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We discuss a constraint of conformal symmetry in the analysis of the pion form factor. The usual power-
law behavior of the form factor obtained in the perturbative QCD analysis can also be attained by taking
negligible quark masses in the nonperturbative quark model analysis, confirming the recent AdS/CFT
correspondence. We analyze the transition from soft to hard contributions in the pion form factor
considering a momentum-dependent dynamical quark mass from an appreciable constituent quark
mass at low momentum region to a negligible current quark mass at high momentum region. We find
a correlation between the shape of nonperturbative quark distribution amplitude and the amount of soft
and hard contributions to the pion form factor.
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I. INTRODUCTION

The pion elastic form factor has been exemplified by
many calculations to understand the substructure of had-
rons in terms of the quark-gluon degrees of freedom [1–
11]. Since the valence structure of the pion is relatively
simple, the value of the four-momentum transfer squareQ2

above which a perturbative QCD(PQCD) approach can be
applied to the pion structure is expected to be lower than
the case of the nucleon.

Recent discussions on the anti–de Sitter space geome-
try/conformal field theory (AdS/CFT) correspondence re-
veals a remarkable consistency with the QCD predictions
on both hadron mass spectra and electromagnetic form
factors [12,13]. In particular, the power-law behavior of
the pion form factor F�Q2� � 1=Q2 is well reproduced by
the AdS/CFT correspondence. The key ingredient in this
correspondence is the conformal symmetry valid in the
negligible quark masses. In this work, we confirm that
the power-law behavior of the pion form factor is indeed
attained by taking into account a momentum-dependent
dynamical quark mass which becomes negligibly small at
large momentum region even in the nonperturbative quark
model analysis. This result is consistent with an important
point of the AdS/CFT prediction, namely, the holographic
wavefunction contains the contribution from all scales up
to the confining scale. Thus, it is rather unnatural to dis-
tinguish the soft and hard pion form factors in comparing
the predictions between QCD and AdS/CFT. However, due
to the ongoing debate on the PQCD applicability in ex-
clusive processes, it is of special interest in the QCD side to
study the transition from the soft regime governed by all
kinds of quark-gluon correlations at low Q2 to the pertur-
bative regime at high Q2. We thus discuss a correlation
between the shape of nonperturbative quark distribution
amplitude (DA) and the amount of soft and hard contribu-
tions to the pion form factor utilizing our light-front quark
model (LFQM) [14]. Similar to the previous findings from
the Sudakov suppression [4–7] of the soft contribution, we

note that the soft and hard contributions are correlated with
each other, i.e. the suppression of the endpoint region for
the quark DA corresponds to the suppression of the soft
contribution, or equivalently, the enhancement of the hard
contribution. We further confirm that the higher-helicity
components suppress the contributions from the ordinary-
helicity components.

The paper is organized as follows. In the next section
(Sec. II), we present the soft contribution to the pion form
factor using the LFQM and discuss a consistency with the
AdS/CFT correspondence. In Sec. III, we discuss the hard
contribution to the pion form factor including the intrinsic
transverse momentum effect. In Sec. IV, we show our
numerical results of the nonperturbative quark model pre-
dictions on the pion DA and form factor as well as the
PQCD prediction on the pion form factor. The correlation
between soft and hard contributions and the higher-helicity
contribution are also discussed in this section. Summary
and conclusion follow in Sec. V.

II. PION FORM FACTOR IN LFQM

To discuss nonperturbative quark model prediction of
the pion form factor, we briefly summarize our LFQM [14]
first. The model wave function for a pion [14] is given by

 ��x;k?; � ��� � �R�x;k?�R� ���x;k?�; (1)

where �R�x;k?� is the radial wave function and
R� ���x;k?� is the spin-orbit wave function obtained by
the interaction-independent Melosh transformation [15]
from the ordinary equal-time static spin-orbit wave func-
tion assigned by the quantum numbers JPC � 0��. Here,
�� �� � 0 and 1 represent the contributions from the
ordinary-helicity and the higher-helicity components, re-
spectively. The detailed description for the spin-orbit wave
function can be found in [14] as well as in other literatures
[16]. The pion wave function � is represented by the
Lorentz-invariant variables xi � p�i =P

�, k?i �
p?i � xiP? and �i, where P, pi and �i are the meson
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momentum, the momenta and helicities of the constituent
quarks, respectively. The radial wave function is given by

