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The electromagnetic properties of the baryon octet are calculated in quenched QCD on a 203 � 40
lattice with a lattice spacing of 0.128 fm using the fat-link irrelevant clover (FLIC) fermion action. FLIC
fermions enable simulations to be performed efficiently at pion masses as low as 300 MeV. By combining
FLIC fermions with an improved-conserved vector current, we ensure that discretization errors occur only
at O�a2� while maintaining current conservation. Magnetic moments and electric and magnetic radii are
extracted from the electric and magnetic form factors for each individual quark sector. From these, the
corresponding baryon properties are constructed. Our results are compared with the predictions of
quenched chiral perturbation theory. We detect substantial curvature and environment sensitivity of the
quark contributions to electric charge radii and magnetic moments in the low quark-mass region.
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I. INTRODUCTION

The study of the electromagnetic properties of baryons
provides valuable insight into the nonperturbative structure
of QCD. Baryon charge radii and magnetic moments pro-
vide an excellent opportunity to observe the chiral non-
analytic behavior of QCD. Although the first calculations
of hadronic electromagnetic form factors appeared almost
20 years ago [1–3], until recently the state-of-the-art cal-
culations of the electromagnetic properties of octet [4,5]
and decuplet [6] baryons and their electromagnetic tran-
sitions [7] appeared almost 15 years ago.

However, over the last couple years there has been an
increase in activity in the area of octet-baryon electromag-
netic structure, mainly by the Adelaide group [8–11] and
the QCDSF [12] and LHPC Collaborations [13]. The back-
ground field method has also been used recently to explore
baryon magnetic moments [14].

In this paper we improve upon our preliminary results
reported in Ref. [8] and describe in detail the origin of the
lattice simulation results featured in Refs. [9–11] deter-
mining the strangeness magnetic moment and charge ra-
dius of the nucleon, respectively.

The extraction of baryon masses and electromagnetic
form factors proceeds through the calculation of Euclidean
two and three-point correlation functions, which are dis-
cussed at the hadronic level in Section II B, and at the quark
level in Secs. II C and II D. Throughout this analysis we
employ the lattice techniques introduced in [4]. We briefly
outline the main aspects of these techniques in Sec. III. The
correlation functions directly proportional to the electro-
magnetic form factors of interest are analyzed in Sec. IV.
The results are presented and discussed in Sec. V, where an
extensive comparison is made with the predictions of
quenched chiral perturbation theory (Q�PT) [15,16]. A
summary and discussion of future work is provided in
Sec. VI.

II. THEORETICAL FORMALISM

A. Interpolating fields

In this analysis we work with the standard established
interpolating fields commonly used in lattice QCD simu-
lations. The notation adopted is similar to that of [4]. To
access the proton we use the positive parity interpolating
field

 �p��x� � �abc�uaT�x�C�5db�x��uc�x�; (2.1)

where the fields u, d are evaluated at Euclidean space-time
point x, C is the charge conjugation matrix, a, b, and c are
color labels, and the superscript T denotes the transpose. In
this paper we follow the notation of Sakurai. The Dirac �
matrices are Hermitian and satisfy f��; ��g � 2���, with
��� � �1=2i����; ���. This interpolating field transforms
as a spinor under a parity transformation. That is, if the
quark fields qa�x� (q � u; d; � � � ) transform as

 P qa�x�P y � ��0q
a�~x�; (2.2)

where ~x � �x0;	 ~x�, then

 P �p��x�P y � ��0�
p��~x�: (2.3)

The neutron interpolating field is obtained via the ex-
change u$ d, and the strangeness 	2, � interpolating
fields are obtained by replacing the doubly represented u or
d quark fields in Eq. (2.1) by s. Similarly, the charged
strangeness 	1, � interpolating fields are obtained by
replacing the singly represented u or d quark fields in
Eq. (2.1) by s. For the �0 hyperon one uses [4]

 ��0
�x� �

1���
2
p �abcf�uaT�x�C�5s

b�x��dc�x�

� �daT�x�C�5s
b�x��uc�x�g; (2.4)

Note that ��0
transforms as a triplet under SU(2) isospin.
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An SU(2) isosinglet interpolating field for the � can be
constructed by replacing “� ”! “	 ” in Eq. (2.4). For
the SU(3) octet � interpolating field, one has

 ���x� �
1���
6
p �abcf2�uaT�x�C�5d

b�x��sc�x�

� �uaT�x�C�5sb�x��dc�x�

	 �daT�x�C�5sb�x��uc�x�g: (2.5)

We select this interpolating field for studying the � in the
following.

B. Correlation functions at the hadronic level

The extraction of baryon masses and electromagnetic
form factors proceeds through the calculation of the en-
semble average (denoted h� � �i) of two and three-point
correlation functions. The two-point function is defined as

 hGBB�t; ~p;��i �
X
~x

e	i ~p� ~x��	h�jT��	�x� ����0��j�i:

(2.6)

Here � represents the QCD vacuum, � is a 4� 4 matrix in
Dirac space and 	, � are Dirac indices. At the hadronic
level we insert a complete set of states jB; p; si and define

 h�j��0�jB; p; si � ZB�p�

������
M
Ep

s
u�p; s�; (2.7)

where ZB�p� represents the coupling strength of ��0� to

baryon B, and Ep �
�������������������
~p2 �M2

p
. A momentum dependence

for ZB�p� is included for the case where a smeared sink is
employed. For large Euclidean time

 hGBB�t; ~p;��i ’
ZB�p� �ZB�p�

2Ep
e	Ept tr���	i� � p�M��:

(2.8)

Here �ZB�p� is the coupling strength of the source ���0� to
the baryon. Again, the momentum dependence allows for
the use of smeared fermion sources in the creation of the
quark propagators and the differentiation between source
and sink allows for our use of smeared sources and point
sinks in the following. Similarly the three-point correlation
function for the electromagnetic current, j��x�, is defined
as

 

hGBj�B�t2; t1; ~p0; ~p; ��i �
X
~x2; ~x1

e	i ~p
0� ~x2e�i� ~p

0	 ~p�� ~x1 ��	

� h�jT��	�x2�j
��x1� ��

��0��j�i:

(2.9)

For large Euclidean time separations t2 	 t1 
 1 and t1 

1, the three-point function at the hadronic level is domi-
nated by the contribution from the ground state

 

hGBj�B�t2; t1; ~p0; ~p; ��i �
X
s;s0
e	Ep0 �t2	t1�e	Ept1 ��	

� h�j�	jp0; s0ihp0; s0jj�jp; si

� hp; sj ���j�i: (2.10)

The matrix element of the electromagnetic current has the
general form

 

hp0; s0jj�jp; si �
�
M2

EpEp0

�
1=2

�u�p0; s0�

�

�
F1�q2��� 	 F2�q2����

q�

2M

�
u�p; s�;

(2.11)

where q � p0 	 p. To eliminate the time dependence of
the three-point functions we construct the following ratio,

 R�t2; t1; ~p0; ~p; �;�0;�� �
�
hGBj�B�t2; t1; ~p0; ~p; ��ihGBj�B�t2; t1;	 ~p;	 ~p0; ��i

hGBB�t2; ~p0; �0�ihGBB�t2;	 ~p; �0�i

�
1=2
: (2.12)

For large time separations t2 	 t1 
 1 and t1 
 1 this ratio is constant in time and is proportional to the electromagnetic
form factors of interest. We further define a reduced ratio �R� ~p0; ~p; �;�0;�� as

 

�R� ~p0; ~p; �;�0;�� �
�

2Ep
Ep �M

�
1=2
�

2Ep0

Ep0 �M

�
1=2
R�t2; t1; ~p0; ~p; �;�0;��; (2.13)

from which the Sachs forms for the electromagnetic form
factors

 G E�q
2� � F1�q

2� 	
q2

�2M�2
F2�q

2�; (2.14)

 G M�q2� � F1�q2� � F2�q2�; (2.15)

may be extracted through an appropriate choice of � and

�0. A straight forward calculation reveals

 G E�q2� � �R� ~q; ~0; �4;�4; 4�; (2.16)

 j�ijkqijGM�q2� � �Eq �M� �R� ~q; ~0; �j;�4; k�; (2.17)

 jqkjGE�q
2� � �Eq �M� �R� ~q; ~0; �4;�4; k�; (2.18)
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where

 �j �
1

2
�j 0
0 0

� �
; �4 �

1

2
I 0
0 0

� �
: (2.19)

C. Correlation functions at the quark level

Here the two and three-point functions of Sec. II B are
calculated at the quark level by using the explicit forms of
the interpolating fields of Sec. II A and contracting out all
possible pairs of quark-field operators. These become
quark propagators in the ensemble average. For conve-
nience, we introduce the shorthand notation for the corre-
lation functions G of quark propagators S
 

G�Sf1
; Sf2

; Sf3
� � �abc�a

0b0c0 fSaa
0

f1
�x; 0�

� tr�Sbb
0T

f2
�x; 0�Scc

0

f3
�x; 0��

� Saa
0

f1
�x; 0�Sbb

0T
f2
�x; 0�Scc

0

f3
�x; 0�g; (2.20)

where Saa
0

f1–3
�x; 0� are the quark propagators in the back-

ground link-field configuration U corresponding to flavors
f1–3. This allows us to express the correlation functions in
a compact form. The associated correlation function for
�p� can be written as

 Gp��t; ~p; �� �
�X

~x

e	i ~p� ~x tr��G�Su; ~CSd ~C	1; Su��
�
;

(2.21)

where h� � �i is the ensemble average over the link fields, �
is the �� projection operator that separates the positive and
negative parity states, and ~C � C�5. For ease of notation,
we will drop the angled brackets, h� � �i, and all the follow-
ing correlation functions will be understood to be ensemble
averages.

Two-point correlation functions for other octet baryons
composed of a doubly-represented quark flavor and a
singly-represented quark flavor follow from Eq. (2.21)
with the appropriate substitution of flavor subscripts. The
correlation function for the neutral member �0 is given by
the average of correlation functions for the charged states
�� and �	. Finally the correlation function for � obtained
from the octet-interpolating field of Eq. (2.5) is

 

G�8
�t; ~p; �� �

1

6

X
~x

e	i ~p� ~x tr��f2G�Ss; ~CSu ~C	1; Sd� � 2G�Ss; ~CSd ~C	1; Su� � 2G�Sd; ~CSu ~C	1; Ss� � 2G�Su; ~CSd ~C	1; Ss�

	 G�Sd; ~CSs ~C	1; Su� 	G�Su; ~CSs ~C	1; Sd�g�: (2.22)

D. Three-point functions at the quark level

In determining the three-point function, one encounters
two topologically different ways of performing the current
insertion. Figure 1 displays skeleton diagrams for these
two insertions. These diagrams may be dressed with an
arbitrary number of gluons (and additional sea-quark loops
in full QCD). Diagram (a) illustrates the connected inser-
tion of the current to one of the quarks created via the
baryon interpolating field. This simple skeleton diagram
does indeed contain a sea-quark component, as upon dress-
ing the diagram with gluon exchange, quark-loop and

Z-diagrams flows become possible. It is here that ‘‘Pauli-
blocking’’ in the sea contributions, central to obtaining
violation of the Gottfried sum rule, are taken into account.
Diagram (b) accounts for an alternative quark-field con-
traction where the current first produces a disconnected q �q
loop-pair which in turn interacts with the valence quarks of
the baryon via gluons.

Thus, the number of terms in the three-point function is
4 times that in Eq. (2.21). The correlation function for
proton matrix elements obtained from the interpolator of
Eq. (2.1) is

 

T��p��x2�j
��x1� ��

p��0�� � G�Ŝu�x2; x1; 0�; ~CSd�x2; 0� ~C
	1; Su�x2; 0�� � G�Su�x2; 0�; ~CSd�x2; 0� ~C

	1; Ŝu�x2; x1; 0��

� G�Su�x2; 0�; ~CŜd�x2; x1; 0� ~C
	1; Su�x2; 0��

�
X

q�u;d;s

eq
X
i

tr�Siiq �x1; x1����G�Su�x2; 0�; ~CSd�x2; 0� ~C
	1; Su�x2; 0��; (2.23)

FIG. 1. Diagrams illustrating the two topologically different
insertions of the current within the framework of lattice QCD.
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where

 Ŝ aa
0

q �x2; x1; 0� � eq
X
i

Saiq �x2; x1���S
ia0
q �x1; 0�; (2.24)

denotes the connected insertion of the electromagnetic
current to a quark of charge eq.

The first two terms of Eq. (2.23) provide the connected
insertion contribution of the u-quark sector to the proton’s
electromagnetic properties, whereas the third term pro-
vides the connected d-quark contribution. The latter term
of Eq. (2.23) accounts for the ‘‘disconnected’’ loop con-
tribution depicted in Fig. 1(b). Here, the sum over the
quarks running around the loop has been restricted to the
flavors relevant to the ground state baryon octet. In the
SU(3)-flavor limit the sum vanishes for the electromag-
netic current. However, the heavier strange-quark mass
allows for a nontrivial result.

