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In the calculation of cross sections for infrared-safe observables in high energy collisions at next-to-
leading order, one approach is to perform all of the integrations, including the virtual loop integration,
numerically. One would use a subtraction scheme that removes infrared and collinear divergences from
the integrand in a style similar to that used for real emission graphs. Then one would perform the loop
integration by Monte Carlo integration along with the integrations over final state momenta. In this paper,
we explore how one can perform the numerical integration. We study the N-photon scattering amplitude
with a massless electron loop in order to have a case with a singular integrand that is not, however, so
singular as to require the subtractions. We report results for N � 4, N � 5 with left-handed couplings, and
N � 6.
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I. INTRODUCTION

The calculation of cross sections in the standard model
and its extensions at next-to-leading order (NLO) in per-
turbation theory inevitably involves computing virtual loop
Feynman diagrams. The standard method for this involves
computing the loop integrals analytically. Once the one-
loop amplitude is known analytically, the result can be
inserted into a calculation of the cross section in which
integrals over the momenta of final state particles are
performed numerically. This is the method that was intro-
duced in Ref. [1] and is used, for example, in the packages
MCFM [2] and NLOJet�� [3].

This approach is powerful and has been successfully
applied to a number of processes of experimental interest.
There has been considerable progress [4] in expanding the
range of processes for which an analytical answer is
known.1 One may hope that the analytical approach may
develop into a completely automatic way of generating
scattering amplitudes for a wide class of processes.
However, the complexity of the results produced by known
analytical methods grows rapidly with the number of par-
tons involved in the scattering. For this reason, there may
be limits to the range of processes for which analytical
methods are useful.

One wonders whether a wider range of processes might
be amenable to calculation if one were, instead, to use
numerical integration for the virtual loop integrals. In a
calculation of a cross section, the numerical integration
would be performed along with the integrations over the

momenta of final state particles, so that there would be a
single integration over a large number of variables, with
the integration performed by Monte Carlo style numerical
integration. The purely numerical approach will inevitably
have its limitations, just as the analytical approach does.
However the nature of the limitations will be different. For
this reason, we believe that one should try to develop the
numerical method as far as possible and see how far back
the limitations can be pushed. Eventually, this should in-
volve trying several variations on the basic theme of per-
forming the integrations numerically.

There are already some methods available for doing the
virtual loop integrals numerically. In one method [5,6], one
performs the integral over the energy flowing around the
loop analytically by closing the integration contour in the
upper or lower half plane and evaluating the residues of the
poles in the complex energy plane that come from the
propagator denominators. This is a purely algebraic step.
Then the integral over the space momentum is performed
numerically. There are infrared divergences, but these
cancel inside the integrals between real and virtual graphs
that make up a NLO cross section. This method has been
applied to e�e� ! 3 jets and is completely practical in
that application. For more complicated processes, we do
not know how to arrange a calculation in this style without
subtractions. One could add subtractions to the method of
Refs. [5,6], but for this paper we have chosen a different
approach.

Another method [7] involves transforming the loop in-
tegral into the standard Feynman parameter representation
that one uses for analytically evaluating such integrals.
Then the integral over the Feynman parameters is to be
performed numerically. This method shows promise, but is
limited by the complexity introduced by expanding the
numerator functions involved. The method introduced in
this paper makes use of the Feynman parameter represen-

1Here ‘‘known’’ may mean that there exists a computer pro-
gram to calculate the desired scattering amplitude in terms of
known master integrals or other special functions. There are
many approaches, some of which are conventionally called
‘‘seminumerical’’ because parts of the calculation involve a
numerical approach.
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tation while avoiding the complexities introduced by the
numerator function.

This paper represents the second step of a program for
calculating virtual loop integrals numerically. In the first
step [8], we attacked the problem of infrared divergences.
Typically, the integrals that one wants to evaluate have
infrared divergences associated with the momenta of par-
ticles in the loop becoming collinear with the momenta of
massless external particles or becoming soft. In Ref. [8],
we proposed a subtraction scheme in which one subtracts
certain counterterms from the integrand, then adds these
same counterterms back. After summing over graphs and
performing the integrals analytically, the counterterms that
we added back have a simple form that is easily included in
the calculation of a cross section. Meanwhile, the main
integrand minus the counterterm integrands combine to
make an integrand that is free of singularities strong
enough to make the integral divergent. Thus one can
numerically integrate the main integrand minus the coun-
terterm integrands.

Despite the beauty of this approach, it is one thing to say
that one can numerically integrate the combined integrand
and it is another thing to do it. One needs a practical
method for doing it. That is what we propose in this paper.

In order to keep our discussion reasonably simple, we
attack a simple problem in which the counterterms are not
present because the original integral is infrared finite. The
problem is to compute the amplitude in quantum electro-
dynamics for scattering of two photons to produce N � 2
photons by means of an electron loop. Our formulas in-
clude the possibility of a nonzero electron mass, but in
order to face up to the problem of infrared singularities that
appear when the electron mass vanishes, we concentrate on
the mass zero case.

The process is illustrated in Fig. 1. Electron line n in the
loop carries momentum l�Qn, where Qn is fixed and we
integrate over l. The momentum carried out of the graph by
external photon n is2

 Pn � Qn�1 �Qn; (1)

with P2
n � 0. The propagator denominators provide factors

that would lead to logarithmic divergences after integration
over the soft and collinear regions. However, these diver-
gences are cancelled. For each electron line there is a factor
(6 l� 6Qn). Thus the numerator provides a factor that re-
moves the soft divergence from the integration region �l�
Qn� ! 0. Similarly at each vertex there is a factor �6 l�
6Qn�1�6�n�Pn��6 l� 6Qn�, where �n�Pn� is the polarization
vector of the photon. In the collinear limit �l�Qn� !
xP, this gives a factor �x�1� x�6Pn 6�n�Pn�6Pn � �2x�1�
x�6Pn�n�Pn� � Pn. This vanishes because �n�Pn� � Pn � 0.

Thus the numerator also provides a factor that removes
each collinear divergence. The loop integral is also finite in
the ultraviolet as long as N > 4. (For N � 4 the integral is
divergent by power counting, so a special treatment, dis-
cussed later in this paper, is needed.) Thus we can present
an algorithm that is uncluttered by the counterterms by
means of using the scattering of two photons to produce
N � 2 photons. We reserve the full case of massless quan-
tum chromodynamics for a future paper.

II. THE AMPLITUDE

We wish to calculate the amplitude for scattering of two
photons to produce N � 2 photons by means of a (mass-
less) electron loop. However, we formulate the problem in
a more general fashion. The amplitude for any one-loop
graph can be represented as

 M �
Z d4l

�2��4
eNN�l�

YN
i�1

1

�l�Qi�
2 �m2

i � i0
: (2)

Here there is a loop with N propagators as illustrated in
Fig. 1. The nth propagator carries momentum l�Qn and
represents a particle with mass mn. At the nth vertex,
momentum Pn � Qn�1 �Qn leaves the graph. In the
case to be considered, all the mn and P2

n vanish, but we
leave the masses and external leg virtualities open in the
general formulas. There is a coupling e for each vertex,
where e is the charge of the fermion. There is a numerator
factor that, for the photon scattering case with zero electron
mass, has the form

 N�l� � Trf6�N�PN��6 l� 6QN� � � � 6�1�P1��6 l� 6Q1�g; (3)

where �i�Pi� is the polarization vector of photon i and e is

FIG. 1 (color online). Feynman diagram for the N-photon
amplitude.

2Throughout this paper, we adopt a cyclic notation for indices
in the range f1; 2; � � � ; Ng. Thus Eq. (1) for n � N is PN �
Q1 �QN .
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the electromagnetic coupling.3 In other examples, one
would have a different numerator function. The only prop-
erty that we really need is that N�l� is a polynomial in l.

It will prove convenient to modify this by inserting
factors im2

0 in the numerator and the denominator, where
m2

0 is an arbitrary parameter that we can take to be of the
order of a typical dot product Qi �Qj. This factor is not
absolutely needed for the purposes of this paper, but it is
quite useful in the case of the subtraction terms to be
considered in future papers and is at least mildly helpful
in the analysis of this paper. With this extra factor, we write

 M �
Z d4l

�2��4
im2

0e
NN�l�

im2
0

YN
i�1

1

�l�Qi�
2 �m2

i � i0
: (4)

III. REPRESENTATION WITH FEYNMAN
PARAMETERS

In principle, it is possible to perform the integration
represented in Eq. (4) directly by Monte Carlo numerical
integration on a suitably deformed integration contour. We
have looked into this and conclude that it may be a prac-
tical method. However, one has to pay attention to the
singularities on the surfaces �l�Qi�

2 � m2
i . The geometry

of these surfaces and of their intersections is somewhat
complicated. There is a standard method for simplifying
the singularity structure: changing to a Feynman parameter
representation. One way of using this method has been
emphasized in the context of numerical integrations in
Ref. [7]. It is the Feynman parameter method that we
explore in this paper.

