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Five-dimensional Gauss-Bonnet gravity, with one warped extra-dimension, allows classes of solutions
where two scalar fields combine either in a kink-antikink system or in a trapping-bag configuration. While
the kink-antikink system can be interpreted as a pair of gravitating domain walls with opposite topological
charges, the trapping-bag solution consists of a domain wall supplemented by a nontopological defect. In
both classes of solutions, for large absolute values of the bulk coordinate (i.e. far from the core of the
defects), the geometry is given by five-dimensional anti–de Sitter space.
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It is known since the pioneering works of Lanczos [1]
(see also [2]) that, in more than four space-time dimen-
sions, the Einstein-Hilbert action can be supplemented by
the so-called Euler-Gauss-Bonnet combination (see also
[3] for a recent review). Such an inclusion leads to field
equations that involve, at most, second derivatives of the
metric. The Gauss-Bonnet combination arises also natu-
rally as first correction in the string tension expansion to
the low-energy string effective action [4–9].

An apparently unrelated observation is that, in the pres-
ence of infinite extra-dimensions, fields of various spin
may be localized around higher dimensional defects (see,
for instance, [10]). Indeed, in the past few years, various
analytical solutions containing gravitating defects have
been discussed either in the context of Einstein-Hilbert
gravity or in the framework of Brans-Dicke gravity [11–
16]. Some of these solutions are compatible with five-
dimensional anti–de Sitter space-time (in what follows
AdS5) for large absolute value of the bulk coordinate,
providing, in this way a smooth realization of the
Randall-Sundrum set-up [17] where the matter content is
given by branes (i.e. gravitating kinks) of finite thickness.

The purpose of the present paper is to show that, in
Gauss-Bonnet gravity, there exists solutions compatible
with AdS5 and containing pairs of gravitating defects
rather than a single defect. Solutions have been obtained
in the presence of Gauss-Bonnet gravity but only in the
case of single defects [18–21].

Pairs of defects are known to exist in (1� 1) field
theories in flat space-time and in the presence of appropri-
ately nonlinear interaction potentials [22–24]. As a con-
sequence of the intrinsic nonlinearity of the problem, exact
solutions are rare even if specific methods have been
devised in order to deal with the integration of the systems
in rather general terms (see [23,25] and references therein).
In the presence of gravity it is more difficult to reduce the
problem to the quadrature and to find analytical solutions.

This difficulty is even more severe in Gauss-Bonnet
gravity.

Consider then the case where the gravity part of the
action takes the form1

 Sg � �
Z
d5x

�������
jGj

p �
R
2�
� �0R2

EGB

�
; (1)

where GAB is the metric tensor, R is the Ricci scalar and

 R 2
EGB � R2 � 4RABRAB � RABCDRABCD; (2)

is the Euler-Gauss-Bonnet (EGB) combination. In Eq. (1),
� � 8�G5 � 8�=M3 and �0 has dimensions of an energy
scale, i.e., in natural units, an inverse length.

The matter part of the action includes two scalar degrees
of freedom, denoted by � and �, interacting via the po-
tential W��;��:

 Sm �
Z
d5x

�������
jGj

p �
1

2
GAB@A�@B��

1

2
GAB@A�@B�

�W��;��
�
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The total action will then be given by the sum of the gravity
and matter action, i.e. St � Sg � Sm. The equations of
motion are obtained by taking the functional derivative of
St with respect to the metric tensor and with respect to the
two scalar fields. Functional derivation with respect to the
metric tensor leads to the generalized Einstein-Lanczos
equations

 RBA �
1

2
�BA � �T B

A � 2�0�QB
A; (4)

where
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1The signature of the metric is mostly minus, i.e.
��;�;�;�;�;��. Latin (capital) indices run over the five-
dimensional space-time; Greek indices run over the �3�
1�-dimensional space-time with Minkowskian signature.
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� 2RACDER
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are, respectively, the energy-momentum tensor and the
Lanczos tensor. Functional derivation with respect to �
and � produces the following pair of Klein-Gordon equa-
tions:

 GABrArB��
@W
@�
� 0; GABrArB��

@W
@�
� 0;

(7)

where, we recall, rArB � @A@B � �CAB@C when applied to
a scalar degree of freedom.