The disconnected current insertion requires a numerical
estimate of Siiq �x1; x1� for the lattice volume of diagonal
spatial indices. As this requires numerous source vectors in
the fermion-matrix inversion, determination of this propa-
gator is numerically intensive [17–19]. Indeed, an indirect
method using experimental results, chiral effective field
theory and the lattice results from the connected current
insertion presented herein, provides the most precise de-
terminations of these quark-loop contributions to the nu-
cleon’s electromagnetic structure [9–11] at present. This
approach should be viewed as complementary to an
ab initio determination via lattice QCD which awaits a
next-generation dynamical-fermion simulation of QCD
[15].

It is interesting to examine the structure of the connected
insertion contributions to the proton’s structure. Here, we
see very different roles played by u and d quarks in the
correlation function, in that only the d quark appears in the
second position of G. The absence of equivalence for u and
d contributions allows the connected quark sector to give
rise to a nontrivial neutron charge radius, a large neutron
magnetic moment, or a violation of the Gottfried sum rule.
As each term of Eq. (2.23) can be calculated individually, it
is a simple task to isolate the quark-sector contributions to
the baryon electromagnetic properties.

Another interesting point to emphasize, is that there is
no simple relationship between the properties of a particu-
lar quark flavor bound in different baryons. For example,
the correlator for �� is given by (2.23) with d! s. Hence,
a u-quark propagator in �� is multiplied by an s-quark
propagator, whereas in the proton the u-quark propagators
are multiplied by a d-quark propagator. The different mass
of the neighboring quark gives rise to an environment
sensitivity in the u-quark contributions to observables
[4,6,7,9,20–22]. This point sharply contrasts the concept
of an intrinsic quark property which is independent of the
quark’s environment. This concept of an intrinsic quark

property is a fundamental foundation of many constituent
based quark models and is not in accord with QCD.

III. LATTICE TECHNIQUES

A. Gauge and quark actions

The simulations are performed using the mean-field
O�a2�-improved Luscher-Weisz [23] plaquette plus rect-
angle gauge action on a 203 � 40 lattice with periodic
boundary conditions. The lattice spacing a � 0:128 fm is
determined by the Sommer scale r0 � 0:50 fm [24]. This
large-volume lattice ensures a good density of low-lying
momenta which are key to giving rise to chiral nonanalytic
behavior in the observables simulated on the lattice [9–11].

We perform a high-statistics analysis using a large sam-
ple of 400 configurations for our lightest eight quark
masses. We also consider a subset of 200 configurations
for our three heaviest quark masses to explore the approach
to the heavy-quark regime. A subensemble bias correction
is applied multiplicatively to the heavy-quark results, by
matching the central values of the 200 configuration
subensemble and 400 configuration ensemble averages at

 � 0:12780. The error analysis is performed by a third-
order, single-elimination jackknife.

For the quark fields, we use the fat-link irrelevant clover
fermion action [25]

 SFL
SW � SFL

W 	
igCSW
r

2�uFL
0 �

4
� �x����F�� �x�; (3.1)

where F�� is an O�a4�-improved lattice definition [26]
constructed using fat links and uFL

0 is the plaquette measure
of the mean link calculated with fat links. The mean-field
improved fat-link irrelevant Wilson action is
 

SFL
W �

X
x

� �x� �x� � 

X
x;�

� �x�
�
��

�U��x�

u0
 �x� �̂�

	
Uy��x	 �̂�

u0
 �x	 �̂�

�

	 r
�UFL

� �x�

uFL
0

 �x� �̂� �
UFLy
� �x	 �̂�

uFL
0

 �x	 �̂�
��
;

(3.2)

with 
 � 1=�2m� 8r�. We take the standard value r � 1.
Our notation uses the Pauli representation of the Dirac
�-matrices [27], where the �-matrices are hermitian and
��� � ���; ���=�2i�. Fat links are constructed by per-
forming nAPE � 6 sweeps of APE smearing, where in
each sweep the weights given to the original link and the
six transverse staples are 0.3 and (0:7=6), respectively. The
FLIC action is closely related to the mean-field improved
clover (MFIC) fermion action in that the latter is described
by Eqs. (3.1) and (3.2) with all fat-links replaced by un-
touched thin links and F�� defined by the 1� 1-loop
clover definition.
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For fat links, the mean link u0 
 1, indicating that
perturbative renormalizations are small for smeared links
and are accurately accounted for by small mean-field im-
provement corrections. As a result, mean-field improve-
ment of the coefficients of the clover and Wilson terms of
the fermion action is sufficient to accurately match these
terms and eliminate O�a� errors from the fermion action
[28]. An added advantage is that access to the light-quark
mass regime is enabled by the improved chiral properties
of the FLIC fermion action [29].

Time slices are labeled from 1 to 40, and a fixed bound-
ary condition at t � 40 is used for the fermions. An analy-
sis of the pion correlator indicates that the effects of this
boundary condition are negligible for t � 30, and all of our
correlation-function fits are performed well within this
regime.

Gauge-invariant Gaussian smearing [30,31] in the spa-
tial dimensions is applied at the source at t � 8 to increase
the overlap of the interpolating operators with the ground
state while suppressing excited-state contributions.

Table I provides the kappa values used in our simula-
tions, together with the calculated � and octet-baryon
masses. While we refer to m2

� to infer the quark masses,
we note that the critical value where the pion mass vanishes
is 
cr � 0:13135.

We select 
 � 0:12885 to represent the strange quark in
this simulation. At this 
 the s�s pseudoscalar mass is
0.697 GeV, which compares well with the experimental
value of 2m2

K 	m
2
� � �0:693 GeV�2, motivated by lead-

ing order chiral perturbation theory.

B. Improved-conserved vector current

For the construction of the O�a�-improved-conserved
vector current, we follow the technique proposed by
Martinelli et al. [32]. The standard conserved vector cur-
rent for Wilson-type fermions is derived via the Noether
procedure

 

jC
� �

1
4�

� �x���� 	 r�U��x� �x� �̂�

� � �x� �̂���� � r�Uy��x� �x� � �x! x	 �̂��:

(3.3)

The O�a�-improvement term is also derived from the
fermion action and is constructed in the form of a total
four-divergence, preserving charge conservation. The
O�a�-improved-conserved vector current is

 jCI
� � jC

��x� �
r
2
CCVCa

X
�

@�� � �x���� �x��; (3.4)

where CCVC is the improvement coefficient for the con-
served vector current and we define

 @�� � �x� �x�� � � �x��r
 

��r
!

�� �x�; (3.5)

where the forward and backward derivatives are defined as
 

r
!

� �x� �
1

2a
�U��x� �x� �̂� 	Uy��x	 �̂� �x	 �̂��;

� �x�r
 

� �
1

2a
� � �x� �̂�Uy��x� 	 � �x	 �̂�U��x	 �̂��:

The terms proportional to the Wilson parameter r in
Eq. (3.3) and the four-divergence in Eq. (3.4) have their
origin in the irrelevant operators of the fermion action and
vanish in the continuum limit. Nonperturbative improve-
ment is achieved by constructing these terms with fat-links.
As we have stated, perturbative corrections are small for
fat-links and the use of the tree-level value for CCVC � 1
together with small mean-field improvement corrections
ensures that O�a� artifacts are accurately removed from the
vector current. This is only possible when the current is
constructed with fat links. Otherwise, CCVC needs to be
appropriately tuned to ensure all O�a� artifacts are
removed.

TABLE I. Hadron masses in appropriate powers of GeV for various values of the hopping
parameter, 
. For reference, experimentally measured values are indicated at the end of the table.


 m2
� N � � �

0.12630 0.9972(55) 1.829(8) 1.728(10) 1.700(9) 1.612(11)
0.12680 0.8947(54) 1.763(9) 1.681(10) 1.656(10) 1.586(12)
0.12730 0.7931(53) 1.695(9) 1.632(11) 1.566(11) 1.558(12)
0.12780 0.6910(35) 1.629(10) 1.584(10) 1.570(10) 1.531(10)
0.12830 0.5925(33) 1.554(10) 1.530(10) 1.521(10) 1.502(10)
0.12885 0.4854(31) 1.468(11) 1.468(11) 1.468(11) 1.468(11)
0.12940 0.3795(31) 1.383(11) 1.406(11) 1.417(11) 1.435(11)
0.12990 0.2839(33) 1.301(11) 1.347(11) 1.371(11) 1.404(11)
0.13025 0.2153(35) 1.243(12) 1.303(12) 1.341(12) 1.382(11)
0.13060 0.1384(43) 1.190(15) 1.256(13) 1.313(12) 1.359(11)
0.13080 0.0939(44) 1.159(21) 1.226(16) 1.296(14) 1.346(11)
experiment 0.0196 0.939 1.116 1.189 1.315
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In order to suppress contributions from excited states,
large Euclidean times are required, both following the
source at t0, and following the current insertion at t1. Our
two-point function analysis indicates that the ground state
is isolated well by t � 14, largely due to an excellent
selection for the source smearing parameters. Therefore
the current insertion is performed at t1 � 14.

We note that the precision of our results is sufficient to
reveal a small excited-state contamination in the correla-
tion function at the position of the current insertion. There
is always a systematic error associated with excited-state
contaminations and ideally this error is simply hidden in
the statistical uncertainties.

A comparison of the asymptotic masses with those
obtained from a fit including the onset of the point-split
current reveals a 2% admixture of excited-state contami-
nation in our lightest five quark masses and smaller for
heavier quark masses. This error is typically small relative
to the statistical errors of the quantities of interest and do
not affect the interpretation of our results.

C. Improved unbiased estimators

The two and three-point correlation functions are de-
fined as averages over an infinite ensemble of equilibrium
gauge field configurations, but are approximated by an
average over a finite number of configurations. To mini-
mize the noise in the results, we exploit the parity of the
correlation functions [33]

 G� ~p0; ~p; ~q; �� � sPG�	 ~p
0;	 ~p;	 ~q; ��; sP � �1;

(3.6)

and calculate them for both ~p, ~p0, ~q, and 	 ~p, 	 ~p0, 	 ~q.
While this requires an extra matrix inversion to determine
Ŝ�x2; 0; t1;	 ~q; ��, the ratio of three- to two-point func-
tions is determined with a substantial reduction in the
statistical uncertainties. The improvement is better than
that obtained by doubling the number of configurations.

Similarly, the link variables fUg and fU�g are gauge field
configurations of equal weight, and therefore we account
for both sets of configurations in calculating the correlation
functions [34]. With the fermion-matrix property

 M�fU�g� � � ~CM�fUg� ~C	1��; (3.7)

it follows that

 S�x; 0; fU�g� � � ~CS�x; 0; fUg� ~C	1��; (3.8)

 Ŝ�x; 0; t; ~q; �; fU�g� � � ~C Ŝ�x; 0; t;	 ~q; �; fUg� ~C	1��;

(3.9)

and therefore the correlation functions are purely real
provided

 � � sC� ~C� ~C	1�� and sC � sP: (3.10)

These conditions are satisfied with the selections for

� indicated in Eq. (2.19). In summary, the inclusion of
both fUg and fU�g configurations in the calculation of the
correlation functions provides an improved unbiased esti-
mate of the ensemble average properties incorporating
parity symmetry and significantly reducing statistical
fluctuations.

D. Fit regime selection criteria

In fitting the correlation functions, the covariance-
matrix based �2 per degree of freedom (d.o.f.) plays a
central role.

The correlated �2=dof is given by
 

�2

dof
�

1

Nt	M

XNt
i�1

XNt
j�1

�y�ti�	T�ti��C
	1�ti; tj��y�tj�	T�tj��;

(3.11)

where, M is the number of parameters to be fitted, Nt is the
number of time slices considered, y�ti� is the configuration
average value of the dependent variable at time ti that is
being fitted to a theoretical value T�ti�, and C�ti; tj� is the
covariance matrix. The elements of the covariance matrix
are estimated via the jackknife method

 C�ti; tj� �
Nc 	 1

Nc

XNc
m�1

� �ym�ti� 	 ��y�ti��� �ym�tj� 	 ��y�tj��;

(3.12)

 � �Nc 	 1� �
�

1

Nc

XNc
m�1

�ym�ti� �ym�tj� 	 ��y�ti���y�tj�
	
; (3.13)

whereNc is the total number of configurations and �ym�ti� is
the jackknife ensemble average of the system after remov-
ing the mth configuration. ��y�ti� is the average of all such
jackknife averages, given by

 

��y�ti� �
1

Nc

XNc
m�1

�ym�ti�: (3.14)

In the process of selecting the fit regimes, numerous fits
are performed over a variety of start times and a variety of
time durations. The following criteria are taken into ac-
count in selecting the preferred fit regime:

(1) The �2=d:o:f: is monitored and plays a significant
role in determining the start time of the fit. Values
within the range 0.5 to 1.5 are preferred and it is
often possible to select a regime providing a perfect
fit measure of 1. Start times for which the �2=d:o:f:
increases significantly as the duration of the regime
is increased are discarded. In practice, the �2=d:o:f:
sets a lower bound for the start time, and other
criteria may lead to a later start time for the fit.