The Feynman parameter representation of Eq. (4) is
 

M � ��N � 1�
Z 1

0
dx0

Z 1

0
dx1 � � �

Z 1

0
dxN�

�XN
i�0

xi � 1
�

�
Z d4l

�2��4
im2

0e
NN�l�

�D�l� � i0	N�1 : (5)

The denominator here is

 D�l� �
XN
i�1

xi��l�Qi�
2 �m2

i 	 � ix0m2
0: (6)

The denominator comes with a ‘‘�i0’’ prescription for
avoiding the possibility that the integrand has a pole on
the integration contour and the �ix0m2

0 term serves the
same purpose. With repeated use of

PN
i�1 x

i � 1� x0, the
denominator can be simplified to

 D�l� �
1

1� x0 f
~l2 ��2�x�g: (7)

Here

 

~l �
XN
i�1

xi�l�Qi� (8)

and

 �2�x� �
1

2

XN
i;j�1

xixjSij � i
XN
j�1

x0xjm2
0; (9)

where we have defined

 Sij � �Qi �Qj�
2 �m2

i �m
2
j : (10)

We change integration variables from l to ~l as given in
Eq. (8). The inverse relation is

 l � l�~l; x� 

1

1� x0

�
~l�

XN
i�1

xiQi

�
: (11)

With these results, we have

 M � im2
0e
N��N � 1�

Z 1

0
dx1 � � �

Z 1

0
dxN�

�XN
i�1

xi < 1
�

�

�XN
i�1

xi
�
N�3 Z d4~l

�2��4
N�l�~l; x��

�~l2 ��2�x� � i0	N�1
:

(12)

Here we understand that the Feynman parameter x0 is
given by x0 � 1�

PN
i�1 x

i.
If we wished to perform the integration analytically, the

next step would be to carry out the integration over ~l.
However for a numerical integration, such a step would
be a step in the wrong direction. Performing the ~l integra-
tion analytically would require expanding the complicated
numerator function in powers of ~l. For this reason, we leave
the ~l integration to be carried out numerically after a little
simplification.

The simplification is to change variables from ~l to a
momentum ‘ that has been scaled by a factor ��x� and
rotated in the complex plane:

 

~l ��x; ‘� � 1
2��x�f�1� i�‘� � �1� i�P�� ‘�g: (13)

Here ‘̂� � P�� ‘� is the parity transform of ‘: ‘̂0 � ‘0,
‘̂j � �‘j for j 2 f1; 2; 3g. We have defined ��x� for real

x and m2
0 ! 0 to be

������������
�2�x�

p
if �2�x� is positive and

i
����������������
��2�x�

p
if �2�x� is negative. The square of ~l is

 

~l 2 � �2�x�‘�P��‘�: (14)

Note that ‘�P��‘� is the square of ‘with a Euclidian inner
product and is thus strictly positive.

3Specifically, �i�Pi� for an outgoing photon is ���Pi; si� �
��Pi;�si�, where si is the helicity of the photon. For an incom-
ing photon, we follow the convention of using a helicity label si
equal to the negative of the physical helicity of the photon. Then
�i�Pi� is ���Pi;�si�.
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Our integral now is

 M � �m2
0e
N��N � 1�

Z d4‘

�2��4
1

�1� ‘�P��‘�	N�1

�
Z 1

0
dx1 � � �

Z 1

0
dxN�

�XN
i�1

xi < 1
��XN

i�1

xi
�
N�3

�
N�l�x; ‘��

��2�x� � i0	N�1 :

(15)

The function l�x; ‘� in the numerator function is obtained
by combining Eqs. (11) and (13):
 

l��x; ‘� �
1

1� x0

�
1

2
��x�f�1� i�‘� � �1� i�P�� ‘�g

�
XN
j�1

xjQ�
j

�
: (16)

It is a somewhat subtle matter to verify that the complex
rotations involved in defining ‘ are consistent with the�i0
prescription in the original denominator. We examine this
issue in Appendix A.

Notice that in the numerator function the momentum on
line n is
 

l��x; ‘� �Q�
n �

1

1� x0

�
1

2
��x�f�1� i�‘�

� �1� i�P�� ‘�g � K
�
n �x�

�
; (17)

where

 K�
n �x� �

XN
j�1

xj�Q�
j �Q

�
n �: (18)

We shall meet Kn�x� later in Sec. VI when we study pinch
singularities. For the moment, we note simply that in the
final formula (15) both the numerator and the denominator
are invariant under shifts Qi ! Qi � �Q of the reference
momenta Qi.

IV. CONTOUR DEFORMATION IN FEYNMAN
PARAMETER SPACE

The integral in Eq. (15) is not yet directly suitable for
Monte Carlo integration. The problem is that the quadratic
function �2�x� vanishes on a surface in the space of the
Feynman parameters. Evidently, the integrand is singular
on this surface. For x0 > 0, �2�x� does not vanish for real
xj, but on the plane x0 � 0, �2�x� vanishes for certain real
values of the other xj. If we do not do something about this
singularity, the numerical integral will diverge. The some-
thing that we should do is deform the integration contour in
the direction indicated by the�i0 prescription. That is, we
write the integral as

 

M � �m2
0e
N��N � 1�

Z d4‘

�2��4
1

�1� ‘�P��‘�	N�1

�
Z
C
dz
�XN
i�1

zi
�
N�3 N�l�z; ‘��

��2�z�	N�1


 �m2
0e
N��N � 1�

Z d4‘

�2��4
1

�1� ‘�P��‘�	N�1

�
Z 1

0
d�1 � � �

Z 1

0
d�N�

�XN
i�1

�i < 1
�

det
�
dz
d�

�

�

�XN
i�1

zi
�
N�3 N�l�z���; ‘��

��2�z����	N�1 : (19)

Here we integrate over real parameters �i for i 2
f0; 1; . . . ; Ng with

PN
i�0 �

i � 1, so that we have displayed
the integral as an integral over N parameters �1; . . . ; �N

with �0 
 1�
PN
i�1 �

i. The integration range is 0< �i for
i 2 f0; 1; . . . ; Ng. The original integral was over real pa-
rameters xi with

PN
i�0 x

i � 1 with this same range, 0< xi.
The contour is defined by specifying complex functions
zi��� for i 2 f0; 1; . . . ; Ng with

PN
i�0 z

i � 1.
In moving the integration contour we make use of the

multidimensional version of the widely used one-
dimensional contour integration formula. A simple proof
is given in Ref. [6]. The essence of the theorem is that we
can move the integration contour as long as we start in the
direction indicated by the �i0 prescription and do not
encounter any singularities of the integrand along the
way. In addition, the boundary surfaces of the contour
have to remain fixed. Since the surfaces zi � 0 are bound-
ary surfaces of the contour before deformation, they should
remain boundary surfaces after the deformation. The origi-
nal integral covers the region 0< xi for i 2 f1; . . . ; Ng and
the �i cover this same range, 0< �i. Thus we demand

 zi��� ! 0 as �i ! 0 (20)

for i 2 f0; 1; . . . ; Ng.
We adopt a simple ansatz for the contour in the complex

z-space:4

 zi��� �
�i � i�i���

1� i
PN
j�0 �

j���
: (21)

Here the �i variables are functions of the integration
parameters �i. With this ansatz, the constraint that

P
iz
i �

1 is automatically satisfied:

 

XN
i�0

�i � 1 ���!XN
i�0

zi � 1: (22)

4This is a nontrivial deformation for all � such that ���� � 0
with one exception. If all of the �i vanish except for �n, where
then �n � 1, then zi � �i for all i even if �n � 0. This possi-
bility does not cause any problems.
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In order to satisfy Eq. (20), we require

 �i��� ! 0 as �i ! 0 (23)

for i 2 f0; 1; . . . ; Ng.
There are certain conditions to be imposed on the con-

tour choice in order to be consistent with the ‘‘�i0’’
prescription in the original integral. Note first that

 �2�z� �
�2��� i�����

�1� i
PN
j�0 �

j����2
: (24)

Next, note that �2 with argument �� i� appears in the
numerator. In order to analyze Eq. (24), it is convenient to
give a special name S�x� to the quadratic function that
forms the first part of �2 in Eq. (9),

 �2�x� � S�x� � i
XN
j�1

x0xjm2
0; (25)

where

 S �x� �
1

2

XN
i;j�1

xixjSij: (26)

A sufficient condition for the choice of the �i��� is as
follows. First, we choose

 �0 � 0: (27)

This is the simplest way to satisfy Eq. (23) for�0. With this
choice for �0, we have

 �2��� i�� � S��� � S��� �m2
0�

0
XN
j�1

�j

� i
XN
i�1

�i���wi��� � im2
0�

0�1� �0�; (28)

where

 wi��� 

@S���
@�i

�
XN
j�1

Sij�
j: (29)

Our condition for the choice of the �i for i 2 f1; . . . ; Ng is
that

 

XN
i�1

�i���wi��� � 0; (30)

with
P
�iwi > 0 except at a point on the boundary of the

integration region.
Suppose, now, that the condition (30) is satisfied. Do we

then have an allowed contour deformation? Consider the
family of contour deformations �i��;	� � 	�i��� with
0< 	  1.