 �R�x;k?� �

���������������
1

�3=2�3

s
exp�� ~k2=2�2�; (2)

where the gaussian parameter � is related with the size of
pion and the three momentum squared ~k2 in terms of the
light-front (LF) variables is given by

 

~k 2 �
k2
? �m

2

4x�1� x�
�m2; (3)

for the quark mass mu � md � m. Here, it is easy to see

that the invariant mass of the pion M0 � �
k2
?
�m2

x�1�x� �
1=2 �

2
�����������������
~k2
�m2

p
and the longitudinal component kz of the three

momentum is given by kz � �x� 1=2�M0.
For the low momentum transfer phenomenology in

LFQM, it is customary to take a constant constituent quark
mass m as a mean value of the momentum-dependent
dynamical quark mass at low momentum region. The
momentum dependence of the dynamical quark mass in
the spacelike momentum region has been discussed in
lattice QCD [17] as well as in other approaches, especially
in Dyson-Schwinger [18,19] approach. Although the exact
form ofm� ~k2

� is still not known, the evolution ofm� ~k2
� to a

small current quark mass in large ~k2 region is generally
agreed. Thus, for the large momentum transfer phenome-
nology in PQCD, it seems reasonable to take a negligible
current quark mass, m � 0, for the pion form factor.

Matching between the low momentum LFQM predic-
tion and the large momentum PQCD prediction is a highly
nontrivial task which goes beyond the scope of our present
work. Nevertheless, a sort of consistency between LFQM
and PQCD predictions can be achieved by taking into
account a momentum-dependent dynamical quark mass
in the following sense.

The PQCD factorization of the pion form factor F��Q2�
can be found by taking a large Q2 limit of the LFQM
formula, i.e. the convolution of the initial and final
LFQM wave functions. Since the LFQM wave function
satisfies a LF bound-state equation, one can iterate the final
wave function at the momentum scale Q to yield an
irreducible scattering kernel convoluted with a quark DA
which is a transverse-momentum-integrated wave function
collinear up to the scale Q. Similarly, the factorized initial
quark DA is also at the scale Q which is the probing
momentum scale of the virtual photon. Thus, the factorized
PQCD amplitude of F��Q2� is symmetric under the ex-
change of the initial and final quark DAs. This implies that
the effective quark degrees of freedom probed by the
virtual photon in computing the main contribution to
F��Q2� has the momentum scale Q.

From this picture, one may parametrize the probed quark
mass scale as the momentum scale Q of the virtual photon

and consider the effective dynamical quark mass asm�Q2�.
For the low and high Q2, m�Q2� corresponds to the con-
situent and current quark mass, respectively. Thus, one
may treat the quark mass in LFQM for the low Q2 phe-
nomenology as a consituent quark mass and the quark mass
in PQCD for the high Q2 phenomenology as a current
quark mass. For simplicity in discussing the main features
of soft and hard form factor, one may take each (consituent
or current) mass as a constant mean value ofm�Q2� in each
(low or high) Q region.

In our calculation of both soft and hard form factor, we
adopt the Drell-Yan-West frame (q� � q0 � q3 � 0) with
q2
? � Q2 � �q2. The momentum assignment in this
q� � 0 frame for the pion form factor is given by P �
�P�;M2

�=P
�; 0� and q � �0;q2

?=P
�;q?�. In this frame,

the charge form factor of the pion, hP� qjJ�jPi � �2P�
q��F��Q

2�, can be expressed for the ‘‘�’’-component of
the current J� as follows [14]:
 

FLFQM
� �

Z 1

0
dx
Z
d2k?

��������
@kz
@x

s
�R�x;k?�

��������
@k0z
@x

s
�R�x;k0?�

�
m2 � k? 	 k0?�������������������

m2 � k2
?

q �������������������
m2 � k02?

q ; (4)

where k0? � k? � �1� x�q? and the factors m2 and
k? 	 k0? in the numerator come from the ordinary-helicity
��� �� � 0� and the higher-helicity ��� �� � 
1� com-
ponents of the spin-orbit wave function R� ���x;k?�, re-
spectively. The additional factor �@kz@x �

