6
p
=864 69 255 111 �179 �108 21 178 �12

�0��
���
2
p
=864 345 63 171 �31 �396 21 338 �444

���0 1=432 345 63 171 �31 �396 21 338 �444

Octet
BjBi C

BjBi
8 a3

1 a2
1b2 a1b

2
2 a2

1b3 a2
1c3 b3

2 a1b2b3 a1b2c3

pn
���
3
p
=2592 165 �381 �33 �419 �564 �15 218 �708

���
���
2
p
=864 33 �96 �9 �71 36 0 �24 �60

�0��
���
3
p
=2592 33 141 147 �407 180 15 86 12

p�
���
2
p
=3456 99 195 105 699 540 33 �118 372

n��
���
3
p
=5184 �33 �141 �147 407 �180 �15 �86 �12

���
���
2
p
=1152 �11 �241 �97 �147 44 �11 �126 �52

�0��
���
6
p
=10368 �165 381 33 419 564 15 �218 708

���0
���
3
p
=5184 �165 381 33 419 564 15 �218 708

27
BjBi C

BjBi
27 a3

1 a2
1b2 a1b

2
2 a2

1b3 a2
1c3 b3

2 a1b2b3 a1b2c3

pn 1=5760 45 267 231 �107 �92 25 314 �204
���

���
6
p
=17280 27 �144 �111 �69 264 0 �296 300

�0�� 1=5760 9 213 �69 609 �340 �25 118 36
p�

���
6
p
=11520 81 225 195 �39 �60 27 238 �132

n�� 1=5760 �27 �159 �33 13 �140 �5 46 �228
���

���
6
p
=11520 �27 63 �129 381 �132 �27 �62 156

�0��
���
2
p
=11520 �135 �321 27 �719 236 5 �62 �228

���0 1=5760 �135 �321 27 �719 236 5 �62 �228

TABLE VI. Coefficients for the axial vector couplings of the baryons. Figure 1(d).

Singlet Octet 27

BjBi D
BjBi
1 a1 b2 b3 D

BjBi
8 a1 b2 b3 D

BjBi
27 a1 b2 b3

pn �1=12 15 3 5 �
���
3
p
=72 15 3 5 1=480 15 3 5

��� �
���
6
p
=12 3 0 1 �

���
2
p
=24 3 0 1

���
6
p
=480 3 0 1

�0�� �1=12 3 �3 1 �
���
3
p
=72 3 �3 1 1=480 3 �3 1

p�
���
6
p
=8 3 1 1 �

���
2
p
=32 3 1 1 3

���
6
p
=320 3 1 1

n�� �1=12 3 �3 1
���
3
p
=144 3 �3 1 �1=160 3 �3 1

��� �
���
6
p
=24 3 3 1

���
2
p
=96 3 3 1 �

���
6
p
=320 3 3 1

�0�� �
���
2
p
=24 15 3 5

���
6
p
=288 15 3 5 �

���
2
p
=320 15 3 5

���0 �1=12 15 3 5
���
3
p
=144 15 3 5 �1=160 15 3 5
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The coefficients ���
Bi

arising from the one-loop correction due to wave function renormalization, Figs. 1(b) and 1(c), are
for the octet baryons

 

���N�
9
4�F�D�

2�2C2; �����6F2�D2� 1
3C

2; ��KN�
1
2�9F

2�6FD�5D2�C2�; ��K��3�F2�D2�� 5
3C

2;

���N�
1
4�3F�D�

2; �����D
2� 1

2C
2; �����

9
4�F�D�

2� 1
2C

2; �����3D2� 3
2C

2; ��K��
1
2�9F

2�6FD�5D2�3C2�;

��K��9F2�D2�C2; �����
1
4�3F�D�

2� 1
2C

2; �����D
2;

and for the decuplet baryons

 

���
� �

25
36H

2 � 1
2C

2; ����� �
5
36H

2 � 1
4C

2; ��K� �
5
18H

2 � 1
2C

2; ��K�� �
5
6H

2 � 1
2C

2;

���� �
5
36H

2; ����� �
5
36H

2 � 1
4C

2; ����� �
10
27H

2 � 5
12C

2; ����� �
10
27H

2;

��K�� �
20
27H

2 � 1
3C

2; ��K�� �
5
9H

2 � C2; ����� �
1
4C

2; ����� �
5
9H

2 � C2:

The coefficients ���
BjBi

are thus written as

 

���pn �
9
4�F�D�

2 � 2C2; ������ � 3F2 � 2D2 � 11
12C

2; ��Kpn �
1
2�9F

2 � 6FD� 5D2 � C2�;

��K��� � 6F2 � 2D2 � 4
3C

2; ���pn � 1
4�3F�D�

2; ���
���
� D2 � 1

4C
2; ���p� �

3
8�3F

2 � 6FD� 7D2� � 7
4C

2;

���n�� �
1
8�33F2 � 18FD� 13D2� � 7

6C
2; ��Kp� �

1
4�27F2 � 6FD� 7D2� � 3

4C
2;

��Kn�� �
1
4�15F2 � 6FD� 11D2� � 13

12C
2; ���p� �

1
8�9F

2 � 6FD� 5D2�; ���n�� �
1
8�9F

2 � 6FD� 5D2� � 1
4C

2;

������ �
3
8�3F

2 � 6FD� 7D2� � C2; ���
�0��

� 1
8�33F2 � 18FD� 13D2� � 5

12C
2;

��K��� �
1
4�27F2 � 6FD� 7D2� � 5

4C
2; ��K

�0��
� 1

4�15F2 � 6FD� 11D2� � 19
12C

2;