We first consider infinitesimal values of 	. We have, to
first order in 	,

 

�2�z� �
�
S��� � 	m2

0�
0
XN
j�1

�j � i	
XN
i�1

�i���wi���

� im2
0�

0�1� �0�

��
1� 2i	

XN
j�1

�j���
�
�O�	2�

� S��� � 	m2
0�

0
XN
j�1

�j � 2	�0�1� �0�m2
0

XN
j�1

�j

� i	
XN
i�1

�i���wi��� � 2i	S���
XN
j�1

�j���

� im2
0�

0�1� �0� �O�	2�: (31)

In the neighborhood of any point � with �0 > 0, �2�z� has
a positive imaginary part even with 	 � 0. For �0 � 0, the
contour deformation gives �2�z� a positive imaginary part
in a neighborhood of any point � where the real part, S���,
vanishes. This is the meaning of the ‘‘�i0’’ prescription.
We may consider that we start with a value of 	 that is just
infinitesimally greater than zero, so that the contour does
not actually pass through any poles of the integrand in the
interior of the integration region.

Now we turn to larger values of 	. We have

 �2�z� �
�2��� i	�����

�1� i	
P
j
�j����2

: (32)

Assuming that the �i��� are smooth functions, this is a
smooth function of �. (Note here that 1� i	

P
j�

j���
cannot vanish because its real part is 1). Furthermore,
when 	 > 0, �2�z� is never zero in the interior of the
integration region. This is because, according to Eq. (28),
the imaginary part of �2��� i	����� is positive. Thus
1=��2�z�	N�1 is an analytic function of z in the interior
of the entire region covered by the family of deformations.
For the boundary of the integration region, there are some
issues of convergence that one should check. We do so in
Appendix B. Anticipating the result of this check, we
conclude that the integral is independent of the amount
of deformation and we can set 	 � 1.

It is remarkable that the imaginary part of �2�z� is not
necessarily positive on all of the deformed contour. What is
crucial is that the deformation starts in the right direction
and that, as the contour is deformed, it does not cross any
poles.

V. A STANDARD CONTOUR DEFORMATION

A convenient choice for the deformation function �i���
for i 2 f1; . . . ; Ng is

 �i��� � �	=m2��iwi���: (33)

Here 	 is an adjustable dimensionless constant and m2 is a
parameter with the dimension of squared mass that we
insert because Sij and thus wi has dimension of squared
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mass. Note that with this choice the requirement (23) that
�i��� vanish when �i vanishes is automatically met. This
deformation gives

 S ��� i�� � S��� � S��� � i�	=m2�
XN
i�1

�i�wi���	
2:

(34)

Evidently the imaginary part of �2��� i�� has the right
sign.

Equation (33) can be thought of as specifying a basic
deformation. We can add other deformations to this. In our
numerical work for this paper we have added one more
deformation, as specified in Appendix C.

VI. PINCH SINGULARITIES

The integrand is singular for �0 ! 0 at any real point �
with S��� � 0. We have seen in the previous section that
the standard contour deformation keeps the contour away
from this singularity as long as there is some index i 2
f1; . . . ; Ng such that �i > 0 and wi��� � 0.

What about a point � with S��� � 0 such that there is no
index i 2 f1; . . . ; Ng such that �i > 0 and wi��� � 0. In
this case, the integration contour is pinched in the sense
that there is no allowed contour deformation that can give
S��� i�� a positive imaginary part at this point �. To see
this, recall from Eq. (28) that, when �0 � 0,

 ImS��� i�� �
XN
i�1

�iwi���: (35)

Consider a point � such that S��� � 0 and such that for
each index i 2 f1; . . . ; Ng, wi��� � 0 implies �i � 0. For
any allowed deformation ����, we must have �i � 0 for
all i 2 f1; . . . ; Ng such that �i � 0. Thus for each index
i 2 f1; . . . ; Ng, wi��� � 0 implies �i � 0. From Eq. (35)
we conclude that ImS��� i�� must vanish at the point in
question for any allowed choice of the �i. We conclude
that a real point � with �0 � 0 and with S��� � 0 is a
pinch singular point if, and only if,

 �iwi��� � 0 for every i 2 f1; . . . ; Ng: (36)

We also note that the point �0 � 1, �i � 0 for i 2
f1; . . . ; Ng, is a pinch singular point. This singularity cor-
responds to the ultraviolet region of the original loop
integration.

With a little algebra, one can translate the condition for a
pinch singularity with �0 � 0. At one of these points, we
have

 either �i � 0 or K2
i �m

2
i � 0 (37)

for each i 2 f1; . . . ; Ng, where K�
i ��� was given earlier in

Eq. (18). When �0 � 0, these vectors have the properties
that Ki � Ki�1 � Pi and

P
�iKi � 0. Thus Eq. (37) is the

well-known condition for a pinch singularity (see Bjorken

and Drell [9]). It says that for each propagator i around the
loop, there is a momentum Ki such that momentum con-
servation is obeyed at the vertices and each Ki around the
loop is either on shell or else the corresponding �i is zero
and such that the space-time separations �x�i � �iK�

i
around the loop sum to zero.

Notice that the momenta K�
i ��� appear in the numerator

function. According to Eq. (17), the momentum for line i in
the numerator function in the case that � is at a contour
pinch (so ���� � 0) is K�

i ���.
There are two types of pinch singular points that are

always present if we have massless kinematics (with no
external momenta collinear to each other) and one more
that can be present.

A. Soft singularity

The first kind of pinch singular point that is always
present if we have massless kinematics is the one corre-
sponding to a loop propagator momentum that vanishes. If
mn � 0 for some n then Snn � 0. This means that �2��� �
0 when all of the �i vanish except for �n, which is then
�n � 1. This is a pinch singular point because all of the
zi��� are fixed: zi � 0 for i � n, zn � 1. This point corre-
sponds to the momentum of line n in the momentum space
representation vanishing. In our photon scattering ex-
ample, there is a singularity at this point but because of
the zero from the numerator function it is not strong
enough to produce a divergence.

B. Collinear singularity

The second kind of pinch singular point that is always
present if we have massless kinematics is the one corre-
sponding to two-loop propagator momenta becoming col-
linear to an external momentum. If mn � mn�1 � 0 for
some n and if P2

n � �Qn�1 �Qn�
2 � 0, then Snn �

Sn�1;n�1 � Sn�1;n � 0. This means that �2��� � 0 when
all of the �i vanish except for �n and �n�1. It also means
that wn��� � wn�1��� � 0, so that this is a pinch singular
point according to the condition (36). This point corre-
sponds to the momentum of lines n and n� 1 in the
momentum space representation being collinear with Pn.
In our photon scattering example, there is a singularity
along this line but because of the zero from the numerator
function it is not strong enough to produce a divergence.

C. Double parton scattering singularity

A third type of pinch singular point can be present if a
special condition holds for the external momenta. This
singularity corresponds to double parton scattering and is
illustrated in Fig. 2. Imagine that incoming parton A splits
into two collinear partons. Imagine also that incoming
parton with index B splits into two collinear partons. One
of the partons from A and one from B could meet and
produce a group of final state partons. The other parton
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from A could meet the other parton from B and produce a
second group of final state partons. For this to happen, we
need at least two external lines in each group of outgoing
partons produced. Thus we need at least four outgoing
external particles. Thus we need N � 6.