(2) In some cases a monotonic systematic drift can
be observed in the ratio of correlation functions
(2.12) which otherwise should be constant in time.
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Often the drift is sufficiently small to provide a
�2=d:o:f: < 1:5. In these few cases, a later start
time is selected to ensure that sufficient Euclidean
time evolution has occurred to accurately isolate the
ground state, suppressing systematic errors at the
expense of larger statistical errors.

(3) As the quarks become lighter, the spacing between
the ground and first excited states of the baryon
spectrum becomes larger [34,35], due to the more
rapid reduction in the mass of the lower-lying state.
This provides improved exponential suppression of
excited-state contaminations. Hence, as one ap-
proaches the light-quark mass regime, a monotonic
reduction in the starting time-slice of the fit regime
may be possible.

(4) As the quark masses become lighter, the signal is
lost to noise at earlier times. Hence the final time
slice of the fit window is also monotonically de-
creased as the quarks become lighter. We typically
consider fit regimes of three to five time slices and
preferably the latter when the signal is not obviously
lost to noise.

For quark masses lighter than the strange-quark mass,
the splittings between adjacent quark masses are calculated
and fit using the same techniques. By considering adjacent
splittings, excited-state contributions, which are less de-
pendent on the quark mass (see item 3 above), are sup-
pressed in taking the difference before fitting. The physics
behind this is well motivated as more of the excited state’s
energy comes from sources other than the quark masses.
For example, it is well established that the slope of excited-
state masses with respect to m2

�, is smaller than the ground
state slope for m2

� > 0:1 GeV2.
In practice, we find that excited-state contaminations are

reduced by fitting the difference. To illustrate this we first
establish a common time-slice fit window for a direct fit of
the two correlation functions. Upon applying the same fit
regime to a fit of their difference, we find the �2=d:o:f: to
be small. This is an indication of the removal of excited-
state contamination in the difference of the correlation
functions.

In determining the optimal fit regime, the covariance-
matrix based �2=d:o:f: is used to guide the selection of the
fit window. In practice, good �2=d:o:f: are found one to two
time slices earlier.

A precise examination of the environment sensitivity of
quark-sector contributions to baryon electromagnetic prop-
erties lies at the core of this investigation. For example, the
doubly-represented u quark in the proton is to be compared
with the doubly-represented u quark in ��; the singly-
represented u quark in the neutron with the u quark in �0.
Similarly, it is interesting to compare the strange and light-
quark sectors of �	 with those of �. Conventional models
reverse the ordering of the observed magnetic moments.
After the consideration of the preceding criteria, the fit

regimes are unified for each of the quark-sector contribu-
tions wherever possible. This comparison is done for each
value of 
 governing the quark mass, reducing systematic
errors associated with choosing different time-fitting re-
gimes for similar quantities. For example, for the case of
the doubly-represented u quark in the proton and ��, it is
possible to equate the fit regimes for all but the two lightest
quark masses where the �2=d:o:f: insists on different fit
regimes.

IV. CORRELATION-FUNCTION ANALYSIS

The following calculations are performed with ~p � 0,
~p0 � ~q � j ~qjx̂ at qxa � 2�=Lx with Lx � 20, the mini-
mum nonzero momentum available on our lattice. We
introduce Q2 � 	q2, as q2 is negative (spacelike). While
Q2 is dependent on the mass of the baryon, we find this
mass dependence to be small. Indeed all form factors
may be regarded as being calculated at Q2 � 0:227�
0:002 GeV2, where the error is dominated by the mass
dependence of the target baryon. Where a spatial direction
of the electromagnetic current is required, it is chosen to be
the z-direction. Electric and magnetic form factors are
extracted from our correlation functions as described in
Eqs. (2.16) and (2.17).

A. Baryon masses

The masses of the baryon octet are plotted against m2
� in

Fig. 2 and are tabulated in Table I. We observe the SU�3�f
limit at our sixth quark mass. The mass splitting between
� and � at the lowest pion mass (m� � 0:3064�
0:0072 GeV) on our lattice is 69� 2 MeV which is only
slightly smaller than the experimentally measured splitting
of 76 MeV. Hence the generic features of the baryon-octet
mass spectrum is reproduced well in our quenched
simulation.

FIG. 2 (color online). Masses of the octet baryons. The SU(3)
flavor limit is evident. Points on the y-axis indicate the experi-
mentally measured masses for reference.
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B. Form factor correlators

In general, the baryon form factors are calculated on a
quark-sector by quark-sector basis with each sector nor-
malized to the contribution of a single quark with unit
charge. Hence to calculate the corresponding baryon prop-
erty, each quark-sector contribution should be multiplied
by the appropriate charge and quark number. Under such a
scheme for a generic form factor f, the proton form factor,
fp, is obtained from the u- and d-quark sectors normalized
for a single quark of unit charge via

 fp � 2� 2
3� fu � 1� �	1

3� � fd: (4.1)

The electric form factor of the proton and contributions
from the u- and d-quark sectors are plotted in Fig. 3 as a
function of Euclidean time at the SU(3)-flavor limit. Here,
charge and quark number factors have been included such
that the proton result is simply the sum of the illustrated
quark sectors. The lines indicate the time slices selected for
the fit using the considerations of Sec. III D.

We find that substantial Euclidean time evolution is
required following the current insertion to obtain accept-
able values of the �2=d:o:f:; in this case seven time slices
following the current insertion at t1 � 14.

For light-quark masses lighter than the strange-quark
mass, we fit the change in the form factor ratios of
Eqs. (2.16) or (2.17) from one quark mass to the next and
add this to the previous result at the heavier quark mass.
Figure 4 shows the quark-sector contributions (including
charge and quark number factors) to the electric form
factor of the proton at Q2 � 0:227�2� �GeV2� as a function
of Euclidean time, t2, for the ninth quark mass wherem2

� �
0:2153�35� GeV2. The correlator is obtained from the
splitting between the ninth and eighth quark-mass states
and this difference is added to the result previously estab-

lished for the eighth quark mass. The improvement of the
plateau is apparent in Fig. 4. It is clear that one could go all
the way to the current insertion at time slice 14 and make
only a small systematic error. However, the statistical
precision of our results does not allow us to do so. In
most cases, substantial Euclidean time evolution is re-
quired to obtain an acceptable �2=d:o:f:

Tables II, III, IV, and V list the electric form factors for
all the octet baryons at the quark level for the 11 quark
masses considered. In the tables, the selected time frame,
the fit value and the associated �2=d:o:f: are indicated.

Turning now to the magnetic form factors, Fig. 5 shows
the magnetic form factor of �0 and its quark sectors
(including charge and quark number factors) as a function
of Euclidean time at the SU(3)-flavor limit. Preferred fit
windows following from the criteria of Sec. III D and best
fit values are indicated.

Here the conversion from the natural magneton,
e=�2mB�, where the mass of the baryon under investigation
appears, to the nuclear magneton, e=�2mN�, where the
physical nucleon mass appears, has been done by multi-
plying the lattice form factor results by the ratiomN=mB. In
this way the form factors are presented in terms of a
constant unit; i.e. the nuclear magneton.

The negative contribution of the u quark to the total form
factor indicates that its spin is on average opposite to that
of the doubly represented s quarks. This, as well the
relative magnitude of the contributions, is in qualitative
agreement with simple constituent quark models based on
SU(6) spin-flavor symmetry.

In Fig. 6 we present the Euclidean time dependence of
the magnetic form factors of �0 calculated at the ninth

FIG. 4 (color online). Quark-sector contributions (including
charge and quark number factors) to the electric form factor of
the proton at Q2 � 0:227�2� �GeV2� as a function of Euclidean
time, t2, for the ninth quark mass where m2

� �
0:2153�35� GeV2. The correlator is obtained from the splitting
between the ninth and eighth quark-mass states. The lines
indicate the fitting windows and the best fit value.

FIG. 3 (color online). Electric form factor of the proton and its
quark sectors (including charge and quark number factors) at
Q2 � 0:227�2� GeV2 as a function of Euclidean time (t2) for
m2
� � 0:4854 GeV2, the SU(3)-flavor limit. The lines indicate

the fitting windows and the best fit value.

S. BOINEPALLI et al. PHYSICAL REVIEW D 74, 093005 (2006)

093005-8



TABLE IV. Quark-sector contributions to the electric form factors of � at Q2 � 0:227�2� GeV2. Sector contributions are for a single
quark having unit charge. The fit windows are selected using the criteria outlined in Sec. III D.

m2
� (GeV2) u� or d� s�

Fit value Fit window �2=d:o:f: Fit value Fit window �2=d:o:f:

0.9972(55) 0.803(5) 21–25 1.20 0.754(8) 21–25 0.64
0.8947(54) 0.794(6) 21–25 1.23 0.744(9) 21–25 0.58
0.7931(53) 0.785(7) 21–25 1.06 0.744(10) 21–25 0.54
0.6910(35) 0.775(6) 21–25 1.17 0.738(8) 21–25 0.55
0.5925(33) 0.765(7) 21–25 1.12 0.737(9) 21–25 0.48
0.4854(31) 0.750(8) 21–25 1.02 0.735(10) 21–25 0.49
0.3795(31) 0.736(9) 19–23 0.94 0.734(11) 19–23 0.88
0.2839(33) 0.720(11) 19–23 1.17 0.730(12) 19–23 1.05
0.2153(35) 0.704(13) 19–23 1.23 0.727(13) 19–23 0.55
0.1384(43) 0.694(13) 16–18 2.07 0.727(13) 16–18 0.62
0.0939(44) 0.686(13) 16–18 1.22 0.729(14) 16–18 0.29

TABLE II. Quark-sector contributions to the electric form factors of the nucleon at Q2 � 0:227�2� GeV2. Sector contributions are
for a single quark having unit charge. The fit windows are selected using the criteria outlined in Sec. III D.

m2
� (GeV2) up dp

Fit value Fit window �2=d:o:f: Fit value Fit window �2=d:o:f:

0.9972(55) 0.798(5) 21–25 1.02 0.805(4) 21–25 2.36
0.8947(54) 0.789(5) 21–25 0.89 0.796(5) 21–25 2.53
0.7931(53) 0.779(6) 21–25 0.64 0.788(5) 21–25 2.21
0.6910(35) 0.768(6) 21–25 0.86 0.780(5) 21–25 1.57
0.5925(33) 0.756(7) 21–25 0.80 0.769(6) 21–25 1.42
0.4854(31) 0.740(9) 21–25 0.62 0.755(9) 21–25 1.19
0.3795(31) 0.725(10) 19–23 1.23 0.741(11) 19–23 0.78
0.2839(33) 0.708(12) 19–23 1.37 0.723(14) 19–23 1.31
0.2153(35) 0.693(15) 19–23 0.82 0.700(20) 19–23 1.23
0.1384(43) 0.682(17) 16–20 1.02 0.678(25) 16–20 0.89
0.0939(44) 0.666(25) 16–19 1.47 0.644(38) 16–19 1.28

TABLE III. Quark-sector contributions to the electric form factors of � baryons atQ2 � 0:227�2� GeV2. Sector contributions are for
a single quark having unit charge. The fit windows are selected using the criteria outlined in Sec. III D.

m2
� (GeV2) u� or d� s�

Fit value Fit window �2=d:o:f: Fit value Fit window �2=d:o:f:

0.9972(55) 0.793(6) 21–25 0.91 0.759(6) 21–25 1.70
0.8947(54) 0.785(7) 21–25 0.86 0.758(7) 21–25 1.71
0.7931(53) 0.776(7) 21–25 0.66 0.757(8) 21–25 1.59
0.6910(35) 0.766(6) 21–25 1.00 0.757(6) 21–25 1.40
0.5925(33) 0.755(7) 21–25 0.90 0.756(7) 21–25 1.36
0.4854(31) 0.740(9) 21–25 0.62 0.755(9) 21–25 1.19
0.3795(31) 0.726(10) 19–23 1.46 0.754(10) 19–23 0.37
0.2839(33) 0.711(12) 19–23 1.78 0.753(11) 19–23 0.58
0.2153(35) 0.700(14) 19–23 0.73 0.752(13) 19–23 0.39
0.1384(43) 0.680(18) 19–21 0.73 0.754(17) 19–21 0.18
0.0939(44) 0.670(23) 19–23 1.30 0.750(26) 19–21 1.40
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quark mass where m2
� � 0:2153�35� GeV2. Again the

early onset of acceptable plateau behavior is apparent here.
Results for the quark-sector contributions to the mag-

netic form factors of octet baryons are summarized in
Tables VI, VII, VIII, and IX.