1=2 to the radial

wavefunction �R�x;k?� (simlilarly �@k
0
z

@x �
1=2 to �R�x;k0?�)

is due to the Jacobian of the variable transformation
fx;k?g ! ~k � �k?; kz� in defining the normalization of
the radial wavefunction [20]. This convention has been
used previously in the calculation of the form factor and
the quark DA (or decay constant) [21]. As discussed above,
one should understand m as a function of Q2 in principle
although in practice m�Q2� for the low Q2 phenomenology
can be taken as a constant constituent quark mass. For the
constant constituent quark mass m, our LFQM prediction
of the pion form factor provides a gaussian fall-off at high
Q2 region as expected from the gaussian form of our radial
wave function �R�x;k?� given by Eq. (2). In this case, the
AdS/CFT correspondence does not work due to the appre-
ciable constituent quark mass which breaks the conformal
symmetry. However, it is remarkable that F��Q2� in Eq. (4)
reveals a power-law behavior even with our gaussian radial
wave function �R�x;k?� if m is replaced by m�Q2� yield-
ing a negligible current quark mass at large Q2. We note
that �R�x;k?��R�x;k0?� in Eq. (4) provides a mass-
dependent weighting factor e��m

2=4x�1�x��2� which severely
suppresses the contribution from the endpoint region of
x! 0 and 1 unlessm! 0. When the conformal symmetry
limit (m! 0) is taken, however, there is no such suppres-
sion of the endpoint region and the highQ2 behavior of the
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form factor dramatically changes from a gaussian fall-off
to a power-law reduction. This may partly explain why the
power-law behavior attained in our Eq. (4) is not accidental
but a consequence of the constraint taken from the confor-
mal symmetry. While our result QnF��Q2� ! const con-
firms the recent findings of the AdS/CFT correspondence
[12,13], the power n, e.g. n � 2 or 4, still depends on the
details of the LFQM calculation such as whether one takes
into account the Jacobi factor or not in Eq. (4). The detailed
numerical results are presented in Sec. IV.

III. HARD CONTRIBUTION IN PQCD

At high momentum transfer, the pion form factor in
leading order can be calculated within the PQCD from
the soft part of the wave function by means of a homoge-
neous Bethe-Salpeter equation. Absorbing the perturbative
kernel of the Bethe-Salpeter equation in a hard scattering
amplitude TH containing all two-particle irreducible am-
plitudes for �� � q �q! q �q, the hard contribution to the
pion electromagnetic form factor is given by

 FPQCD
� �Q2� �

Z d3kd3l

16�3 �R�y; l?�T H�R�x;k?�; (5)

where d3k � dxd2k?
���������������
@kz=@x

p
(d3l � dyd2l?

��������������
@lz=@y

p
)

and T H is related to the original TH including the spin-
orbit wave function, i.e.

 T H �R0T
��� ���0�
H �R
1T

��� ���
1�
H ; (6)

with R0�
1� �R�
"#�""��y; l?�R"#�""��x;k?� � �"$#�. The

hard scattering amplitudes T���
���0�

H and T���
���
1�

H in
Eq. (6) represent the contributions from the ordinary-
helicity and the higher-helicity components, respectively.

To lowest order in perturbation theory, the hard scatter-
ing amplitude TH is to be calculated from the time-ordered
one-gluon-exchange diagrams shown in Fig. 1. The inter-
nal momenta for ��;?�-components are given by k1 �
�x1P

�
1 ;k?�, k2 � �x2P

�
1 ;�k?�, l1 � �y1P

�
1 ; y1q? � l?�,

and l2 � �y2P
�
1 ; y2q? � l?�, where x1 � x, x2 � 1� x,

y1 � y, and y2 � 1� y.
The explicit forms for the hard scattering amplitudes

including the higher twist effects such as the quark mass m
and the intrinsic transverse momenta k? and l? have been
presented in Ref. [22]. There seems no need to rewrite
them in this work since the only difference in this work is
to take the quark mass as a negligibly small current quark
mass, m � 0. Including the intrinsic transverse momenta,
the leading contribution of the hard scattering amplitude
for the higher-helicity components is of 1=Q4, which is the
next-to-leading contribution. When the intrinsic transverse
momenta are neglected, we find by the power counting that
the higher-helicity contributions goes to zero and the hard
scattering amplitude for ordinary-helicity components re-
duces to the usual leading twist result:

 TH �
16��sCF

Q2

�
eu
x2y2

�
e �d

x1y1

�
; (7)

where �s � 4�=��11� 2nf=3� log�Q2=�2� is the QCD
running coupling constant and CF�� 4=3� is the color
factor. For the pion form factor in PQCD for large Q2,
we neglect the terms not only the quark mass m but also
k2
?=q2