This picture satisfies the criteria of Eq. (37) for a pinch
singularity. In the Feynman parameter space, the singular-
ity occurs along a one-dimensional line in the interior of
the space. We work out where this line is in Appendix D.

Now, the pinch singularity conditions hold only for
certain special choices of the external momenta.
However, if N is large, it is usual that the kinematics is
close to a pinch singularity condition for some of the
graphs. For this reason, in a numerical program, one should
check for each graph if such a nearly pinched contour
occurs. In the event that it does, one should put a high
density of integration points near the almost singular line.

VII. ULTRAVIOLET SUBTRACTION

Some graphs are ultraviolet divergent. For instance, in
the photon scattering case, there is an ultraviolet diver-
gence for N � 4 (and for N � 2, but we do not consider
that case.) In the representation (19), the divergence ap-
pears as a divergence from the integration over Feynman
parameters near �0 � 1, with all of the other �i near zero.
The reader can check that with a numerator function
proportional to N powers of the loop momentum, this
region does give a logarithmic divergence for N � 4. If
the graph considered is ultraviolet divergent, it needs an
ultraviolet subtraction, so that we calculate

 M net �M�Muv: (38)

In a numerical integration, we subtract the integrand of
Muv from the integrand of M, then integrate. We arrange
that the singularities of the integrand cancel to a degree
sufficient to remove the divergence. The subtraction term is
defined in Ref. [8] so that it reproduces the result of MS
subtraction (which we use because it is gauge invariant). In
the photon scattering case, the sum over graphs of the
subtraction term vanishes, corresponding to the fact that
there is no elementary four photon vertex. Thus the result
after summing over graphs does not depend on the MS
renormalization scale.

The subtraction term from Eq. (A.37) of Ref. [8] is
 

Muv �
Z d4l

�2��4
im2

0e
4

im2
0

�N�l; l; l; l� � 32
Q4
j�1 l � �j�Pj�

�l2 ��2e�4=3 � i0	4

�
32
Q4
j�1 l � �j�Pj�

�l2 ��2e�3=2 � i0	4

�
: (39)

Here �2 is the MS renormalization scale, which can be
anything we like since the net counterterm is zero. For the
numerator function in the first term, we have adopted the
notation that the ordinary numerator function N�l� in
Eq. (3) is written N�k4; k3; k2; k1�, where kn � l�Qn. In
this notation, N�l; l; l; l� is the standard numerator function
with each propagator momentum set equal to l.

We can now apply the same transformations as for the
starting graph to obtain the representation
 

Muv � �m
2
0e

4��5�
Z d4‘

�2��4
1

�1� ‘�P��‘
�	5

�
Z 1

0
dx1 � � �

Z 1

0
dx4�

�XN
i�1

xi < 1
��X4

i�1

xi
�

�

�N�l; l; l; l� � 32
Q4
j�1 l � �j�Pj�

��2
4=3�x� � i0	3

�
32
Q4
j�1

~l ��j�Pj�

��2
3=2�x� � i0	3

�
: (40)

Here

 �2
4=3�x� � ��1� x

0�2�2e�4=3 � ix0�1� x0�m2
0;

�2
3=2�x� � ��1� x

0�2�2e�3=2 � ix0�1� x0�m2
0;

(41)

where we have used x0 � 1�
P4
j�1 x

j. In the numerator of
the first term, l is a function l�x; ‘�,

 l��x; ‘� �
1

1� x0

�
1

2
�4=3�x�f�1� i�‘� � �1� i�P�� ‘�g

�
:

(42)

In the second term, ~l in the numerator is a function ~l�x; ‘�,

 

~l ��x; ‘� �
1

1� x0

�
1

2
�3=2�x�f�1� i�‘� � �1� i�P�� ‘�g

�
:

(43)

The reader can check that for the photon scattering case
with N � 4 the integrand for ultraviolet subtraction
matches that of the starting graph in the region x0 ! 1,
so that if we subtract the integrand from the counterterm
graph from the integrand for the starting graph, the result-
ing integral will be convergent.

VIII. THE MONTE CARLO INTEGRATION

We have implemented the integration in Eq. (19) as
computer code [10]. The integration is performed by the

FIG. 2 (color online). Illustration of the double parton scatter-
ing singularity.
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Monte Carlo method. This is a standard method, but it may
be good to indicate what is involved. First, we note that we
do not simply feed the integrand to a program that can
integrate ‘‘any’’ function. There are many reasons for this,
but the most important is that we do not have just any
function but a function with a known singularity structure,
a structure that is generic to loop diagrams in quantum field
theory with massless kinematics. We can take advantage of
our knowledge of how the integrand behaves.

To proceed, we note that we have an integral of the form
 

M �
Z
d4‘

Z 1

0
d�0

Z 1

0
d�1 � � �

�
Z 1

0
d�N�

�XN
i�0

�i � 1
�
f�‘; ��: (44)

In a Monte Carlo integration, we chooseNpts points f‘j; �jg
at random with a density 
�‘; �� and evaluate the integrand
f��� at these points. Then the integral is

 M � lim
Npts!1

1

Npts

XNpts

j�1

f�‘j; �j�


�‘j; �j�
: (45)

The integration error with a finite number of points is
proportional to 1=

��������
Npts

p
. The coefficient of 1=

�������������
Npoints

p
in

the error is smallest if

 
�‘; �� � const:� jf�‘; ��j: (46)

That is the ideal, but it is not really possible to achieve this
ideal to the degree that one has a one part per mill error
with 1� 106 points. However, one would certainly like to
keep jf�‘; ��j=
�‘; �� from being very large. In particular,
f�‘; �� is singular along certain lines in the space of the �
(the collinear singularities) and at certain points (the soft
singularities). We need to arrange that 
 is singular at the
same places that f is singular, so that f�‘; ��=
�‘; �� is not
singular anywhere. Since jf�‘; ��j can be very large near
other lines associated with double parton scattering, we
also need to arrange that 
�‘; �� is similarly large near
these lines.

We construct the desired density in the form

 
�‘; �� � 
‘�‘�
XNalg

J�1

�J
J���: (47)

Here
R
d4‘
‘�‘� � 1, the sum of the �J is 1, and there are

several density functions 
J with
R
d�
J��� � 1. Each 
J

corresponds to a certain algorithm for choosing a point �.
For each new integration point, the computer chooses
which algorithm to use with probability �J. The various
sampling algorithms are designed to put points into regions
in which the denominator is small, based on the coeffi-
cients Sij. We omit describing the details of the sampling
methods since these are likely to change in future imple-
mentations of this style of calculation.

Points ‘ are chosen with a simple distribution 
‘�‘�. In
the calculation of the numerator, we average between the
numerator calculated with ‘ and the numerator calculated
with �‘.

Having outlined how M is calculated by Monte Carlo
integration, we pause to suggest how the calculation of a
cross section (for, say, Higgs production) would work.
There one would have one-loop amplitudes M expressed
as integrals and one would need to multiply M by a
function h�P� of the external momenta that represents a
tree amplitude and a definition of the observable to be
measured. One would need the integral of this over the
external momenta P. One would perform all of the inte-
grations together. That is, one would choose points fP; ‘; �g
and calculate the contributions from the virtual graphs
times tree graphs to the desired cross section according to

 I � lim
Npts!1

1

Npts

XNpts

j�1

f�‘j; �j;Pj�


�‘j; �j; Pj�
h�Pj�: (48)

Here f is the integrand of M as above. The function 
 is
the net density of points in ‘, �, and P. Thus what one
would use is not M itself but rather the integrand for M.

IX. CHECKS ON THE CALCULATION

As discussed in the previous section, we have imple-
mented the integration in Eq. (19) as computer code [10].
With this code, there are a number of internal checks that
can be performed on the computation. First, we can replace
the real integrand by a function that has soft or collinear
singularities but is simple enough to easily integrate ana-
lytically. Then we can compare the numerical result to the
analytical result. This checks that the functions 
i��� and

�‘� correspond to the true probabilities with which points
� and ‘ are chosen. Then we can vary the amount of
deformation (both for the real integral and for the test
integrals). When we integrate over a different contour,
the integrand is quite different. Nevertheless, the
(N � 4)-dimensional Cauchy theorem guarantees that the
integral should be unchanged, provided that the integration
is being performed correctly. Thus invariance under
change of contour is a powerful check. Another check is
to change the value of the parameter m0. At the start, M is
proportional to m2

0=m
2
0 and is trivially independent of m0.