V. DISCUSSION OF RESULTS

A. Charge radii

To make contact with the extensive phenomenology of
the field, our results for the electric form factors are ex-
pressed in terms of charge radii. It is well known that the
experimentally measured electric (and magnetic) form
factor of the proton is described well by a dipole ansatz
at small Q2

 G E�Q
2� �

GE�0�

�1�Q2=m2�2
; Q2 � 0; (5.1)

wherem characterizes the size of the proton. This behavior
has also been observed in recent lattice calculations [12]
where many momentum transfers have been considered.
Using this observation, together with

 hr2
Ei � 	6

d

dQ2 GE�Q
2�









Q2�0
; (5.2)

we arrive at an expression which allows us to calculate the
electric charge radius of a baryon using our two available
values of the Sach’s electric form factor (GE�Q2

min�;
GE�0�), namely

TABLE V. Quark-sector contributions to the electric form factors of � baryons at Q2 �
0:227�2� GeV2. Sector contributions are for a single quark having unit charge. The fit windows
are selected using the criteria outlined in Sec. III D.

m2
� (GeV2) s� u� or d�

Fit value Fit window �2=d:o:f: Fit value Fit window �2=d:o:f:

0.9972(55) 0.747(9) 21–25 0.34 0.804(8) 21–25 1.60
0.8947(54) 0.747(9) 21–25 0.36 0.794(8) 21–25 1.53
0.7931(53) 0.746(10) 21–25 0.37 0.785(9) 21–25 1.52
0.6910(35) 0.742(8) 21–25 0.54 0.778(7) 21–25 1.38
0.5925(33) 0.741(8) 21–25 0.55 0.768(8) 21–25 1.24
0.4854(31) 0.740(9) 21–25 0.62 0.755(9) 21–25 1.19
0.3795(31) 0.739(9) 19–23 0.70 0.740(10) 21–25 1.45
0.2839(33) 0.738(10) 19–23 1.18 0.723(13) 21–25 1.22
0.2153(35) 0.736(10) 19–23 1.42 0.709(16) 21–25 0.81
0.1384(43) 0.733(10) 19–23 0.52 0.690(19) 20–23 0.71
0.0939(44) 0.725(11) 19–23 1.21 0.672(22) 20–23 0.59

FIG. 6 (color online). Quark-sector contributions (including
charge and quark number factors) to the magnetic form factor
of �0 at Q2 � 0:227�2� �GeV2� as a function of Euclidean time,
t2, for the ninth quark mass where m2

� � 0:2153�35� GeV2. The
correlator is obtained from the splitting between the ninth and
eighth quark-mass states. The lines indicate the fitting windows
and the best fit value.

FIG. 5 (color online). Magnetic form factors of �0 and its
quark sectors (including charge and quark number factors) at
Q2 � 0:227�2� GeV2 as a function of Euclidean time (t2) for
m2
� � 0:4854 GeV2, the SU(3)-flavor limit. The lines indicate

the fitting windows and the best fit value.
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TABLE VII. Quark-sector contributions to the magnetic form factors of � baryons at Q2 �
0:227�2� GeV2. Sector contributions are for a single quark having unit charge. The fit windows
are selected using the criteria outlined in Sec. III D.

m2
� (GeV2) u� or d� (�N) s� (�N)

Fit value Fit window �2=d:o:f: Fit value Fit window �2=d:o:f:

0.9972(55) 0.775(14) 19–23 1.22 	0:316�10� 18–22 0.73
0.8947(54) 0.793(16) 19–23 1.10 	0:314�11� 18–22 0.63
0.7931(53) 0.810(18) 19–23 0.96 	0:312�11� 18–22 0.55
0.6910(35) 0.821(14) 19–23 0.98 	0:309�9� 18–22 0.94
0.5925(33) 0.840(16) 19–23 0.82 	0:308�10� 18–22 0.86
0.4854(31) 0.861(20) 19–23 0.64 	0:306�12� 18–22 0.86
0.3795(31) 0.886(23) 17–21 0.19 	0:308�13� 16–18 0.42
0.2839(33) 0.914(27) 17–21 0.26 	0:310�15� 16–18 0.03
0.2153(35) 0.941(32) 17–21 0.61 	0:317�19� 16–18 0.04
0.1384(43) 0.964(33) 15–20 1.57 	0:317�24� 16–18 0.92
0.0939(44) 0.969(41) 15–17 0.11 	0:322�28� 16–18 1.08

TABLE VI. Quark-sector contributions to the magnetic form factors of the nucleon at Q2 �
0:227�2� GeV2. Sector contributions are for a single quark having unit charge. The fit windows
are selected using the criteria outlined in Sec. III D.

m2
� (GeV2) up (�N) dp (�N)

Fit value Fit window �2=d:o:f: Fit value Fit window �2=d:o:f:

0.9972(55) 0.765(12) 19–23 1.78 	0:295�7� 18–22 0.61
0.8947(54) 0.785(14) 19–23 1.33 	0:298�8� 18–22 0.51
0.7931(53) 0.804(16) 19–23 1.01 	0:301�9� 18–22 0.43
0.6931(51) 0.817(13) 19–23 1.00 	0:301�8� 18–22 0.91
0.5944(51) 0.838(15) 19–23 0.73 	0:304�10� 18–22 0.79
0.4869(50) 0.861(20) 19–23 0.64 	0:306�12� 18–22 0.86
0.3795(31) 0.893(24) 17–21 0.14 	0:314�14� 16–18 1.64
0.2839(33) 0.932(31) 17–21 0.14 	0:313�19� 16–19 1.24
0.2153(35) 0.967(42) 17–21 0.61 	0:313�31� 16–20 0.53
0.1384(43) 1.034(52) 16–20 1.12 	0:309�40� 15–19 0.49
0.0939(44) 1.024(72) 15–17 0.82 	0:336�54� 15–19 1.47

TABLE VIII. Quark-sector contributions to the magnetic form factors of � at Q2 �
0:227�2� GeV2. Sector contributions are for a single quark having unit charge. The fit windows
are selected using the criteria outlined in Sec. III D.

m2
� (GeV2) u� or d� (�N) s���N�

Fit value Fit window �2=d:o:f: Fit value Fit window �2=d:o:f:

0.9972(55) 0.069(9) 19–23 1.26 1.200(22) 18–22 1.38
0.8947(54) 0.072(9) 19–23 1.20 1.210(22) 18–22 1.17
0.7931(53) 0.075(10) 19–23 1.07 1.214(24) 18–22 0.99
0.6910(35) 0.079(8) 19–23 1.08 1.217(17) 18–22 0.95
0.5925(33) 0.083(9) 19–23 1.00 1.228(18) 18–22 0.80
0.4854(31) 0.087(11) 19–23 0.88 1.241(21) 18–22 0.75
0.3795(31) 0.091(12) 17–21 0.55 1.259(22) 16–20 0.59
0.2839(33) 0.097(13) 17–21 0.29 1.277(25) 16–20 0.42
0.2153(35) 0.099(17) 17–21 0.36 1.293(28) 16–20 0.42
0.1384(43) 0.106(19) 15–17 1.23 1.308(33) 16–18 0.94
0.0939(44) 0.105(22) 15–17 0.67 1.314(37) 15–17 1.06
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TABLE IX. Quark-sector contributions to the magnetic form factors of � baryons at Q2 �
0:227�2� GeV2. Sector contributions are for a single quark having unit charge. The fit windows
are selected using the criteria outlined in Sec. III D.

m2
� (GeV2) s� (�N) u� or d� (�N)

Fit value Fit window �2=d:o:f: Fit value Fit window �2=d:o:f:

0.9972(55) 0.846(27) 19–23 0.60 	0:290�10� 18–22 0.19
0.8947(54) 0.849(27) 19–23 0.67 	0:294�11� 18–22 0.21
0.7931(53) 0.851(28) 19–23 0.75 	0:299�12� 18–22 0.21
0.6931(51) 0.855(19) 19–23 0.41 	0:300�10� 18–22 0.59
0.5944(51) 0.858(19) 19–23 0.49 	0:303�11� 18–22 0.68
0.4869(50) 0.861(20) 19–23 0.64 	0:306�12� 18–22 0.86
0.3795(31) 0.866(21) 16–20 0.84 	0:311�13� 16–20 1.77
0.2839(33) 0.871(21) 16–20 0.78 	0:316�14� 16–20 1.66
0.2153(35) 0.875(22) 16–20 1.04 	0:322�15� 16–20 0.77
0.1384(43) 0.879(22) 16–20 1.16 	0:328�17� 15–19 0.86
0.0939(44) 0.879(23) 16–20 0.55 	0:333�18� 15–19 1.00

TABLE X. Nucleon electric charge radii squared. Quark-sector contributions are indicated for
single quarks having unit charge. Baryon charge states are also summarized. Values for m2

� and
hr2i are in units of GeV2 and fm2 respectively.

m2
� up dp p n

0.9972(55) 0.243(7) 0.231(6) 0.247(8) 	0:007�3�
0.8947(54) 0.256(8) 0.245(7) 0.259(9) 	0:007�3�
0.7931(53) 0.270(9) 0.257(8) 0.273(10) 	0:008�4�
0.6910(35) 0.288(9) 0.270(8) 0.294(10) 	0:012�4�
0.5925(33) 0.307(11) 0.286(10) 0.314(12) 	0:014�5�
0.4854(31) 0.332(14) 0.309(14) 0.340(16) 	0:015�7�
0.3795(31) 0.358(17) 0.332(17) 0.367(19) 	0:017�9�
0.2839(33) 0.389(22) 0.363(24) 0.397(24) 	0:017�12�
0.2153(35) 0.416(27) 0.403(36) 0.420(29) 	0:008�16�
0.1384(43) 0.437(31) 0.445(46) 0.435(32) 0.005(21)
0.0939(44) 0.467(48) 0.510(77) 0.452(53) 0.029(41)

TABLE XI. � electric charge radii squared. Quark-sector contributions are indicated for single
quarks having unit charge. Baryon charge states are also summarized where absolute values of
the �	 results are reported. Values for m2

� and hr2i are in units of GeV2 and fm2 respectively.

m2
� u� or d� s� �� �0 �	

0.9972(55) 0.249(9) 0.301(10) 0.232(10) 	0:017�3� 0.266(9)
0.8947(54) 0.261(10) 0.302(11) 0.249(12) 	0:013�3� 0.275(9)
0.7931(53) 0.276(11) 0.304(12) 0.266(15) 	0:010�3� 0.285(11)
0.6910(35) 0.291(10) 0.304(10) 0.286(11) 	0:005�2� 0.295(9)
0.5925(33) 0.309(11) 0.306(11) 0.310(13) 0.001(3) 0.308(11)
0.4854(31) 0.332(14) 0.309(14) 0.340(16) 0.008(4) 0.324(13)
0.3795(31) 0.356(16) 0.310(15) 0.371(19) 0.015(4) 0.341(15)
0.2839(33) 0.382(20) 0.312(18) 0.405(23) 0.023(5) 0.359(18)
0.2153(35) 0.401(25) 0.315(21) 0.430(29) 0.029(6) 0.372(22)
0.1384(43) 0.438(33) 0.311(26) 0.480(38) 0.042(8) 0.395(28)
0.0939(44) 0.456(43) 0.318(41) 0.503(54) 0.046(15) 0.410(37)
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While Eq. (5.1) is suitable for a charged baryon, alter-
native forms must be considered for neutral baryons where
GE�0� � 0.

However, we have direct access to the charge distribu-
tions of the individual quark sectors, a subject receiving
tremendous experimental attention in the search for the
role of hidden flavor in baryon structure. In this case
Eq. (5.3) may be applied to each quark sector providing
an opportunity to determine the charge radii on a sector by
sector basis.

For neutral baryons it becomes a simple matter to con-
struct the charge radii by first calculating the charge radii
for each quark sector. These quark sectors are then com-
bined using the appropriate charge and quark number
factors as described in Sec. IV B to obtain the total baryon

charge radii. Indeed, all baryon charge radii, including the
charged states, are calculated in this manner.

Tables X, XI, XII, and XIII provide the electric charge
radii of the octet baryons and their quark-sector contribu-
tions normalized to the case of single quarks with unit
charge.

1. Quenched chiral perturbation theory

The effective field theory formalism of quenched chiral
perturbation theory (Q�PT) predicts significant contribu-
tions to the charge radii which have their origin in virtual
meson-baryon loop transitions. These loops give rise to
contributions which have a nonanalytic dependence on the
quark mass or squared pion mass. While the absence of
sea-quark loops generally acts to suppress the magnitude of
the coefficients of these terms (and occasionally the sign is
reversed), there are several channels in which these con-
tributions remain significant.

The leading nonanalytic (LNA) and next-to-leading
nonanalytic (NLNA) behavior of charge distribution radii
in full QCD are
 

hr2
Ei �

1

16�2f2

X
i

�
5�i log

�
m2
i

�2

�
	 10�0iG�mi;�; ��

� c0 � c2m2
i � c4m4

i . . .
�
: (5.4)

Here the sum over i includes the � and K pseudoscalar
mesons. The contributions of the various charge states of
these mesons are contained in the coefficients � and �0,
reflecting electric charge and SU(3) axial couplings, D, F
and C. In quenching the theory, the coefficients � and �0

are modified to reflect the absence of sea-quark loops.
The first term arises from octet baryon to octet-baryon—

meson transitions. Thus charge radii are characterized by a
logarithmic divergence [36] in the chiral limit (m2

� ! 0).
In this simple form, the mass splittings between baryon-
octet members is neglected.