������ �
1
8�9F

2 � 6FD� 5D2� � 1
4C

2; ���
�0��

� 1
8�9F

2 � 6FD� 5D2� � 1
2C

2;

 

���
�0��

� 9
4�F�D�

2 � 1
2C

2; ���
���0 � ������ ;

��K
�0��

� 1
2�9F

2 � 6FD� 5D2� � 3
2C

2;

��K
���0 � ��K��� ;

���
�0��

� 1
4�3F�D�

2 � 1
2C

2; ���
���0 � ������ :

The coefficients ���
BjBi

evaluated from the graph in Fig. 1(a) are

 

���
pn �

1
4�F�D�

3 � 16
9 �F�D�C

2 � 50
81HC2; ��Kpn �

1
3��3F3 � 3F2D� FD2 �D3� � 2

9�F� 3D�C2 � 10
81HC2;

���pn � � 1
12�F�D��3F�D�

2; ������ �
2

3
��
6
p D�6F2 �D2� � 2

3
��
6
p �2F� 1

3D�C
2 � 10

27
��
6
p HC2;

��K
���
� � 1��

6
p D�F2 �D2� � 8

3
��
6
p �F� 2

3D�C
2 � 5

27
��
6
p HC2; ���

���
� 2

3
��
6
p D�D2 � C2�;

���p� �
3

2
��
6
p D�F2 �D2� � 1

3
��
6
p �11D� 3F�C2 � 10

9
��
6
p HC2;

��Kp� �
1

6
��
6
p �27F3 � 9F2D� 15FD2 � 5D3� � 1��

6
p �F�D�C2 � 5

9
��
6
p HC2; ���p� � �

1
6
��
6
p D�9F2 �D2�;

���n�� �
1
6�6F

3 � 3F2D� 2FD2 �D3� � 2
9�5F�D�C

2 � 10
81HC2;

��Kn�� �
1
6�3F

3 � 3F2D� FD2 �D3� � 1
9�5F�D�C

2 � 5
81HC2; ���n�� �

1
6D�3F

2 � 4FD�D2� � 1
9�3F�D�C

2;

������ �
3

2
��
6
p D�F2 �D2� � 1

3
��
6
p �3F�D�C2 � 5

9
��
6
p HC2;

��K��� �
1

6
��
6
p ��27F3 � 9F2D� 15FD2 � 5D3� � 1��

6
p �F�D�C2 � 5

9
��
6
p HC2; ������ � �

1
6
��
6
p D�9F2 �D2� � 2

3
��
6
p DC2;

���
�0��

� 1
6
��
2
p ��6F3 � 3F2D� 2FD2 �D3� � 2

9
��
2
p �F� 2D�C2 � 10

81
��
2
p HC2

��K
�0��

� 1
6
��
2
p ��3F3 � 3F2D� FD2 �D3� � 1

9
��
2
p �13F� 15D�C2 � 35

81
��
2
p HC2

���
�0��

� 1
6
��
2
p D�3F2 � 4FD�D2� � 1

3
��
2
p �F�D�C2 � 5

27
��
2
p HC2 ���

�0��
� �1

4�F�D�
3 � 2

9�F�D�C
2 � 5

162HC2;

��K
�0��

� 1
3�3F

3 � 3F2D� FD2 �D3� � 2
9�5F�D�C

2 � 10
81HC2;

���
�0��

� 1
12�F�D��3F�D�

2 � 2
9�3F�D�C

2 � 5
54HC2;
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and, due to isospin symmetry, one also has

 

���
���0 �

���
2
p

���
�0��

: �� � �;K; ��

Now, the coefficients 
�
BjBi

from Fig. 1(d) are

 
�pn ��F�D; 
�
���
� � 2��

6
p D; 
Kpn ��

1
2�F�D�; 
K

���
�� 1��

6
p D; 
�pn � 0; 
�

���
� 0;


�p� �
3

8
��
6
p �3F�D�; 
�n�� �

3
8�F�D�; 
Kp� �

3
4
��
6
p �3F�D�; 
Kn�� �

3
4�F�D�; 
�p� �

3
8
��
6
p �3F�D�;


�n�� �
3
8�F�D�; 
���� � �

3
8
��
6
p �3F�D�; 
�

�0��
�� 3

8
��
2
p �F�D�; 
K��� � �

3
4
��
6
p �3F�D�;


K
�0��

�� 3
4
��
2
p �F�D�; 
���� � �

3
8
��
6
p �3F�D�; 
�

�0��
�� 3

8
��
2
p �F�D�; 
�

�0��
� F�D;


�
���0 ��

3
8�F�D�; 
K

�0��
� 1

2�F�D�; 
K
���0 ��

3
4�F�D�; 
�

�0��
� 0; 
�

���0 ��
3
8�F�D�:

The chiral coefficients listed above include contributions from intermediate octet and decuplet baryons. The corre-
sponding distinction between primed and unprimed coefficients as defined in Eq. (53) is straightforward.

Finally, the coefficients ��
0

BjBi
from Fig. 1(a)–1(c) read

 ��
0

pn �
1
9�F�D��3F�D�

2; ��
0

���
� 1

9

��
2
3

q
D�3F�D�2; ��

0

�0��
� 1

9�D� F��3F�D�
2;

��
0

p� � �
1

9
��
6
p �3F�D��3F�D�2; ��

0

n�� �
1
9�D� F��3F�D�

2; ��
0

��� �
1

9
��
6
p �3F�D�3;

��
0

�0��
� 1

9
��
2
p �F�D��3F�D�2; ��

0

���0 �
1
9�F�D��3F�D�
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