However in the integral as performed, Eq. (19), m0 is
deeply embedded into the structure of the integrand, so
that it is a nontrivial check on the integration that the result
does not change when we change m0. Next, we can replace
one of the photon polarization vectors �n�Pn� by Pn. This
gives a nonzero result for each Feynman graph, but should
give zero for the complete amplitude summed over graphs.
Additionally, we can change the definition of the polariza-
tion vectors �n�Pn�. For reasons of good numerical con-
vergence, we normally use polarization vectors appropriate
for Coulomb gauge, but we can switch to a null-plane
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gauge. The two amplitudes should differ by a phase, so that
jMj is unchanged. Another check is obtained by replacing
the vector current by a left-handed current or a right-
handed current. For even N, the left-handed and right-
handed results should be the same, while for odd N they
should be opposite. For another check, we can reformulate
the integral so that we do not define ‘ with a scale ��x��1.
In this formulation, the denominator is

 �S�x� � ix0�1� x0�m2
0�1� ‘

�P��‘
��	N�1: (49)

The structure of the integral is quite different, but the result
should be the same. For four photons, there is one addi-
tional test: the result should be independent of the renor-
malization parameter �.

We have subjected the code [10] to these checks. The
numerical precision of the result is often not high and we
have not used every check for every choice of N and
external momenta and polarizations. Nevertheless, we
have found that where we have tried them, the various
checks are always passed. We note that a better check
would be to obtain the same results with completely inde-
pendently written code. We have not done that.

X. RESULTS

In this section, we use this code to test how well the
method described works. The result for a given choice of
helicities of the photons has a phase that depends on the
precise definition of the photon polarization vectors �i.
However, the absolute value of the scattering amplitude
M is independent of the conventions used to define the �i,
so we concentrate on jMj. Our convention for defining M
is specified in Eq. (2). Since jMj is proportional to �N=2

and has mass dimension 4� N, we exhibit jMj �
�
���
s
p
�N�4=�N=2 in our plots. We specify helicities in the

form h1; h2; h3; . . . ; hN , where 1 and 2 are the incoming
particles and, following convention, h1 and h2 are actually
the negative of the physical helicities of the incoming
photons.

A. N � 4

We begin with N � 4, light-by-light scattering. Here we
use the subtraction for the ultraviolet divergence in each
graph as described in Sec. VII. For the N � 4 case the
result is known and has been presented in a convenient
form in Ref. [11]. For the two helicity choices ����
and ���� , jMj=�2 � 8. Our numerical results agree
with this. For the choice ���� , the result depends on
the value of the scattering angle �. In Fig. 3 we exhibit the
prediction of Ref. [11] versus �� �=2 as a curve and a
selection of points obtained by numerical integration as
points with error bars. The error bars represent the statis-
tical uncertainty in the Monte Carlo integration. It is not
easy to see the error bars in the figure. The fractional errors

range from 0.0022 to 0.0034. The points were generated
using 106 Monte Carlo points for each of six graphs.

B. N � 5

We turn next to N � 5. Since the five photon matrix
element vanishes after summing over graphs, we use a
massless vector boson that couples to the electron with
the left-handed part of the photon coupling. The final state
phase space has four dimensions, which does not lend itself
to a simple plot. Accordingly we have chosen an arbitrary
point for the final state momenta f ~p3; ~p4; ~p5g:
 

~p3 � �33:5; 15:9; 25:0�; ~p4 � ��12:5; 15:3; 0:3�;

~p5 � ��21:0;�31:2;�25:3�: (50)

We take photon 1 to have momentum ~p1 along the�z-axis
(so the physical incoming momentum is along the
�z-axis), and we take ~p2 along the �z-axis. Then we
create new momentum configurations by rotating the final
state through angle � about the y-axis. In Fig. 4, we plot
computed values of

���
s
p
jMj=�5=2 versus �. The points

were generated using 106 Monte Carlo points for each of
24 graphs.

C. N � 6

Finally, we compute the six photon amplitude. Here
analytic results are known for the helicity choices ��
���� and ������ : for these helicity choices,
the amplitude should vanish [12]. There is also a nonzero

FIG. 3 (color online). Four photon amplitude. We plot
jMj=�2 for helicities ���� versus �� �=2, where � is
the scattering angle. The curve is the analytical result from
Ref. [11]. The points are the result of numerical integration.
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analytical result for the choice ������ [13]. We
compute sjMj=�3 for these helicity choices and also for
������ , for which we know of no analytic result.
Following what we did for N � 5, we choose an arbitrary
point for the final state momenta f ~p3; ~p4; ~p5; ~p6g:

 ~p 3 � �33:5; 15:9; 25:0�;

~p4 � ��12:5; 15:3; 0:3�;

~p5 � ��10:0;�18:0;�3:3�;

~p6 � ��11:0;�13:2;�22:0�:

(51)

We choose ~p1 and ~p2 as we did for N � 5. Then we create
new momentum configurations by rotating the final state
through angle � about the y-axis. In Fig. 5, we plot com-
puted values of sjMj=�3 versus �. For ������
helicities, we compute the amplitude at � �
0; 0:2; 0:4; . . . . The results are consistent with the known
result of zero. For ������ helicities, we compute
the amplitude at � � 0:1; 0:3; 0:5; . . . . The results are again
consistent with zero. For ������ we compare the
numerical results to the analytical results of Ref. [13] (top
curve) and find good agreement. For the helicity choice
������ , the results lie in the range from 2000 to
8000 and exhibit some variation as the final state momenta
are varied. We do not have an analytical curve with which

to compare. The points were generated using 106

Monte Carlo points for each of 120 graphs.5

XI. CONCLUSIONS

In the calculation of cross sections for infrared-safe
observables in high energy collisions at next-to-leading
order, one must treat the real emission of one parton
beyond the Born level and one must include virtual loop
corrections to the Born graphs. Most calculations follow
the method of Ref. [1], in which the integration over real
emission momenta is performed numerically while the
integration over virtual loop momenta is performed ana-
lytically. One can, however, perform all of the integrations
numerically.6

In one approach to the calculation of loop diagrams by
numerical integration, one would use a subtraction scheme
[8] that removes infrared and collinear divergences from

FIG. 5 (color online). Six photon amplitude. We plot
sjMj=�3. An arbitrarily chosen final state was rotated about
the y-axis through angle �. The points are the result of numerical
integration. At the top, the points in the range 10 000 to 25 000
are for helicities ������ and are compared with the
analytical results of Ref. [13]. In the middle, the points in the
range from 2000 to 8000 are for helicities������ . There
is no analytical result for this helicity combination. At the
bottom, we show numerical results for helicities ����
�� and ������ . According to Ref. [12], the amplitude
should vanish for these helicity choices. The results for ��
���� are computed at � � 0; 0:2; 0:4; . . . while the results
for ������ are computed at � � 0:1; 0:3; 0:5; . . . .

FIG. 4 (color online). Five vector boson amplitude. We plot���
s
p
jMj=�5=2 with helicities �����. The vector boson is

massless and couples to the electron with the left-handed part of
the photon coupling. An arbitrarily chosen final state was rotated
about the y-axis through angle �.

5This takes a bit under an hour for each point on one chip of
our computer, but we note that computer timings are dependent
on the computer and the compiler.

6That it is practical to do so has been demonstrated for the case
of three jet production in electron-positron annihilation [5,6].
However, the method used there does not extend well to the
hadron-hadron case.
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the integrand in a style similar to that used for real emission
graphs. Then one would perform the loop integration by
Monte Carlo integration along with the integrations over
final state momenta. In this paper, we have explored how
one would perform the numerical integration. We have
studied the N-photon scattering amplitude with a massless
electron loop in order to have a case with a singular
integrand that is not, however, so singular as to require
the subtractions of Ref. [8].

One could perform the integration either directly as an
integral

R
d4l or with the help a different representation of

the integral. We have chosen to explore the use of the
Feynman parameter representation because it makes the
denominator simple. We have found that this method
works for the cases of 4, 5, or 6 external legs. There is,
in principle, no limitation to the number of external legs.
However, for more external legs, the integrand becomes
more singular because the denominator is raised to a high
power, N � 1. This is evident in our results by examining
the growth of the integration error as N increases.

In many practical calculations, the partons in the loop
can have nonzero masses and the partons entering the loop
can be off shell. These possibilities make the analytical
results more complicated, but we expect that they make the
numerical result more stable by softening the singular-
ities.7 However, we leave exploration of this issue for later
work.