TABLE XIII. � electric charge radii squared. Quark-sector contributions are indicated for
single quarks having unit charge. Baryon charge states are also summarized where absolute
values of the �	 results are reported. Values for m2

� and hr2i are in units of GeV2 and fm2

respectively.

m2
� s� u� or d� �	 �0

0.9972(55) 0.319(14) 0.235(11) 0.290(12) 	0:056�7�
0.8947(54) 0.320(15) 0.249(12) 0.296(13) 	0:047�7�
0.7931(53) 0.322(16) 0.262(13) 0.301(14) 	0:039�8�
0.6910(35) 0.329(13) 0.273(11) 0.310(11) 	0:037�6�
0.5925(33) 0.330(14) 0.288(12) 0.316(12) 	0:028�7�
0.4854(31) 0.332(14) 0.309(14) 0.324(13) 	0:015�7�
0.3795(31) 0.334(15) 0.333(17) 0.334(14) 	0:0003�80�
0.2839(33) 0.337(15) 0.361(21) 0.345(16) 0.016(10)
0.2153(35) 0.340(16) 0.385(27) 0.355(18) 0.029(13)
0.1384(43) 0.345(16) 0.419(34) 0.370(19) 0.049(19)
0.0939(44) 0.358(18) 0.451(41) 0.389(23) 0.062(22)

TABLE XII. � electric charge radii squared. Quark-sector
contributions are indicated for single quarks having unit charge.
The baryon charge state is also provided. Values for m2

� and hr2i
are in units of GeV2 and fm2 respectively.

m2
� u� or d� s� �0

0.9972(55) 0.235(8) 0.322(13) 	0:029�3�
0.8947(54) 0.248(9) 0.323(14) 	0:025�3�
0.7931(53) 0.262(10) 0.324(15) 	0:021�3�
0.6910(35) 0.276(9) 0.335(13) 	0:020�3�
0.5925(33) 0.293(10) 0.336(14) 	0:014�3�
0.4854(31) 0.316(13) 0.340(16) 	0:008�4�
0.3795(31) 0.340(15) 0.343(18) 	0:001�4�
0.2839(33) 0.367(18) 0.350(19) 0.006(5)
0.2153(35) 0.395(23) 0.357(22) 0.013(6)
0.1384(43) 0.414(24) 0.356(22) 0.019(6)
0.0939(44) 0.428(25) 0.354(23) 0.025(7)
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The second term of Eq. (5.4) arises from octet baryon to
decuplet-baryon—meson transitions. As the splitting be-
tween the baryon octet and decuplet does not vanish in the
chiral limit, the mass splitting, � � M� 	MN , between
the nucleon and � for example, plays an important role.
The function G�mi;�; �� is

 G �m;�; �� � log
�
m2
i

�2

�
	

��������������������
�2 	m2

i

q

� log
�	

�����������������������������
�2 	m2

i � i�
q

��
�����������������������������
�2 	m2

i � i�
q : (5.5)

As the tadpole graph contributing to the LNA term of
charge radii in full QCD vanishes in quenched QCD [37],
the coefficients � and �0 for charge radii are identical to
those for magnetic moments in quenched QCD [15,16].
Figure 7 displays the nonanalytic contributions from Q�PT
as given in Eq. (5.4), plotted for the sample case of the
proton. In this case, the values of � and �0 are 	 4

3D
2 and

	 1
6C

2 respectively [15,16]. Here the axial couplingsD and
C are related by C � 2D and D is taken as 0.76. The scale
�2 is taken to be 1 GeV2 and serves only to define c0.

Because these nonanalytic contributions are comple-
mented by terms analytic in the quark mass or pion-mass
squared, the slope and curvature at large m2

� of these
contributions is not significant. What is significant is the
curvature at small m2

� and we see that this curvature is
dominated by the LNA term. Here there is no mass split-
ting to mask the effects of dynamical chiral symmetry
breaking. Thus, we will examine the extent to which our
simulation results are consistent with the LNA behavior of
Q�PT.

The coefficient � is related to the coefficient of the
leading nonanalytic (LNA) contribution to the magnetic
moment, �, via the relation [15]

FIG. 7 (color online). The leading (upper curve) and next-to-
leading (lower curve) nonanalytic contributions to the charge
radius of the proton as given by quenched chiral perturbation
theory in Eq. (5.4).

TABLE XIV. Coefficients, �, providing the LNA contribution
to baryon magnetic moments and charge radii in quenched QCD.
Coefficients for magnetic moments in full QCD are also indi-
cated. Here the coefficients for quark-sector contributions to
baryon properties are indicated for quarks having unit charge.
Note that up for example denotes the coefficient for the two u
quarks of the proton, each of which have unit charge.
Intermediate (Int.) meson-baryon channels are indicated to allow
for SU(3)-flavor breaking in both the meson and baryon masses.
The coefficients are calculated from the expressions of Ref. [15]
with the axial couplings F � 0:50 and D � 0:76 with f� �
93 MeV.

q Int. Full QCD Quenched QCD

up j dn N� 	6:87 	3:33
�K 	3:68 0
�K 	0:15 0

dp j un N� �6:87 �3:33
�K 	0:29 0

sp j sn �K �3:68 0
�K �0:44 0

u�� j d�	 �� 	2:16 0
�� 	1:67 0
NK 0 	0:29
�K 	6:87 	3:04

d�� j u�	 �� �2:16 0
�� �1:67 0
NK �0:29 0

s� NK 	0:29 �0:29
�K �6:87 �3:04
�
s 0 0

u�0 j d�0 �� 0 0
�� 0 0
NK �0:15 	0:15
�K 	3:43 	1:52

u� j d� �� 0 0
�
l 0 0
NK �3:68 �1:23
�K 	0:40 �0:44

s� �
s 0 0
NK 	7:36 	2:45
�K �0:79 	0:88

u�0 j d�	 �� 	0:29 0
�K 0 	0:40
�K �6:87 �3:43
�K 0 �0:29

d�0 j u�	 �� �0:29 0
�K �0:40 0
�K �3:43 0

s� �K 	0:40 �0:40
�K 	10:3 	3:43
�K 0 	0:29
�
s 0 0
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mN

8�f2
�
� �: (5.6)

The coefficients � have been determined for octet baryons
and their individual quark-sector contributions in Ref. [15]
and numerical values are reproduced in Tables XIVand XV
for ready reference.

Since m2
� < 1 GeV2 in our simulations, the logarithmic

term is negative for all quark masses considered here.
Hence, the charge radius will exhibit a logarithmic diver-

gence in chiral limit to either positive or negative infinity,
depending on the whether � (or �) is negative or positive,
respectively.

In the quenched approximation, the flavor-singlet 
0

meson remains degenerate with the pion and makes im-
portant contributions to quenched chiral nonanalytic be-
havior. The neutrality of its charge prevents it from
contributing to the coefficients of Tables XIV and XV.
However, the double hair-pin diagram in which the vector
current couples to the virtual baryon intermediary does
give rise to chirally-singular behavior. However the rela-
tively small couplings render these contributions small at
the quark masses probed here.

2. Quark-sector charge radii

We begin with an examination of the quark contributions
to baryon charge radii. The results are reported for single
quarks of unit charge. Of particular interest are the con-
tributions of similar quarks experiencing different environ-
ments. Traditionally, quark models of hadron structure
neglected such environment sensitivity. However, such
environment sensitivity is manifest in chiral effective field
theory. The finite kaon mass in the chiral limit renders the
kaon’s contributions to curvature almost trivial relative to
the pion.

Figure 8 displays the charge radii of the u-quark distri-
bution in the proton and compares this with the u-quark
distribution in ��. The SU(3)-flavor limit is manifest at
m2
� � 0:5 GeV2. The replacement of a d quark in the

proton, by an s quark in �� gives rise to only a small
environment sensitivity in the u-quark properties.

Referring to the chiral coefficients of Table XIV, the
negative value of � for up indicates that the charge radius
of the u quark distribution in the proton should diverge to

FIG. 8 (color online). Electric charge radii of the u-quark
distribution in the proton, up, and ��, u�� , as a function of
m2
� representing the quark masses considered in the simulation.

The results for up are offset for clarity.

TABLE XV. Coefficients, �, providing the LNA contribution
to baryon magnetic moments and charge radii in quenched QCD.
Coefficients for magnetic moments in full QCD are also indi-
cated. Intermediate (Int.) meson-baryon channels are indicated
to allow for SU(3)-flavor breaking in both the meson and baryon
masses. The coefficients are calculated from the expressions of
Ref. [15] with the axial couplings F � 0:50 and D � 0:76 with
f� � 93 MeV.

Baryon Channel Full QCD Quenched QCD

p N� 	6:87 	3:33
�K 	3:68 0
�K 	0:15 0

n N� �6:87 �3:33
�K 0 0
�K 	0:29 0

�� �� 	2:16 0
�� 	1:67 0
NK 0 	0:29
�K 	6:87 	3:04
�
s 0 0

�0 �� 0 0
�� 0 0
NK �0:15 	0:15
�K 	3:43 	1:52
�
s 0 0

�	 �� �2:16 0
�� �1:67 0
NK �0:29 0
�K 0 0
�
s 0 0

� �� 0 0
�
l 0 0
NK �3:68 �1:23
�K 	0:40 �0:44
�
s 0 0

�0 �� 	0:29 0
�K 0 	0:40
�K �6:87 �3:43
�K 0 �0:29
�
s 0 0

�	 �� �0:29 0
�K �0:40 0
�K �3:43 0
�K 0 0
�
s 0 0
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positive infinity in the chiral limit. A physical understand-
ing of this is made obvious by considering the virtual
transition p! n��, which at the quark level can be under-
stood as �uud� ! �udd�� �du�. In the chiral limit, the ��

carries the u quark to infinity such that u-quark charge
distribution radius in the proton diverges.

In the case of the u quark in ��, the coefficient of the
logarithmic divergence is zero in the � channel and hence
no divergence is expected. While there is a significant
coefficient for transitions to �K, the increased mass of
the � baryon makes this channel unfavorably suppressed.

The results in Fig. 8 for up exhibit an upward trend and
increasing curvature with reducing quark mass. The u��

rises more slowly. The statistical significance of the differ-
ence in u-quark distributions is illustrated in Fig. 9. Hence
these results are in qualitative agreement with the LNA
expectations of chiral effective field theory.

Figure 10 displays the electric charge radii of the u
quark in the neutron (un) and in �0 (u�0 ) as a function
of m2

�. Here we observe that the charge radii of un and u�0

are nearly equal at heavy-quark masses, but in the chiral
limit some evidence of environment sensitivity is revealed.
The light d-quark environment of the u quark in the
neutron provides enhanced chiral curvature as the chiral
limit is approached. Figure 11 illustrates the correlated
difference of u-quark distributions, where the effect is
seen to be at the one-sigma border of statistical
significance.

However, the true nature of the underlying physics is
much more subtle. From Table XIV, we see that the
quenched coefficient (last column) for the u quark in the
neutron is positive in the � channel, from which we can
deduce that the charge radius should actually diverge to
negative infinity in the chiral limit.

Physically this can be understood by looking at the
quark contributions to the virtual transition n! p�	

which gives rise to this divergence. In this case one has

�ddu� ! �duu�� �ud�. In the chiral limit, the mass of the
pion approaches zero such that the �	 carries a �u quark to
infinity. Since the d quark is ignored while calculating the
u quark contribution (i.e. the electric charge of the d quark
may be thought of as zero), the entire charge of the pion
comes from the �u quark, thus taking the u-quark charge
distribution radius to negative infinity. However, Fig. 10
shows no such trend.

The coefficient � for u�0 is zero in the � channel,
indicating that there should be no logarithmic divergence
in the chiral limit. However it does have a substantial
positive coefficient in the favorable �K channel, indicating
the possibility of downward curvature as the chiral limit is
approached. Again, Fig. 10 shows no hint of downward
curvature.

While the statistical error bars are sufficiently large to
hide such a turn over, there are other interpretations. One
possibility is that we are not yet in the true chiral regime

FIG. 9 (color online). Correlated difference of the u-quark
distributions in the proton and ��.

FIG. 10 (color online). Charge radii of un and u�0 as a
function of m2

�. The data for the un are offset for clarity.

FIG. 11 (color online). Correlated difference of the u-quark
distributions in the neutron and �0.

S. BOINEPALLI et al. PHYSICAL REVIEW D 74, 093005 (2006)

093005-16



where such physics is manifest. Indeed, the divergence of
the u-quark charge distribution to negative infinity may
only reveal itself at quark masses lighter than the physical
quark masses.