?, l 2
? =q2

?, and k? 	 l?=q2
? both in the energy de-

nominators and the numerators of the hard scattering am-
plitude TH due to k2

? � q2
? and l 2

? � q2
?. Our analytic

forms for the hard scattering amplitudes are the same as
those obtained by Huang et al. [9]. However, in choosing
the radial wave function as a nonperturbative input, we
include the Jacobi factor

�����������������������������
M0=4x�1� x�

p
while the authors

in [9] do not. This makes quantitative difference for the soft
and hard form factors between the ones in [9] and ours.
Although the qualitative behaviors are equivalent to each
other between the two (ours and Ref. [9]) at high Q2 in
PQCD, we discuss the effect of the Jacobi factor with
respect to the AdS/CFT correspondence in our numerical
results.

IV. NUMERICAL RESULTS

The key idea in our LFQM [14] is to treat the gaussian
radial wave function as a trial function for the variational
principle to the QCD-motivated Hamiltonian saturating the
Fock state expansion by the constituent quark and anti-
quark, i.e. Hq �q � H0 � Vint, where the interaction poten-
tial Vint consists of confining and hyperfine interaction
terms. For the numerical calculations, we obtained two
different sets of model parameters, i.e. (i) �m;���
�0:25;0:3194�GeV for the harmonic oscillator (HO) con-
fining potential, and (ii) �m;��� �0:22;0:3659�GeV for
the linear confining potential, from our variational princi-
ple for the QCD-motivated effective Hamiltonian [14].
Both parameter sets have shown to provide a good agree-
ment with the available experimental data for form factors,
decay constants and charge radii etc. of various pseudo-
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FIG. 1. Leading order light-front time-ordered diagrams for
the pion form factor.
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scalar and vector mesons as well as their radiative decay
widths [14].

The quark DA of pion, ��x;��, i.e. the probability of
finding collinear quarks up to the scale � in the Lz � 0
(s-wave) projection of the pion wave function [1] is defined
by

 ��x;�� �
Z k2

?
<�2 d2k?�����������

16�3
p

��������
@kz
@x

s
��x;k?; � ���; (8)

where ��x;k?; � ��� � �R�x;k?��R"# �R#"�=
���
2
p

and the
higher-helicity components ( "" and ## ) do not contribute to
DA in this case. Here, again the quark mass in Eq. (8) is the
renormalization scale � dependent. However, for the
LFQM phenomenology at low momentum scale, one
may effectively take m��� as a constant constituent quark
mass.

In Fig. 2, we show the normalized quark DAs of the pion
obtained from the linear (solid line) and HO (dashed line)
potential parameters, respectively, in comparison with the
usual QCD asymptotic DA, �as�x� � 6x�1� x� (dotted
line), and the AdS/CFT prediction of the asymptotic DA,
�AdS=CFT�x� �

8
�

������������������
x�1� x�

p
(double-dot-dashed line).

While the quark DA for the HO potential parameter set
lies between�as and�AdS=CFT, that for the linear confining
potential gets very close to �AdS=CFT. In other words, the
central (end) point region is rather enhanced (suppressed)

for the HO potential parameter set (i) than the linear
potential paramter set (ii). From our model calculation,
we find that the shape of the quark DA becomes sharper
and more suppressed at the endpoint region as the con-
stituent quark mass (gaussian parameter �) increases (de-
creases). As a sensitivity check, we note that the central
point of the quark DA for the set (i) varies about 3.7%
(2.2%) by changing 10% of the quark mass (� value). This
indicates that our results for the quark DA are quite stable
for the variation of model parameters.

In Fig. 3, we show our previously published result [14]
forQ2F��Q

2� obtained from our linear (solid line) and HO
(dashed line) confining potential models and compare both
with the AdS/CFT prediction (dot-dashed line) [23] and the
data [24–27], which includes the most recent results from
JLAB [26,27]. As expected, the gaussian fall-off at highQ2

region provided by our previous LFQM results [14] with
m � 0:22 GeV (solid line) and m � 0:25 GeV (dashed
line) cannot match with the power-law behavior of the
AdS/CFT prediction (dot-dashed line) although all the
lines (solid, dashed, dot-dashed) are comparable for Q2

up to a few GeV2. We remind the reader that the data of
spacelike pion form factor are obtained by extrapolating
pion electroproduction ��p! ��n from negative t �
�pn � pp�2 to timelike t � m2