It is remarkable that the method presented here works
for quite a large number of external legs. However, we
expect that the method can be improved. One approach lies
in making a sequence of small improvements that together
amount to a big improvement. Along these lines, one can
work on the algorithm for deforming the integration con-
tour and on the sampling methods used for choosing in-
tegration points (which methods we have not discussed
here). Alternatively, one can look for a different represen-
tation of M as an integral. One could use an integral
transformation other than that provided by the Feynman
parameter representation or one could use a more direct
representation of the integral. In particular, the representa-
tion of Refs. [5,6] recommends itself. Here we turn the
integral

R
d4l into a three-dimensional integral

R
d4 ~l���l

2�
that is rather similar to what one has for real parton
emissions. In contrast to Refs. [5,6], however, one would
use explicit subtractions.8 We expect that this method or
something similar might be superior to the Feynman pa-
rameter method used in this paper because for large N one
does not raise a denominator to a high power.

The challenge would be to find a representation that is
simple and for which the integrand is well enough behaved

that one can get numerical results for, say, N � 12. We
hope that others might accept this challenge.
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APPENDIX A: WICK ROTATION

In this appendix, we explain the contour deformation
necessary to obtain the scaled and rotated momenta of
Eq. (13). The simplest procedure is to start by rotating
the space-parts of the vector ~l,

 

~l 0 � k0; ~lj � e�i�kj; k � 1; 2; 3: (A1)

Here the components of k are real. We start with � � 0 and
increase � until � � �=2. Thus we rotate the ~l contour.
Throughout the rotation, ~l2 has a positive imaginary part.
At the end, ~l2 ��2�x� becomes k�P��k� ��2�x�, where
k�P��k� is the Euclidean square of k.

The next step is to rotate all of the components of k by
half of the phase of �2�x�, so that after the rotation,
k�P��k� has the same phase as �2�x� (which itself has a
positive imaginary part).

Finally we rescale the components of k by the absolute
value of �2�x�. Thus

 k� � ��x�‘�: (A2)

The net transformation is that of Eq. (13). At all stages, the
imaginary part of the denominator is positive.

APPENDIX B: CONTOUR DEFORMATION

In this appendix, we exhibit some details of the argu-
ment that the integration over Feynman parameters is left
invariant by the contour deformation. We start with

 I �
Z
d� detAF�z��; 	��: (B1)

Here z��; 	� specifies the deformed contour,

 

Z
d� �

Z 1

0
d�1 � � �

Z 1

0
d�N�

�XN
j�1

� < 1
�
; (B2)

the matrix A is

 Aij �
@zi

@�j
; (B3)

and F�z� is the integrand,

7Having an unstable massive particle as an incoming parton
would be an exception, since this can put new kinds of singu-
larities into the integrand.

8We understand that S. Catani, T. Gleisberg, F. Krauss, G.
Rodrigo, and J. Winter are working along these lines [14].
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 F�z� �
�XN
i�1

zi
�
N�3 N�l�z; ‘��

��2�z�	N�1 : (B4)

In order to take care with what happens at the integration
boundary, we define a function R��� that measures how far
the point � is from the boundary,

 R��� � min
�
�1; . . . ; �N; 1�

XN
j�1

�j
�
: (B5)

The boundary is at R��� � 0, and in general 0<R���<
1=�N � 1�. Then

 I � lim
r!0

I�r�; (B6)

where

 I�r� �
Z
d���R���> r� detAF�z��; 	��: (B7)

Now let us make a small change �	 in the deformation
parameter. If we can prove that the corresponding change
�I of the integral vanishes, then the integral is the same for
	 � 1 as it was for an infinitesimal 	. We calculate �I�r�
for nonzero r. As shown in Ref. [6], �I�r� is the integral of
a total derivative. Thus we get an integral over the bound-
ary of the contour,

 �I�r� �
Z
d� detA��R��� � r��R���F�z����: (B8)

Here

 �R��� 

X
i;j

@R���

@�i
Bij���

@zj���
@	

�	; (B9)

where B is the inverse matrix to A,

 

X
j

AijB
j
k � �ik: (B10)

We think of A as producing a vector �z from a vector ��,
�zi �

P
jA

i
j��

j. Then we can think of B as producing a
vector �� from the vector �z given by the change of z
under the change of deformation,

 ��i �
X
j

Bij���
@zj���
@	

�	: (B11)

This justifies the name �R for the combination

 �R �
X
i

@R
@�i

��i: (B12)

Given the ansatz (21) for z���, the variation �z takes the
form

 �zk �
i�	

�1� i	
PN
j�1 �

j���	2

�
�k��� � �k

XN
j�1

�j���
�
:

(B13)

We build into the definition of the contour deformation the
requirement that as any �k vanishes, the corresponding �k

also vanishes, with �k / �k. Then �zk / �k in this limit.
Also, when 1�

P
�k ! 0, it follows from Eq. (B13) thatP

�zk / 1�
P
�k. The result is that as we approach a

boundary of the integration region, R��� ! 0, the function
�R��� vanishes, with

 �R��� � R��� � h���; (B14)

where h��� is nonsingular. Thus

 �I�r� � r�
Z
d� detA��R��� � r�h���F�z����: (B15)

The factor r would seem to imply that �I�r� ! 0 as r! 0.
However, we should be careful because F�z���� is singular
near the boundary of the integration region. To examine
this issue, we note that

 I �
Z 1=�N�1�

0
dr~I�r�; (B16)

where

 

~I�r� �
Z
d� detA��R��� � r�F�z����: (B17)

Were it not for the numerator function (and the UV sub-
traction in the case N � 4), the integral for I would be
logarithmically divergent. Generically, a one-loop integral
could produce two logs, so that ~I�r� would have a singu-
larity log�r�=r for r! 0. However, the numerator factor
(and UV subtraction if needed) produces an extra factor of
r. Thus ~I�r� / r0logK�r� for r! 0 for some K. The power
counting for �I�r�=r, with its extra nonsingular factor h���,
is the same. Thus �I�r� is proportional to r times possible
logarithms of r as r! 0.

We conclude that when we make an infinitesimal change
of contour with the properties specified in this paper, the
variation of the integral vanishes,

 �I � lim
r!0

�I�r� � 0: (B18)

Thus the integral on the deformed contour is the same as on
the original infinitesimally deformed contour.

APPENDIX C: EXTRA DEFORMATION

Here we return to the question of contour deformation.
We study a problem that can occur with the standard
deformation. We start by stating the problem rather ab-
stractly. Let L be a subset of f1; 2; . . . ; Ng and let B be its
complement. Suppose that

 Sij � 0 for i; j 2 B: (C1)

We consider the following limit. Define

 

��L �
X
j2L

�j (C2)
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and let

 �j � ��L�̂
j
L for j 2 L;

�j � �1� �0 � ��L��̂
j
B for j 2 B;

(C3)

so that

 

X
j2L

�̂j �
X
j2B

�̂j � 1: (C4)

Then we consider the limit ��L ! 0 with �0 � 0. Thus the
�i for i 2 B are big and the �i for i 2 L are little.

In the limit ��L ! 0, S��� becomes

 S ��� �
X
i2L

�i
X
j2B

Sij�
j �

1

2

X
i;j2L

�i�jSij

� ��L
X
i2L

�̂iL ~wi��̂B� �O� ��2
L�; (C5)

where

 ~w i��̂B� �
X
j2B

Sij�̂
j
B: (C6)

If we adopt the standard contour definition from Eq. (33),
we have
 

S��� i�� � ��L
X
i2L

�̂iL ~wi��̂B� � i
	

m2
��L
X
i2L

�̂iL� ~wi��̂B�	
2

�O� ��2
L�: (C7)

We see that the surface ��L � 0 with �0 � 0 is a singular
surface of the integrand. In fact, it is a pinch singular
surface. For a generic point �̂, S��� i�� vanishes linearly
with ��L as ��L ! 0.

This generic behavior is fine from a numerical point of
view. However, we would like to avoid having S��� i��
vanish faster than linearly as ��L ! 0. The real part of
S��� i�� can easily vanish quadratically as ��L ! 0.
The components Sij can have either sign, so that for
some points �̂ the particular linear combinationP
i2L�̂

i
L ~wi��̂B� can vanish. It is harder for the linear con-

tribution to the imaginary part of S��� i�� to vanish.
However, if the set B has more than one element, it is
possible for ~wi��̂B� to vanish for some particular index i �
I at some particular value of �̂B. Then if all of the �̂iL
vanish except for i � I, we will have

 

X
i2L

�̂iL� ~wi��̂B�	
2 � �̂IL� ~wI��̂L�	

2 � 0: (C8)

For this choice of the �̂i, we will have �2��� i�� �
O� ��2

L� if we take the standard deformation. One might
think that having an esoteric integration region in which
the integrand is extra singular is not a problem. However,
in a numerical integration it is a problem. One possibility is
to put extra integration points in the region of extra singu-
larity, but a more attractive possibility is to fix the contour

deformation so as to better keep the integration contour
away from the singularity. At the same time, we need to
avoid letting the Jacobian det�dz=d�� in Eq. (19) become
singular. This is the strategy we will pursue.