Alternatively, one might regard this particular case to be
somewhat exceptional. It is the only channel in which
chiral-loop physics is expected to oppose the natural broad-
ening of a distribution’s Compton wavelength. On the
lattice, the finite volume restricts the low momenta of the
effective field theory to discrete values. It may be that this
lattice artifact prevents one from building up sufficient
strength in the loop integral to counter the Compton broad-
ening. In this case it would be impossible to observe the
divergence of un ! 	1 at any quark mass. It will be
interesting to resolve this discrepancy with quantitative
effective field theory calculations.

Figure 12 reports our results for the charge distribution
radius of a u quark in � as a function of m2

�. The chiral
coefficient for this is zero in the � channel and hence no
divergence is expected. However, there is significant
strength for downward curvature in the energetically fa-
vorable NK channel. But still, curvature associated with K
dressings will be subtle. Indeed, the approach to the chiral
limit is remarkably linear and contrasts the upward curva-
ture observed for other light-quark flavors. Hence our
results are in qualitative agreement with the expectations
of Q�PT.

Figure 13 illustrates the charge distribution radius of
strange quarks in �0, �0 and �0 and Fig. 14 displays
differences in these distributions. In our simulations the
strange-quark mass is held fixed and therefore any varia-
tion observed in the results is purely environmental in
origin. All three distributions suggest a gentle dependence
on the mass of the environmental light quarks.

However, the environmental flavor-symmetry depen-
dence of the strange-quark distributions is absolutely re-
markable. When the environmental quarks are in an isospin

0 state in the �, the strange-quark distribution is broad. On
the other hand, when the environmental quarks are in an
isospin 1 state in � baryons, the distribution radius is
significantly smaller.

In the case of strange-quark distributions, the LNA
contributions are exclusively from transitions involving
the kaon. Therefore significant curvature is not expected.
On the other hand, one might expect broader distributions
in cases where a virtual transition is possible in quenched
QCD. Referring to Table XIV, one sees that both s� and s�

have strong transitions to the energetically favorable KN
and K� channels, respectively. The coefficients are nega-
tive such that the virtual transitions will act to enhance the
charge distributions. This is not the case for s� where the
sign is positive and the transition is to the energetically
unfavored K� channel. In summary, broader distributions

FIG. 13 (color online). Electric charge distribution radii of
strange quarks including s�, s�0 and s�0 . The data for s�0 and
s� are plotted at shifted m2

� values for clarity.

FIG. 12. Electric charge distribution radius of a u quark in �
as a function of m2

�.

FIG. 14 (color online). Correlated differences of the electric
charge distribution radii of strange quarks in �, �0, and �0.
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are observed in cases where a virtual transition is possible
in Q�PT, and this is particularly evident in Fig. 14.

3. Baryon charge radii

The flavor-symmetry dependence of uds-quark distribu-
tions in �0 and �0 is particularly manifest in Fig. 15. Here
the interplay between the light-quark sector with effective
charge 1=3 and the strange sector with charge 	1=3 is
revealed.

At the SU(3) flavor-symmetric point (m2
� � 0:5 GeV2)

where the strange and light quarks have the same mass and
the � and � are degenerate in mass, neither charge radius
is zero. This very nicely reveals different charge distribu-
tions for the quark sectors described in the previous
section.

In constituent quark models, this flavor dependence
would be described in terms of spin-dependent forces. In
the �0 where a scalar diquark can form between the non-
strange pair, the charge radius is dominated by the broader
strange-quark distribution at the SU(3)-flavor-symmetric
point. This is contrasted by the �0 where scalar-diquark
pairing would occur between strange and nonstrange
quarks, acting to constrict the strange-quark distribution
in � as seen in Fig. 13. In addition, hyperfine repulsion in
the non-strange-quark sector leads to a broader distribution
for the light quark sector as indicated in Tables XI and XII.
As compelling as this discussion is, this line of reasoning
suggests the decuplet-baryon states should have broader
quark distributions [21] as scalar-diquark clusters do not
dominate there. However, preliminary results from an
analysis of decuplet-baryon structure on the same lattice
configurations explored here [38], do not reveal broader
quark distributions. For this reason, we consider our dis-
cussion of virtual transitions in the context of effective field
theory in the previous section to be a more relevant de-
scription of the underlying physics.

Ultimately, as the chiral limit is approached, the light-
quark distribution broadens and dominates the charge radii

for both baryons. However, the charge distribution of the
�0 is much broader and reflects our discussion of the
quark-sector contributions. In particular, the LNA contri-
butions of Q�PT act to suppress the distribution of u� and
enhance s�, whereas the LNA contributions to �0 are
relatively suppressed either by having small coefficients
or having energetically unfavorable transitions in the kaon
channel. This suppression of u� and enhancement s�

combines to give a strong net effect of suppressing the
charge radius of the �0.

The hyperon charge states, �	 and �	 have chiral
coefficients which vanish in quenched QCD. Similarly,
�� has no contributions from virtual pion transitions.
The one case, where there is a substantial coefficient, is
suppressed energetically. Figure 16 displays our simulation
results for the electric charge distribution radii of these
hyperons as a function of m2

�. The ordering of the charge

FIG. 15 (color online). Electric charge radii of �0 and �0 as a
function of m2

�. The data for �0 is offset to the right for clarity.

FIG. 16 (color online). Electric charge radii of charged hyper-
ons. The �	 and �� are offset to the left and right, respectively,
for clarity.

FIG. 17 (color online). Electric charge radii of the proton and
��. Charge radii for �� are offset for clarity.
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radii as the chiral limit is approached is explained by the
more localized strange-quark distribution.

Figure 17 compares the charge radii of �� with the
proton. The charge radii of these baryons match at the
SU(3) flavor limit where m2

� � 0:5 GeV2 as required. As
the chiral limit is approached, the smaller charge distribu-
tion of the heavier negatively-charged strange quark acts to
make the �� larger. This is manifest in the simulation
results of Fig. 18 illustrating the difference in the charge
radii of these baryons. The statistical uncerainties are
highly correlated and the signal is revealed in the
difference.

While the �� is not expected to display chiral curvature,
the proton charge radius presents one of the more favorable
opportunities to observe a hint of the logarithmic diver-
gence to be encountered in the chiral and infinite-volume
limits of quenched QCD. However, there is no hint of
chiral curvature in favor of the proton over the ��.

The origin of this discrepancy is once again traced to the
singly-represented u quark in the neutron, or more specifi-
cally in this case, the singly-represented d quark in the
proton. As highlighted in the discussion surrounding Fig. 8
and 9 for the splitting, there is a hint of increased curvature
for the doubly-represented u quark in the proton over that
in �, in accord with chiral effective field theory. But this is
hidden in the proton charge radius due to the absence of the
anticipated curvature of the singly-represented quark in the
nucleon, as highlighted in the discussion surrounding
Fig. 10.

Similarly, the ultimate divergence of the neutron charge
radius to negative infinity via n! p�	 is not yet manifest.
Rather a crossing of the central values into positive values
of squared charge radii is revealed in Fig. 19. Still, the
statistical errors remain consistent with negative values.

The crossing of the central values of the squared neutron
charge radius into positive values led us to further examine
our selection of fit regime in our correlation-function

analysis. Our concern is that noise in the correlation func-
tion may be distorting the fit. Hence, we have also consid-
ered fits including t � 15, immediately following the
point-split current insertion centered at t � 14. While we
prefer to allow some Euclidean time evolution following
the current insertion, this systematic uncertainty is re-
flected in the asymmetric error bar of Fig. 19 for the
lightest two neutron charge radii.

To summarize, we have explored the electric form fac-
tors of the baryon octet and their quark-sector contributions
at light-quark masses approaching the chiral regime. The
unprecedented nature of our quark masses is illustrated in
Fig. 20 which compares the present results for the proton

FIG. 19 (color online). Electric charge radii of the neutron and
�0. Charge radii for the �0 are shifted to the right for clarity.
Asymmetric error bars for the neutron charge radius are de-
scribed in the text.

FIG. 18 (color online). Correlated difference of the electric
charge radii of the proton and ��.

FIG. 20 (color online). The proton charge radius is compared
with previous state of the art lattice simulation results in
quenched QCD. The solid squares indicate current lattice QCD
results with FLIC fermions. The stars indicate the lattice results
of [4] while the crosses indicate the results of [5], both of which
use the standard Wilson actions for the gauge and fermion fields.
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charge radius with the previous state of the art [4,5]. Here
the static quark potential has been used to uniformly set the
scale among all the results. The small values of the early
results are most likely due to the small physical lattice
volumes necessitated at that time. The precision afforded
by 400 203 � 40 lattices is manifest.

We have discovered that all baryons having nonvanish-
ing energetically- favorable couplings to virtual meson-
baryon transitions tend to be broader than those which do
not. This qualitative realization provides a simple expla-
nation for the patterns revealed in our quenched-QCD
simulations.

Still, evidence of chiral curvature on our large-volume
lattice is rather subtle in general and absent in the excep-
tional case of the singly-represented quark in the neutron or
�. In this case, it is thought that the restriction of momenta
to discrete values on the finite-volume lattice prevents the
build up of strength in the loop integral of effective field
theory. Without sufficient strength, the Compton broad-
ening of the distribution will not be countered as the chiral
limit is approached.

B. Magnetic moments

The magnetic moment � is provided by the magnetic
form factor at Q2 � 0, GM�0�, with units of the natural
magneton, �B � e=�2MB�, where MB is the mass of the
baryon

 � � GM�0�
e

2MB
: (5.7)

While we could present a detailed discussion of the mag-
netic form factors summarized in Sec. IV B, a more inter-
esting discussion of the results is facilitated via the
magnetic moment where chiral nonanalytic behavior takes
on a simple functional form and a vast collection of phe-
nomenology is available to provide a context for our
results.

Since the magnetic form factors must be calculated at a
finite value of momentum transfer, Q2, the magnetic mo-
ment must be inferred from our results, GM�Q

2�, obtained
at the minimum nonvanishing momentum transfer avail-
able on our periodic lattice. The Q2 dependence of lattice
results from the QCDSF Collaboration [12] are described

TABLE XVI. Nucleon magnetic moments and their quark-sector contributions. Sector con-
tributions are indicated for single quarks having unit charge. Baryon charge states are also
summarized. Values for m2

� and magnetic moments are in units of GeV2 and �N respectively.

m2
� up dp p n

0.9972(55) 0.960(13) 	0:366�8� 1.401(18) 	0:883�11�
0.8947(54) 0.995(15) 	0:373�9� 1.451(21) 	0:913�12�
0.7931(53) 1.032(18) 	0:382�10� 1.503(25) 	0:943�14�
0.6910(35) 1.064(14) 	0:386�10� 1.547(19) 	0:967�12�
0.5925(33) 1.108(17) 	0:395�12� 1.610(24) 	1:002�15�
0.4854(31) 1.163(24) 	0:406�16� 1.686(33) 	1:046�20�
0.3795(31) 1.231(29) 	0:424�20� 1.783(41) 	1:104�25�
0.2839(33) 1.317(41) 	0:433�28� 1.901(57) 	1:167�36�
0.2153(35) 1.395(62) 	0:447�47� 2.009(87) 	1:228�56�
0.1384(43) 1.517(79) 	0:456�60� 2.17(11) 	1:315�71�
0.0939(44) 1.54(11) 	0:521�87� 2.22(15) 	1:372�92�

TABLE XVII. � magnetic moments and their quark-sector contributions. Sector contributions
are indicated for single quarks having unit charge. Baryon charge states are also summarized.
Values for m2

� and magnetic moments are in units of GeV2 and �N respectively.

m2
� u�� s� �� �0 �	

0.9972(55) 0.976(15) 	0:416�13� 1.440(21) 0.464(7) 	0:512�10�
0.8947(54) 1.010(18) 	0:414�14� 1.484(24) 0.474(8) 	0:535�12�
0.7931(53) 1.044(21) 	0:412�15� 1.530(28) 0.485(9) 	0:559�14�
0.6910(35) 1.072(15) 	0:408�12� 1.565(21) 0.493(7) 	0:579�11�
0.5925(33) 1.113(18) 	0:407�14� 1.620(26) 0.507(8) 	0:607�13�
0.4854(31) 1.163(24) 	0:406�16� 1.686(33) 0.523(10) 	0:640�16�
0.3795(31) 1.221(27) 	0:409�18� 1.764(38) 0.543(12) 	0:678�18�
0.2839(33) 1.286(34) 	0:412�21� 1.852(47) 0.566(14) 	0:720�22�
0.2153(35) 1.344(42) 	0:421�27� 1.932(58) 0.588(18) 	0:756�28�
0.1384(43) 1.418(50) 	0:421�34� 2.031(72) 0.613(23) 	0:805�32�
0.0939(44) 1.446(77) 	0:429�42� 2.07(11) 0.625(30) 	0:821�53�
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well by a dipole. Phenomenologically this is a well estab-
lished fact for the nucleon at low momentum transfers.