�. This extrapolation has
considerable uncertainties especially at JLAB energies.
While the recent JLAB data from Horn et al. [26] extracted
two new values at Q2 � 1:60 and 2:45 GeV2, Tadevosyan
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FIG. 2. The distribution amplitude for the pion using two
different sets of model parameters, (i) �m;�� �
�0:25; 0:3194� GeV (dotted line), and (ii) �m;�� �
�0:22; 0:3659� GeV (solid line) compared with the usual QCD
asymptotic DA (dotted line) as well as the AdS/CFT prediction
of the asymptotic DA (double-dot-dashed line).
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FIG. 3 (color online). Q2F��Q
2� in our linear (solid line) and

HO (dashed line) potential models compared with AdS/CFT
prediction (dot-dashed line) as well as data [24–27].
Tadevosyan et al. [27] have reanalyzed previously published
data by Volmer et al. [28] and obtained the data points repre-
sented by the filled circles.
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et al. [27] have reanalyzed the previously published values
[28] of Q2 � 0:6–1:6 GeV2 and obtained rather lower
values than those in Ref. [28]. We should note that our
model parameters have been determined without the use of
the pion form factor F� data but from the variational
principle for the QCD-motivated effective Hamiltonian to
fit the meson mass spectra. While our HO potential model
(dashed line) provides a very good description of the
reanalyzed values from JLAB [27] up to Q2 �
1:60 GeV2, two newly extracted values from [26] (filled
squares) seem closer to our result from the linear potential
model (solid line) or the AdS/CFT prediction (dot-dashed
line). As shown in [26,27], various model predictions such
as Dyson-Schwinger [19], QCD Sum Rules [29], and
dispersion relation [30] including our linear potential
model slightly overestimate the pion form factor compare
to the new JLAB data [26,27]. Although it may be difficult
to pin down which of our models (linear or HO) is better to
describe the current available data, we at least note that the
suppression of the quark DA at the end points region
corresponds to the suppression of the soft contribution to
the pion form factor at lowQ2 region. This is rather similar
to the case of the Sudakov suppression enhancing the hard
contribution to the form factor [4–7].

To investigate a consistency with the recent findings
from the AdS/CFT correspondence [12,23], we consider
a momentum-dependent quark mass for the calculation of
F��Q2� in LFQM. Since it is beyond the scope of our work
to find an explicit form of m�Q2�, we take a simple pa-
rametrization similar to what we have already used in our
previous work [31] as shown in Fig. 4. The details of
discussion for this type of parametrization and the consis-
tency with the PCAC relation [32] can be found in
Ref. [31]. For comparison, we also simply take a negligible
current quark mass m � 0 respecting the conformal sym-
metry in Eq. (4) and show both results in Fig. 5.

In Fig. 5, the solid line is the result of Eq. (4) using the
effective dynamical quark mass m�Q2� drawn in Fig. 4,
which respects the conformal symmetry at high Q2 limit.
In comparison, the dashed line is the result of Eq. (4) taking
m � 0 and the dot-dashed line is the AdS/CFT prediction
presented in Ref. [23]. The corresponding values of the
gaussian parameter � � 0:17� 0:18 GeV are not much
different from the gaussian parameter � � 0:4 GeV used
in a holographic AdS Gaussian-modified-metric model
[23], e.g., the correspondence between � and � can be
easily seen from the gaussian dependence of our model
wave function ��x;k?� � e

�k2
?
=2�2��2x�1�x� in m � 0 limit

and the AdS Gaussian-modified-metric model wave func-
tion ��x;k?� � e

�k2
?
=2�2x�1�x� [33]. The decay constants

obtained with these gaussian parameters are also not much
different from the experimental value f� � 92:4 MeV. As
shown in Fig. 5, our results respecting the conformal
symmetry are in excellent agreement with the AdS/CFT
prediction [23]. This implies that, in the massless quark

case, our gaussian wave function with the Jacobi factor
leads to the scaling behavior F��Q2� � 1=Q2 as Q2 ! 1,
being consistent with the scaling behavior obtained from
AdS/CFT correspondence [12] at large Q2. We note here
that the leading 1=Q2 contribution at high Q2 from AdS/
CFT comes from the hard regime where the holographic
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FIG. 4. Quark mass evolution m�Q2� in spacelike momentum
region. The m0 and mc represent the current (at high Q2) and
constituent (at low Q2) quark masses, respectively.
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variable 	 representing the invariant separation between
pointlike constituents is small. Although the power-law
behavior QnF��Q