Until now, we have followed a rather abstract formula-
tion of the problem for the reason that the same abstract
problem occurs in several ways in the subtraction terms
defined in Ref. [8] to take care of infrared divergent graphs.
In this paper, however, we are concerned with infrared
finite graphs representing photon scattering with a mass-
less electron loop. The problem is associated with the
region in the original loop integral in which lines n and n�
1 are nearly collinear. With massless kinematics, Snn �
Sn�1;n�1 � Sn;n�1 � 0. Thus the matrix Sij has the special
form with B � fn; n� 1g and L consisting of all index
values i 2 f1; . . . ; Ng other than n and n� 1.

We will seek a supplementary deformation ~�n��� and
~�n�1��� that we can add to the standard deformation. In the
following, we consider n to be any fixed index value in the
range 1  n  N. There will be an analogous deformation
for any n. For reasons that will become apparent, we want
to have just one of these added deformations ~���� for any
value of �. For this reason, we will arrange that ~�n��� and
~�n�1��� are nonzero only in the region

 R n: �n � �n�1 > 1
2; �n > �n�2; �n�1 > �n�1:

(C9)

It is easy to verify that the various regions Rn are
nonoverlapping.

Given that there is an added deformation ~�n��� and
~�n�1���, there is an added contribution to ImS that has
the form

 � ImS��� i�� �
X
i2L

�if~�nSn;i � ~�n�1Sn�1;ig: (C10)

When we include the standard contour definition from
Eq. (33), the total ImS is

 Im S��� i�� �
X
i2L

�if~�nSn;i � ~�n�1Sn�1;i � �	=m
2�

� �wi���	
2g �

X
i2B

�	=m2��i�wi���	
2:

(C11)

We take the extra deformations to be of the form
��	=m2�g���:

 ~� n � �	=m2�g���; ~�n�1 � ��	=m2�g���: (C12)

Here g��� is a function to be defined.
With the definition (C12) for the added deformation

together with the standard deformation, we have
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 Im S��� i�� � �	=m2�
X
i2L

�if�Sn;i � Sn�1;i�g���

� �wi���	2g �
X
i2L

�	=m2��i�wi���	2:

(C13)

The second term here is always positive but vanishes
quadratically with ��L in the limit ��L ! 0, so it is too
small to help us in this limit. In the first term, the parts
proportional to �wj���	2 are always positive and for typical
values of �n and �n�1 vanish linearly with ��L. However,
wi��� for some value of i can vanish in this limit for a
particular value of �n and �n�1. This is the reason for
adding the new deformation specified by g���.

We need to ensure that

 �Sn;i � Sn�1;i�g��� � �wi���	2 > 0 (C14)

for all i 2 L and for all �. Here we really want a ‘‘>’’
relation and not just a ‘‘�’’ relation, which could be
satisfied with g��� � 0.

This goal can be accomplished by a straightforward
construction. First, we need some notation indicating cer-
tain sets of indices. Let L� be a set of indices in L such
that Sn�1;i > Sn;i and let L� be a set of indices in L such
that Sn;i > Sn�1;i. The union of L� and L� is all of L.
(Here we assume that the external momenta do not lie on
the surface Sn�1;i � Sn;i for any i in L.)

Define

 g���� � min
i2L�

�wi���	
2

Sn�1;i � Sn;i
;

g���� � min
i2L�

�wi���	2

Sn;i � Sn�1;i
:

(C15)

Then Eq. (C14) requires that

 � g����< g���< g����: (C16)

Of particular interest is the requirement for a special point
for which wi��� � 0. If i 2 L�, then g���� � 0 at this
point and the requirement is that g��� be positive (but not
too positive). If i 2 L�, then g���� � 0 at this point and
the requirement is that g��� be negative (but not too
negative).

These restrictions are not very restrictive in the case that
either g���� or g���� is large or in the case that one of the
sets L� is empty (in which case we interpret the corre-
sponding g� to be infinite). In order to ensure that the
deformation not be too large, we can also impose

 � 	g < �	=m2�g���< 	g; (C17)

where 	g is a parameter that could be chosen to be 	.
Defining

 ~g���� � min�g����; m2	g=		; (C18)

our requirement is

 � ~g����< g���< ~g����: (C19)

It is easy to satisfy Eq. (C19). We set

 g��� � H���Cg�~g���� � ~g����	; (C20)

where Cg is a parameter in the range 0<Cg < 1 (possibly
1=2) and
 

H��� � �2�n� 2�n�1� 1�4��n� �n�2���n�1� �n�1�

� �
�
�n� �n�1 >

1

2

�
���n >�n�2����n�1 >�n�1�:

(C21)

The purpose of H��� is to restrict the range of � for which
g��� � 0 to the desired region Rn, Eq. (C9). There is also
a factor that becomes 4�n�n�1 in the limit ��L ! 0. This
factor turns off the deformation as �n ! 0 or �n�1 ! 0.
Notice that

 0  H���  1: (C22)

With the use of this property, it is evident that the definition
(C20) satisfies Eq. (C19).

Suppose that there is an index i 2 L� and an index j 2
L� such that

 Si;n�1 > 0; Si;n < 0; Sj;n > 0; Sj;n�1 < 0;

(C23)

and that

 Si;nSj;n�1 � Sj;nSi;n�1 � s2: (C24)

Then there is approximately an effective contour pinch, in
the sense that both g���� and g���� are close to vanishing
when all of the �k for k 2 L are very small and

 �n �
Si;n�1 � Sj;n�1

Si;n�1 � Si;n � Sj;n � Sj;n�1
;

�n�1 �
Sj;n � Si;n

Si;n�1 � Si;n � Sj;n � Sj;n�1
:

(C25)

The contour is pinched already along the whole collinear
singularity line �k � 0 for k 2 L, but this is an extra pinch
that prevents the deformation of this section from being
effective. For this reason, one should put extra integration
points in the region near this point.

It is instructive to examine the functionswi��� for i 2 L
in the limit that �0 and all of the �j for j 2 L vanish (and
assuming massless kinematics). Then the only two xi that
are nonzero are �n and �n�1 � 1� �n. Following the
notation of Eq. (C6), we can call the limiting function
~wi��n�. We would like to know for what value of �n (if
any) this function vanishes. We have

 ~w i��
n� � Sin�

n � Si;n�1�1� �
n�: (C26)
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Evidently ~wi��
n� will vanish for some �n in the range 0<

�n < 1 if and only if Sin and Si;n�1 are nonzero and have
opposite signs.

Thus we need to know something about the signs of Sin
and Si;n�1. First, we note that if i � n� 1 then Sin � 0.
Furthermore, if all of the particles i; i� 1; . . . ; n� 1 are
final state particles, then

 Sin �
�Xn�1

j�i

Pj

�
2
> 0: (C27)

If two of the particles i; i� 1; . . . ; n� 1 are the two initial
state particles, then

 Sin �
�Xi�1

j�n

Pj

�
2
> 0: (C28)

If exactly one of the particles i; i� 1; . . . ; n� 1 is an
initial state particle, then Sin < 0. The proof of this
amounts to showing that if a massless particle A turns
into a massive particle A0 by exchanging a momentum Q
and a massless particle B turns into a massive particle B0 by
absorbing the momentum Q, then Q2 < 0. We omit the
details.

Given these results and the analogous results for Si;n�1

we can conclude that Sin and Si;n�1 are nonzero and have
opposite signs when i is neither of n� 1 or n� 2 and
external photon n is an incoming particle.

Supposing that photon n is an incoming particle, then
the propagator index i is in L�, with Sin > 0 and Si;n�1 <
0 if all of the external particles i; i� 1; . . . ; n� 1 are final
state particles. If, on the other hand, one of them is the
other initial state particle, then Sin < 0 and Si;n�1 > 0 and i
is in L�.