However, we will take an even weaker approximation
and assume only that theQ2 dependence of the electric and
magnetic form factors is similar, without stating an explicit
functional form for the Q2 dependence. This too is sup-
ported by experiment where the proton ratio GM�Q2�

�GE�Q2�
’ 1 for

values of Q2 similar to that probed here. In this case

 G M�0� �
GM�Q

2�

GE�Q2�
GE�0�: (5.8)

The strange and light sectors of hyperons will scale differ-
ently, and therefore we apply Eq. (5.8) to the individual
quark sectors. Octet-baryon properties are then recon-
structed as described in the discussion surrounding
Eq. (4.1) in Sec. IV B. Results for baryon magnetic mo-

ments and their quark-sector contributions are summarized
in Tables XVI, XVII, XVIII, and XIX.

1. Quenched chiral perturbation theory

As for the charge radii, it is interesting to compare our
results with the LNA and NLNA terms of �PT which
survive to some extent in Q�PT. As for the charge radii,
the NLNA contributions provide little curvature [39] and
we turn our attention to the LNA contributions [15]. These
LNA contributions to baryon magnetic moments have their
origin in couplings of the electromagnetic current to the
virtual meson propagating in the intermediate meson-
baryon state.

For virtual pion transitions, the LNA terms have the very
simple form�m� �m

1=2
q , with values for� as summarized

in Tables XIV and XV. While this contribution is finite in
the chiral limit, the rate of change of this contribution does
indeed diverge in the chiral limit. The less singular nature
of this contribution should allow its contributions to be
observed at larger pion masses, making magnetic moments
an excellent observable to consider in searching for evi-
dence of chiral curvature. Kaon contributions take on the
same form in the limit in which baryon mass splittings are
neglected.

As for the charge radii, negative values of � provide
curvature towards more positive values as the chiral limit is
approached, and vice versa for positive values of �.

As emphasized earlier in our discussion of charge radii,
the flavor-singlet 
0 meson remains degenerate with the
pion in the quenched approximation and makes important
contributions to quenched chiral nonanalytic behavior. The
neutrality of its charge prevents it from contributing to the
coefficients of Tables XIV and XV. However, the double
hair-pin diagram in which the vector current couples to the
virtual baryon intermediary does give rise to a logarithmic
divergence in baryon magnetic moments. However the

TABLE XVIII. The �0 magnetic moment and its quark-sector
contributions. Sector contributions are indicated for single
quarks having unit charge. Baryon charge states are also sum-
marized. Values for m2

� and magnetic moments are in units of
GeV2 and �N respectively.

m2
� u� s� �0

0.9972(55) 0.086(10) 1.611(29) 	0:509�9�
0.8947(54) 0.091(12) 1.621(20) 	0:510�10�
0.7931(53) 0.095(13) 1.631(32) 	0:512�10�
0.6910(35) 0.102(11) 1.650(21) 	0:516�8�
0.5925(33) 0.109(12) 1.666(24) 	0:519�8�
0.4854(31) 0.117(14) 1.688(28) 	0:524�10�
0.3795(31) 0.124(16) 1.715(32) 	0:530�11�
0.2839(33) 0.135(18) 1.749(37) 	0:538�13�
0.2153(35) 0.140(24) 1.780(43) 	0:547�16�
0.1384(43) 0.151(27) 1.799(49) 	0:549�18�
0.0939(44) 0.154(31) 1.804(53) 	0:550�20�

TABLE XIX. � magnetic moments and their quark-sector contributions. Sector contributions
are indicated for single quarks having unit charge. Baryon charge states are also summarized.
Values for m2

� and magnetic moments are in units of GeV2 and �N respectively.

m2
� s� u�0 �0 �	

0.9972(55) 1.132(32) 	0:361�13� 	0:996�23� 	0:635�22�
0.8947(54) 1.137(33) 	0:371�14� 	1:005�24� 	0:634�23�
0.7931(53) 1.141(34) 	0:381�15� 	1:015�24� 	0:634�24�
0.6910(35) 1.152(21) 	0:385�13� 	1:025�18� 	0:640�14�
0.5925(33) 1.157(22) 	0:395�14� 	1:035�19� 	0:640�15�
0.4854(31) 1.163(24) 	0:406�16� 	1:046�20� 	0:640�16�
0.3795(31) 1.172(24) 	0:421�18� 	1:062�21� 	0:641�17�
0.2839(33) 1.181(25) 	0:437�20� 	1:079�23� 	0:642�17�
0.2153(35) 1.189(27) 	0:454�23� 	1:096�25� 	0:642�18�
0.1384(43) 1.199(29) 	0:475�27� 	1:116�29� 	0:641�20�
0.0939(44) 1.212(29) 	0:495�31� 	1:138�32� 	0:643�20�
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relatively small couplings of the 
0 render these contribu-
tions negligible at the quark masses probed here [39].

2. Quark-sector magnetic moments

The u-quark contribution to the proton and �� magnetic
moments are illustrated in Fig. 21. The contribution up was
described as the most optimal channel for directly observ-
ing chiral nonanalytic curvature in quenched lattice QCD
simulations [15] and this curvature is evident in Fig. 21.

The value of � for up is large and negative, predicting
LNA curvature towards positive values as the chiral limit is
approached. The value of � for u�� vanishes in the �
channel. Similarly, strength in the �K channel is energeti-
cally suppressed. Hence the chiral curvature is predicted to
be negligible for u�� and will contrast the upward curva-
ture for up. This is observed in our lattice simulations.
Figure 21 reveals curvature in up relative to a rather linear
approach for u�� to the chiral limit.

The results for up and u�� are highly correlated and
therefore the enhancement of the magnetic moment of u in
the proton over the �� provides significant evidence of
chiral nonanalytic behavior in accord with the LNA pre-
dictions of chiral perturbation theory. The strong correla-
tion of these results is evident in the SU(3) flavor-
symmetric point at m2

� ’ 0:5 GeV2 where the results are
identical. To expose the significance of this result, we
present Fig. 22 illustrating the correlated difference of
magnetic moment contributions up 	 u�� . There, the sig-
nificance exceeds 2 standard deviations for quark masses
between the lightest quark mass considered and the SU(3)
flavor limit at m2

� ’ 0:5 GeV2.
Figure 23 illustrates the magnetic moment contribution

of the single u quark in the neutron and the �0, normalized
to unit charge. The magnetic moments match at the SU(3)-
flavor limit where m2

� ’ 0:5 GeV2 as required. The envi-

ronment sensitivity of the u quark contribution is subtle
and is most evident in the size of the statistical error bar.

The chiral coefficient, �, of the nonanalytic term �m�
for un is large and greater than zero, predicting curvature
towards negative values as the chiral limit is approached.
While the coefficient for u�0 vanishes in the � channel, a
substantial coefficient resides in the energetically favored
�K channel and therefore some curvature towards negative
values might be visible as the chiral limit is approached.

We note that for this case of magnetic moments, there is
some evidence of the anticipated chiral curvature. This
contrasts the case of charge distribution radii, where chiral
curvature was to oppose the Compton-broadening of the
distribution and was not manifest in the simulation results.

FIG. 22 (color online). Correlated difference of u-quark con-
tributions to the magnetic moments of the proton and ��. Chiral
curvature in the u-quark contribution to the proton’s moment
gives rise to significant enhancement in up.

FIG. 21 (color online). Magnetic moment contributions of the
u-quark sector to the proton, up, and the ��, u�� . The contri-
butions up are shifted right for clarity.

FIG. 23 (color online). The u-quark contribution (single quark
of unit charge) to the magnetic moments of the neutron, un, and
�0, u�0 . The magnetic moment for un is shifted to the right for
clarity.
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It is interesting to examine the ratio of singly (un) and
doubly (up) represented quark contributions (for single
quarks of unit charge) to nucleon magnetic moments [4].
The SU(6) spin-flavor symmetry of the simple quark model
provides

 �p �
4
3�u 	

1
3�d; (5.9)

 � 2
32

2
3�

QM
q 	 1

31�	
1
3��

QM
q ; (5.10)

where �QM
q is the constituent quark moment. The quark

moment prefactors in Eq. (5.10) are, respectively, SU(6),
quark number and charge factors. Discarding quark num-
ber and charge factors, one arrives at the SU(6) prediction
for un=up for single quarks of unit charge of 	1=2. This
prediction is to be compared with Fig. 24 which reveals
this ratio to be substantially smaller than the SU(6) pre-
diction, even at the SU(3) flavor-symmetric limit where
m2
� ’ 0:5 GeV2. This result is in accord with Ref. [4]

where this effect was first observed in lattice QCD.
The gentle slope of the results in Fig. 24 at larger quark

masses suggests that the SU(6) spin-flavor-symmetric
quark model prediction of 	1=2 will be realized only at
much heavier quark masses than those examined here.

Figure 25 shows the magnetic moment contribution of
the u-quark sector (or equivalently the d-quark sector) to
the �0 magnetic moment, normalized for a single quark of
unit charge. In simple quark models, this contribution is
zero as the u and d quarks are in a spin-0, isospin-0 state.
Our simulation results reveal that the dynamics of QCD,
even in the quenched approximation, are much more com-
plex. The contribution of u� differs from zero by more than
8 standard deviations at the SU(3) flavor-symmetric point,
and confirms earlier findings [4] of a nontrivial role for the
light quark sector in the magnetic moment of �0.

The chiral coefficient for u� vanishes in the pion chan-
nel and has only small strength in the energetically favored
NK channel. Hence little curvature is anticipated and this
is supported by our findings in Fig. 25.

Turning our attention to the strange-quark sectors,
Figs. 26 and 27 present results for s�, s�, and s� magnetic
moments. In our simulations the strange-quark mass is
held fixed and therefore any variation observed in the
results is purely environmental in origin. While s�

and s� display only a mild environment sensitivity, s�

shows a remarkably-robust dependence on its light-quark
environment.

Recall that in our examination of the environmental
flavor-symmetry dependence of the strange-quark distribu-
tion, a strong sensitivity was found. When the environmen-
tal quarks are in an isospin-0 state in the �, the strange-
quark distribution is broad. On the other hand, when the

FIG. 26 (color online). Magnetic moments of s� and s�0 as a
function of quark mass.

FIG. 25. Magnetic moment contribution of the u-quark sector
(or equivalently the d-quark sector) to the �0 magnetic moment.

FIG. 24 (color online). The ratio of singly (un) and doubly (up)
represented quark contributions for single quarks of unit charge
to nucleon magnetic moments. In the simple SU(6) spin-flavor-
symmetric quark model the predicted ratio is constant at 	1=2.
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environmental quarks are in an isospin-1 state in � bary-
ons, the distribution radius is significantly smaller. It ap-
pears that the broad distribution of the strange quark in �
makes it sensitive to the dynamics of its neighbors.

In the case of strange-quark moments, the LNA contri-
butions are exclusively from transitions involving the kaon.
Referring to Table XIV, one sees that both s� and s� have
strong transitions to the energetically favorable KN and
K� channels, respectively. The coefficients are negative
such that the virtual transitions will act to provide subtle
curvature towards positive values, enhancing the magnetic
moments in these cases. This is not the case for s� where
the sign is positive and the transition is to the energetically
unfavored K� channel. In summary, Q�PT suggests the
magnetic moments for s� and s� will display subtle cur-
vature that acts to enhance the magnetic moment whereas
s� will display little curvature.

3. Baryon magnetic moments

Figure 28 depicts the magnetic moments of �0, �	, and
�	. As the magnetic moments of �0 and �	 are domi-
nated by the strange-quark contribution, these moments
show only a gentle dependence on the quark mass. These
contrast �	 where the light d quarks dominate the mo-
ment. However, the curvature in the �0 moment towards
negative values contrasts the invariance of the �	.

The hyperon charge states, �	 and �	, have LNA
chiral coefficients which vanish in quenched QCD. On
the other hand, the �0 magnetic moment has some positive
strength in the energetically favored NK channel, predict-
ing subtle curvature towards negative values as the chiral
limit is approached.

Figure 29 presents results for the �0 baryon where chiral
curvature is anticipated to be small. However, a compari-
son of p and �� magnetic moments provides a favorable
opportunity to observe chiral curvature. The proton has a
strong negative coupling to the pion channel, predicting

curvature towards positive values as the chiral limit is
approached. This contrasts the �� where the strong cou-
pling is to the energetically unfavorable �K channel sug-
gesting a more linear approach to the chiral limit.

Figure 30 depicts the variation of these moments with
quark mass. The strong correlation of these results is
evident in the SU(3) flavor-symmetric point at m2

� ’
0:5 GeV2 where the results are identical. The enhancement
of the magnetic moment of the proton over the �� is best
illustrated in Fig. 31 where the correlated differences in the
baryon moments are plotted as a function of m2

�. This
provides significant evidence of curvature in accord with
the LNA predictions of chiral perturbation theory.

Figure 32 reports the magnetic moments of the neutron
and �0. The neutron provides a favorable case for the
observation of chiral curvature associated with the pion
channel. Similarly the �0 has significant strength in the
energetically favored �K channel. In both cases the chiral

FIG. 29 (color online). Magnetic moment of �0.