2� ! const for large Q2 is still obtained
even without the Jacobi factor, we find n � 4 rather than
n � 2 if the Jacobi factor is not taken into account. The
asymptotic behavior of n � 4 for the meson form factor
with spin-1=2 quarks has recently been found using mer-
omorphization for spin-1=2 quarks [13]. Our work here
indicates that the power n, however, does depend on
whether one takes into account the Jacobi factor or not in
the LFQM calculation. Our result shows that n � 2 can be
attained by taking into account the Jacobi factor in Eq. (4).
This also distinguishes our analysis from Ref. [9]. Other
effects of the presence/absence of the Jacobi factor to
various static properties of mesons can be found in
Ref. [20].

In Fig. 6, we show the hard (PQCD) and soft (LFQM)
contributions to the pion form factor Q2F��Q

2� obtained
from the HO [top] and linear [bottom] potential parame-
ters, respectively. The solid and dotted lines represent the
soft and hard �ordinary� higher helicities� contributions
to the pion form factor, respectively. We include each
helicity component contributions, i.e. the ordinary (dot-
dashed line) and higher (doubledot-dashed line) helicity
contributions. In the top panel, we also show the leading
twist PQCD predictions using both �as and �AdS=CFT for
the comparison. As noted in Ref. [23], the broader shape of
�AdS=CFT increases the magnitude of the leading twist
PQCD prediction for the pion form factor by a factor of
16=9 compared to the prediction based on the asymptotic
form. The new experimental data are taken from [26,27]. In
the AdS/CFT side, it is still an open question how the AdS/
CFT prediction ofQ2F��Q2� shown in Fig. 3 can approach
asymptotically to the PQCD prediction using �AdS=CFT

shown in Fig. 6 [33]. Possibly, the higher order PQCD
corrections may reconcile the two approaches and in addi-
tion one may need to evolve the AdS/CFT DA to the scale
of the gluon virtuality. Since the loop contributions are not
included to the the present approximation of the AdS/CFT
correspondence, quantum corrections are to be incorpo-
rated further [33]. It is not yet clear how to do this in
practice, although there is much interest in the theme
[34]. In the QCD side, however, there are a few things to
note from Fig. 6 regarding on the soft/hard contribution:
(a) The soft contribution for the linear potential parameters
is larger than that for the HO potential ones. (b) The hard
contribution for the linear potential parameters is smaller
than that for the HO potential ones. (c) The higher-helicity
components suppress the contributions from the ordinary-
helicity components. From (a) and (b), we find that the soft
and hard contributions are correlated to each other, i.e. as
the endpoint region for the quark DA is more suppressed,
the soft(hard) contribution to the pion form factor does get
less(more) enhancement. This finding is rather similar to
the previous findings from the Sudakov suppression of the

soft contribution [4–7]. From (c), we also see that the
intrinsic transverse momentum effect included in this
work is still effective even at Q2 � 80 GeV2 range.

V. SUMMARY AND CONCLUSION

Because of the ongoing debate on the PQCD applicabil-
ity in exclusive processes, we studied the soft and hard
contributions to the pion form factor utilizing both LFQM
and PQCD approaches.

We discussed a constraint of conformal symmetry in the
analysis of the pion form factor. The usual power-law
behavior of the pion form factor obtained in the perturba-
tive QCD analysis can also be attained by taking negligible
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FIG. 6 (color online). The hard (PQCD) and soft (LFQM)
contributions to the pion form factor Q2F��Q2� using two
different sets of model parameters, (i) �m;�� �
�0:25; 0:3194� GeV [top], and (ii) �m;�� � �0:22; 0:3659� GeV
[bottom].
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quark masses in the nonperturbative quark model analysis,
confirming the recent AdS/CFT correspondence. Inclusion
of the Jacobi factor with the gaussian radial wave function
in the LFQM analysis is essential to attain the power-law
behavior F��Q2� � 1=Q2 in the massless quark limit. We
find that the correlation between the shape of nonperturba-
tive quark distribution amplitude and the amount of soft
and hard contributions to the form factor, i.e. the suppre-
sion (enhancement) of the endpoint region for the quark
distribution amplitude corresponds to the suppression of
the soft (hard) contribution. The fact that the higher-
helicity components suppress the contributions from the
ordinary-helicity components are also confirmed in this
work.

The conformal symmetry as well as the correlation
between soft and hard contributions may provide a useful

constraint on the model building for the form factor
analysis.
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