As we have seen, when photon n is an incoming particle,
the zero of ~wi��

n�,

 �n
�i� �

Si;n�1

Si;n�1 � Si;n
; (C29)

lies in the integration range, 0< �n < 1. In this case, we
can say more about the location of this zero. Let the index
of the other incoming photon be n0. Define

 � � �2Pn0 �
Xn0�1

j�n�1

Pk=s: (C30)

Then if the index i is in the range n0 � 1; . . . ; n� 1, we
have Si;n > 0 and Si;n�1 < 0 so i 2 L�. Then one can
show that

 �n�i� > �: (C31)

On the other hand, if the index i is in the range n�
2; . . . ; n0, we have Si;n < 0 and Si;n�1 > 0 so i 2 L�.
Then one can show that

 �n
�i� < �: (C32)

To prove Eq. (C32), write each outgoing momentum in
the form

 Pi � �aiPn � biPn0 � PTi ; (C33)

where PTi � Pn � PTi � Pn0 � 0 and 0< ai < 1 and 0<
bi < 1. Then for i in the range n� 2; . . . ; n0 we have

 Si;n�1 �

� Xi�1

j�n�1

Pj

�
2

�

� Xi�1

j�n�1

aj

�� Xi�1

j�n�1

bj

�
s�

� Xi�1

j�n�1

PTj

�
2
: (C34)

For Si;n we add one more particle nwith an � �1, bn � 0,
and no PTn . Thus

 Si;n �
�Xi�1

j�n

Pj

�
2

� �

�
1�

Xi�1

j�n�1

aj

�� Xi�1

j�n�1

bj

�
s�

� Xi�1

j�n�1

PTj

�
2
:

(C35)

Then

 �n
�i� �

�
Pn�1
j�i aj��

Pn�1
j�i bj�s� �

Pn�1
j�i P

T
j �

2

�
Pn�1
j�i bj�s

: (C36)

The �PT�2 term in the numerator is negative. Thus

 �n
�i� <

Xn�1

j�i

aj <
Xn�1

j�n0
aj � �: (C37)

The proof of Eq. (C31) is similar.
Thus in the limit that all of the �j for j 2 L are very

small, the qualitative nature of the deformation constructed
here is quite simple. We deform �n into the upper half
plane for � > � and into the lower half plane for � < �.

APPENDIX D: DOUBLE PARTON SCATTERING
SINGULARITY

As discussed briefly in Sec. VI C, a pinch singular point
corresponding to double parton scattering can be present if
a special condition holds for the external momenta. This
singularity is illustrated in Fig. 2. Imagine that incoming
parton with index A carries momentum �PA such that
P2
A � 0 and that parton A splits into two collinear partons

with labels A and A� 1. That is �KA��� � ��1� xA�PA
andKA�1��� � �xAPA. Imagine also that incoming parton
with index B carries momentum �PB such that P2

B � 0
and that parton B splits into two collinear partons with
labels B and B� 1. That is �KB��� � �1� xB�PB and
KB�1��� � �xBPB. (Here the x’s are momentum fractions,
not Feynman parameters.) Partons A� 1 and B could meet
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and produce a group of final state partons with labels i in a
set A � fA� 1; . . . ; B� 1g. Partons B� 1 and A could
meet and produce a group of final state partons with labels i
in a set B � fB� 1; . . . ; A� 1g. Thus

 

X
i2A

Pi � �xAPA � �1� xB�PB;

X
i2B

Pi � ��1� xA�PA � xBPB:
(D1)

It is convenient to write Eq. (D1) in terms of the internal
line momenta Qi using Eq. (1). We note immediately thatP
i2APi � QB �QA�1 and

P
i2BPi � QA �QB�1 are

timelike vectors. Thus

 SA�1;B > 0; SA;B�1 > 0: (D2)

Notice that for this kind of singularity to occur, we need at
least two external lines in set A and two in set B. Thus we
need at least four outgoing external particles. Thus we need
N � 6.

Given the external momenta, the momentum fractions
xA and xB are determined. When rewritten in terms of the
Qi, the first of Eq. (D1) reads

 QA�1 �QB�1 � xA�QA�1 �QA� � xB�QB�1 �QB�;

(D3)

while the second equation in (D1) is just the negative of
this. Take the inner product of this with (QB�1 �QB) and
use

 2�QA�1 �QA� � �QB�1 �QB� � �S; (D4)

where

 

�S 
 SA;B�1 � SA�1;B � SA;B � SA�1;B�1: (D5)

Also note that �QB�1 �QB�
2 � 0 and

 2�QA�1 �QB�1� � �QB�1 �QB� � SA�1;B � SA�1;B�1:

(D6)

These relations give

 xA �
SA�1;B � SA�1;B�1

�S
: (D7)

We similarly derive

 xB �
SA;B�1 � SA�1;B�1

�S
: (D8)

The kinematic conditions require that

 

X
i2A

PT
i � 0; (D9)

where PT
i is the part of Pi transverse to PA and PB. (In this

frame the sum of the transverse momenta of all of the final
state particles vanishes, so the sum of the PT

i for the
particles in set B also vanishes if the sum for set A
vanishes.) The condition for this to happen is obtained by

squaring both sides of Eq. (D3) and inserting the solutions
for xA and xB. This gives

 SA�1;BSA;B�1 � SA;BSA�1;B�1 � 0: (D10)

That is,

 det
SA;B SA�1;B

SA;B�1 SA�1;B�1

� �
� 0: (D11)

Recall that in order to have a double parton scattering
singularity, SA�1;B > 0 and SA;B�1 > 0. The determinant
condition then implies that SA;B and SA�1;B�1 have the
same sign. In fact, this sign must be negative. To see this,
one may note that, because of Eq. (D10), two alternative
expressions for xA are also valid:

 xA �
SA�1;B

SA�1;B � SA;B
�

�SA�1;B�1

SA;B�1 � SA�1;B�1

�
SA�1;B � SA�1;B�1

�S
: (D12)

Using the first of these, we see that xA > 0 implies that
SA�1;B � SA;B > 0. But then xA < 1 implies that SA;B < 0.
We conclude that for a double parton scattering singularity,
SA�1;B > 0 and SA�1;B > 0, SA;B < 0 and SA�1;B�1 < 0.

What does this mean in terms of solving Eq. (36)? We
demand that Eq. (36) hold for nonzero �A, �A�1, �B, and
�B�1 with all of the other �i � 0. Thus we need wB �
wB�1 � 0, or

 

SA;B SA�1;B

SA;B�1 SA�1;B�1

� �
�A

�A�1

� �
� 0: (D13)

Similarly we need wA � wA�1 � 0, or

 

SA;B SA;B�1

SA�1;B SA�1;B�1

� �
�B

�B�1

� �
� 0: (D14)

One can solve these if the determinant of the matrix is zero,
that is if Eq. (D10) holds. If it does, the solution with �A �
�A�1 � �B � �B�1 � 1 is

 �A � fA �x; �A�1 � �1� fA� �x;

�B � fB�1� �x�; �B�1 � �1� fB��1� �x�;
(D15)

where

 fA �
SA�1;B

SA�1;B � SA;B
�

�SA�1;B�1

SA;B�1 � SA�1;B�1

�
SA�1;B � SA�1;B�1

�S
;

fB �
SA;B�1

SA;B�1 � SA;B
�

�SA�1;B�1

SA�1;B � SA�1;B�1

�
SA;B�1 � SA�1;B�1

�S
:

(D16)

That is, fA � xA and fB � xB. In order for the pinch
singularity to be inside the integration region, �A, �A�1,
�B, and �B�1 need to be positive. Thus we need to choose �x
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in the range

 0< �x < 1: (D17)

It is of interest to work out the momenta Ki���, Eq. (18),
when the external momenta obey the condition (D3) for a
double parton scattering singularity and the Feynman pa-
rameters � are given by Eq. (D15). One finds

 KA��� � �1� fA�PA; KA�1��� � �fAPA;

KB��� � �1� fB�PB; KB�1��� � �fBPB:
(D18)

These are, of course, the relations we started with.

We learn that if the determinant condition (D10) and
certain sign conditions hold, �2��� has a pinch singularity
along a line that runs through the middle of the integration
region. Now, the pinch singularity conditions hold only for
certain special choices of the external momenta. However,
one can easily be near to having a pinch singularity. For
this reason, in a numerical program, one should check for
each graph if jSA�1;BSA;B�1 � SA;BSA�1;B�1j � �S2, with
the required sign conditions, for some choice of indices
A and B. In that event, one should put a high density of
integration points near the ‘‘almost’’ singular line.
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