FIG. 28 (color online). Magnetic moments of �	, �0, and
�	. Results for �0 and �	 are offset left and right, respectively,
for clarity.

FIG. 27. Magnetic moment contribution of the strange quark in
�, s�, as a function of quark mass.
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coefficient, � is positive, predicting curvature towards
negative values as the chiral limit is approached.

In summary, we have performed an unprecedented ex-
ploration of the light-quark-mass properties of octet-
baryon magnetic moments in quenched QCD. Figure 33
presents our results in the context of recent state of the art
results from lattice QCD using similar three-point function
techniques [4,5,12]. The precision afforded by 400, 203 �
40 lattices and the efficient access to the chiral regime
enabled by our use of the FLIC fermion action is clear.

4. Ratio of ��	 to ��

The experimentally measured value of magnetic mo-
ment of �	 is 	0:651� 0:003 �N and that of � is
	0:613� 0:004 �N , making their ratio greater than 1 at
1:062� 0:012. This has presented a long-standing prob-
lem to constituent quark models which predict the mag-
netic moment ratio, �	=�0, to be less than one.

In the simple SU(6) spin-flavor quark model, the mag-
netic moment of �	 is

 ��	 �
4
3�s 	

1
3�d; (5.11)

where �s and �d are the magnetic moments of the con-
stituent s and d quarks, respectively. Since the u-d pair in
� forms a spin-0 state, the magnetic moment of the � has a
sole contribution from the s quark

 �� � �s: (5.12)

Taking the ratio yields

FIG. 33 (color online). The proton magnetic moment in nu-
clear magnetons is compared with a variety of lattice simulations
using three-point function techniques. The solid squares indicate
our current lattice QCD results with FLIC fermions. The stars
indicate the early lattice results of Ref. [4]. The crosses (only one
point) indicate the results of Ref. [5]. The open symbols describe
the QCDSF Collaboration results [12]. Open squares indicate
results with � � 6:0, open triangles indicate those with � � 6:2
while the open diamonds indicate their results with � � 6:4.

FIG. 32 (color online). Magnetic moments of the neutron and
�0. �0 moments are offset to the right for clarity.

FIG. 30 (color online). Magnetic moments of the proton and
��. The �� moments are offset to the right for clarity.

FIG. 31 (color online). Correlated difference in the magnetic
moments of the proton and ��.
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: (5.13)

Now since, the magnetic moment of a charged Dirac
particle goes inversely as its mass, and since the s and d
quarks have identical charge, the ratio may be written

 

��	

��
�

4

3
	

1

3

ms

md
; (5.14)

where md and ms are the constituent masses of the d and s
quarks, respectively. Given that ms > md it is inescapable
that this ratio is less than 1 in the simple quark model.
Indeed, the accepted values of d and s constituent quark
masses place this ratio at 0:836.

Figure 34 shows the ��	=�� ratio as a function of
quark mass as observed in our quenched lattice calcula-
tions. Remarkably, the ratio is greater than one at all quark
masses.

There are two important aspects of our previous discus-
sion that give rise to a result exceeding 1. First, as illus-
trated in Fig. 24, we have found that the singly-represented
quarks give a contribution to the magnetic moment that is
much smaller in magnitude than that of the SU(6) quark
model prediction. This gives rise to a 40% reduction in the
contribution of the second term of Eq. (5.14).

While this is sufficient to correct the ratio to�1, there is
a second effect. Namely, the light quark sector makes a
nontrivial contribution to the � magnetic moment. As
illustrated in Fig. 25, this contribution is positive for unit
charge quarks. Since the net charge of the u-d sector is
�1=3, the contribution of the s quark in �0 must have a
negative value whose magnitude exceeds the observed �
moment. And this is seen in Fig. 26. There, chiral curvature
in s� makes the ratio of magnetic moment contributions
s�=s� � 3=2 as opposed to the SU(6) suggestion of 4=3.
This resolves the long-standing discrepancy.

C. Magnetic radii

Using the values for the magnetic moments obtained by
scaling the individual quark-sector contributions to Q2 �
0, and our values for the form factors at finiteQ2, magnetic
radii may be determined in exactly the same fashion as the
electric radii.

Analogous to the charge radius, we adopt a dipole form
for the Q2 dependence and define the magnetic radius as

 

hr2
Mi

GM�0�
�

12

Q2

� �����������������
GM�0�

GM�Q
2�

s
	 1

�
: (5.15)

The magnetic radii, hr2
Mi=GM�0�, are tabulated in

Table XX. Figs. 35 through 38 display the variation of
the magnetic radii with m2

� for the octet baryons.
Figure 35 depicts the magnetic radii of the proton and

�� as a function of input quark mass. The somewhat subtle
differences have a simple explanation in terms of the more
localized strange quark in �.

In the proton, the long-range nature of the light-quark
distributions means that their contributions to the magnetic

FIG. 34 (color online). Magnetic moment ratio ��	=�� as
calculated in quenched QCD. The simple quark model results of
0.836 is illustrated by the dashed line while the experimental
value of the ratio is indicated by the dashed-dotted line.

TABLE XX. Magnetic radii hr2
Mi=GM�0� of the octet baryons in fm2 for various m2

� in GeV2.

m2
� p n �� �0 �	 � �0 �	

0.9972(55) 0.241(7) 0.240(6) 0.254(9) 0.264(9) 0.236(10) 0.328(14) 0.298(13) 0.337(16)
0.8947(54) 0.255(8) 0.252(7) 0.265(10) 0.273(9) 0.252(10) 0.328(14) 0.302(13) 0.335(17)
0.7931(53) 0.269(9) 0.266(9) 0.278(10) 0.283(10) 0.269(12) 0.328(16) 0.306(13) 0.334(17)
0.6910(35) 0.286(9) 0.283(8) 0.292(10) 0.294(9) 0.287(11) 0.339(14) 0.314(12) 0.340(14)
0.5925(33) 0.305(10) 0.301(10) 0.308(11) 0.308(11) 0.309(12) 0.340(15) 0.319(12) 0.339(15)
0.4854(31) 0.330(14) 0.326(13) 0.330(14) 0.326(13) 0.337(15) 0.342(17) 0.326(13) 0.337(15)
0.3795(31) 0.356(17) 0.351(16) 0.352(16) 0.344(15) 0.365(18) 0.343(18) 0.334(14) 0.334(16)
0.2839(33) 0.387(21) 0.382(21) 0.377(19) 0.364(18) 0.396(22) 0.348(20) 0.343(16) 0.332(16)
0.2153(35) 0.415(27) 0.413(28) 0.395(24) 0.380(22) 0.418(27) 0.353(22) 0.352(17) 0.330(16)
0.1384(43) 0.438(31) 0.439(32) 0.428(32) 0.407(29) 0.462(36) 0.351(22) 0.365(19) 0.328(17)
0.0939(44) 0.470(48) 0.478(50) 0.446(42) 0.423(38) 0.483(49) 0.347(24) 0.384(22) 0.336(18)
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form factor reduce quickly for increasing momentum
transfers. In the case of ��, which has a broadly distrib-
uted u quark distribution and a narrowly distributed s quark
distribution, the reduction in magnitude of the form factor
is less. Here, the s-quark distribution contributes positively
and remains relatively invariant with increased resolution.
Thus the �� has a larger form factor than the proton at
finite Q2 and hence a smaller magnetic radius.

Figure 36 reports the magnetic radii of the neutron and
�0. Following a similar argument as above, the neutron is
expected to have a larger magnetic radius than the �0, and
this is confirmed in the plot.

Figure 37 illustrates the magnetic radii of � and �0 as a
function of the input quark mass. In �, most of the mag-
netic moment has its origin in the s quark and therefore the
magnetic radius will be relatively small. In the �0 the u-d
sector is a major contributor to the form factor. As a result,

the form factor reduces more at finite momentum transfer,
which in turn implies that the magnetic radius of the �0

will be relatively large.
Figure 38 illustrates the magnetic radii of �	, �� and

�	. �� is replotted here to facilitate comparison with the
other two members of the baryon octet.

�	 has the largest magnetic radius among the octet
baryons and this is to be expected based on our consider-
ations of the origin of the baryon magnetic moment. Here,
the doubly-represented d quark contributes to the total
baryon form factor with the same sign, whereas the strange
sector acts to reduce the magnitude of the total form factor.
Upon increasing the momentum transfer resolution, the
d-sector is reduced dramatically whereas the strange sec-
tor, acting to reduce the total form factor, is relatively

FIG. 38 (color online). Magnetic radii of ��, �	, and �	.
Results for �� and �	 are offset left and right, respectively, for
clarity.

FIG. 37 (color online). Magnetic radii of �0 and �. The latter
are shifted left for clarity.

FIG. 36 (color online). Magnetic radii of the neutron and �0.
The latter are shifted to the right for clarity.

FIG. 35 (color online). Magnetic radii of the proton and ��.
The latter are shifted right for clarity.
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preserved. this gives rise to a large drop in the total form
factor at finite Q2 and thus a large magnetic radius.

On the other hand, the singly-represented d quark in the
�	 makes only a small contribution to the �	 form factor,
and therefore the magnetic radius reflects the small distri-
bution of the strange quark.

VI. SUMMARY

We have presented an extensive investigation of the
electromagnetic properties of octet baryons in quenched
QCD. The development of the O�a�-improved FLIC fer-
mion action has been central to enabling this study. The
FLIC fermion operator is an efficient nearest-neighbor
fermion operator with excellent scaling properties [28].
The vastly improved chiral properties of this operator
[29] enables the exploration of the electromagnetic form
factors at quark masses significantly lighter than those
investigated in the past. The unprecedented nature of our
quark masses is illustrated in Figs. 20 and 33 for the proton
charge radii and magnetic moments, respectively.

Central to our discussion of the results is the search for
evidence of chiral nonanalytic behavior as predicted by
chiral perturbation theory. We have discovered that all
baryons having nonvanishing, energetically- favorable
couplings to virtual meson-baryon transitions tend to be
broader than those which do not. This qualitative realiza-
tion provides a simple explanation for the patterns revealed
in our quenched-QCD simulations.

Of particular interest is the environmental isospin de-
pendence of the strange-quark distributions in �0 and �0.
When the environmental quarks are in an isospin-0 state in
the �, the strange-quark distribution is broad. On the other
hand, when the environmental quarks are in an isospin-1
state in � baryons, the distribution radius is significantly
smaller.

Still, evidence of chiral curvature on our large-volume
lattice is rather subtle in general and absent in the excep-
tional case of the singly-represented quark in the neutron or
�. In this case, the chiral-loop effects act to oppose the
Compton broadening of the distribution. However, it is
thought that the restriction of momenta to discrete values
on the finite-volume lattice prevents the build up of
strength in the loop integral sufficient to counter the natural
broadening of the distribution as the quark becomes light.
It will be interesting to explore this quantitatively in finite-
volume chiral effective field theory.

In contrast, chiral curvature is evident in the quark-
sector contributions to baryon magnetic moments. In every
case, the curvature predicted by chiral perturbation theory
is in accord with our results. Of particular mention is the
comparison of the u-quark contribution to the proton and
�� illustrated in Figs. 21 and 22. The environment sensi-

tivity of the s quark in �0 depicted in Fig. 26 is particularly
robust.

We find it remarkable that the features predicted by the
coefficients of the leading nonanalytic terms of quenched
chiral perturbation theory are observed in our simulation
results. Naively, one might have expected a different role
for the higher order terms of the chiral expansion which
might have acted to hide the leading behavior. However,
the smooth and slow variation of our simulation results
indicate the presence of correlations between the coeffi-
cients of nonanalytic terms in general. Obviously the chiral
expansion must sum to provide only a small correction to
the almost linear behavior observed away from the chiral
limit. These observations indicate that regularizations of
chiral effective field theory which resum the chiral expan-
sion at each order, to ensure that higher order terms sum to
only small corrections, will be effective in performing
quantitative extrapolations to the physical point. Indeed
work in this direction [9,11,39] has been very successful.

Comparison of our quenched-QCD results with experi-
ment is not as interesting. The chiral physics of quenched
QCD differs from the correct chiral physics of full QCD
and our results explore sufficiently light-quark masses to
reveal these discrepancies. The simulation results do not
agree with experiment, particularly for light-quark baryons
where chiral physics makes significant contributions.
However, methods have been discovered for quanti-
tatively estimating the corrections to be encountered in
simulating full QCD and we refer the interested reader to
Refs. [9,11,39] for further discussion.

In future simulations it will be interesting to explore the
utility of boundary conditions which allow access to arbi-
trarily small momentum transfers, providing opportunities
to map out hadron form factors in detail. Similarly, by
calculating near Q2 � 0 one would have more direct ac-
cess to the magnetic moment. Nevertheless, such boundary
conditions cannot be seen to substitute for larger volume
lattices, as the discretization of the momenta due to the
finite volume of the lattice acts to suppress chiral non-
analytic behavior. Only with increasing lattice volumes
will the continuous momentum of chiral loops be approxi-
mated well on the lattice.
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