In the case of a five-dimensional warped metric of the
type characterized by a bulk coordinate w, i.e.

 ds2 � a2�w����	dx�dx	 � dw2�; (8)

Denoting with the prime a derivation with respect to w, the
explicit form of Eq. (4) becomes:
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where H � �lna�0. In Eqs. (9) and (10) the quantity 
 �
2��0 has been also defined and it has dimensions, in
natural units, of a length squared. Using Eq. (8) into
Eqs. (7) the following explicit equations are obtained:

 �00 � 3H�0 � a2 @W
@�
� 0;

�00 � 3H�0 � a2 @W
@�
� 0:

(11)

By combining Eqs. (9) and (10), the explicit from of the
Einstein-Lanczos equations can be also written as
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Consider then the situation where the warp factor tends
to AdS5 for large absolute value of the bulk coordinate w.
A possible choice of warp factor with the desired proper-

ties is

 a�w� �
a0��������������������

b2w2 � 1
p ; H � �

b2w

b2w2 � 1
;

H 0 �
b2�b2w2 � 1�

�b2w2 � 1�2
;

(14)

where a0 is a free parameter that will be determined from
the compatibility with the whole system of equations. In
Eq. (14) the first relation is the ansatz for the warp factor
while the remaining relations follow from the definition of
H in terms of a�w�.

The method employed in order to find the solution is
constructive in the sense that we impose the geometry
given in Eq. (14) and then get the solution by satisfying
the Einstein-Lanczos equations as well as the Klein-
Gordon equations. In particular, using Eq. (14), it is not
difficult to show that Eqs. (12) and (13) imply, respectively,

 �02 � �02 �
3b2

�
1

�b2w2 � 1�3
; (15)
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�b2w2 � 1�2
: (16)

From Eq. (15) we deduce that � and � are given by
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�
1�

bw��������������������
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; (17)
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p
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provided the arbitrary constants a0 and v are such that

 a0 � 2
���


p
b; v2 �

4

3�
: (19)

The first of these two relations is necessary in order to write
Eqs. (15) and (16) while the second relation is essential to
solve Eq. (15) in terms of Eqs. (17) and (18). Knowing the
form of the field profiles, the potential can be determined
from Eq. (16) by adopting the following ansatz:

 W��;�� �A��2 � �2�2 �B��2 � �2� � C

�L��;��: (20)

The functional L��;�� vanishes exactly on the classical
solution given by Eqs. (17) and (18) but its derivatives do
contribute to the Klein-Gordon equations. In fact Eq. (11)
can then be used to determine L��;��. Using Eqs. (17)
and (18) into Eq. (20) and recalling Eq. (16), the coeffi-
cients appearing in Eq. (20) are determined to be

 A �
1

8�
v4 �
3

32v2 B � �
1

�
v2 � �
3

4

;

C �
5

4�

�

15

16

�
v2




�
;

(21)

where the second equality in each of the three relations
follows by eliminating � according to Eq. (19) (second
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equality). Inserting then Eqs. (14), (17), (18), and (20) into
Eq. (11), the functional form of L� ~�; ~�� can be deter-
mined:

 L � ~�; ~�� �
7

2

v2



�j ~�j2=3 � j~�j2=3 � 1��1� ~�2 � ~�2�2;

(22)

where, for notational convenience, we defined the two
rescaled fields ~� � �=�2v� and ~� � �=�2v�. Using the
second relation in Eq. (19) into Eq. (21) to eliminate � in
favor of v2, the complete form of the potential becomes, in
terms of ~� and ~�,

 W� ~�; ~�� �
3v2

2

� ~�2 � ~�2�2 �

3v2



� ~�2 � ~�2� �

15

16

v2




�
7

2

v2



�j ~�j2=3 � j~�j2=3 � 1��1� ~�2 � ~�2�2:

(23)

The solution given in Eqs. (17) and (18) implies, neces-
sarily, that �> 0 and �> 0. However, it appears from the
analytical form of the potential that also �! �� or �!
�� lead to acceptable solutions and this is the rationale for
the absolute values in Eqs. (22) and (23). In Fig. 1 (plot at
the left hand side) the kink-antikink solution of Eqs. (17)
and (18) is reported as a function of the rescaled bulk
radius bw. In the case of one spatial dimension, spatial
infinity consists of two points, i.e. �1; a topological
charge is then customarily defined for the characterization
of �1� 1�-dimensional defects such as the ones arising in
the case of sine-Gordon system [22]. In the case of the
kink-antikink system the topological charges can be de-
fined as

 Q� �
1

2�

Z 1
�1

@�
@w

dw; Q� �
1

2�

Z 1
�1

@�
@w

dw: (24)

Inserting the explicit solutions of Eqs. (17) and (18) into
Eq. (24) it is easy to find that Q� � �Q� � v=�.

By slightly modifying the form of the potential obtained
in the case of the kink-antikink system one can obtain
solutions of a different kind. In (1� 1) dimensions these
solutions are known as trapping-bag solutions. Exactly
with the same procedure described above it can be shown
that the following field profiles
 

��w� �
v

2
���
2
p

��
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bw��������������������
b2w2 � 1
p

�
3=2

�

�
1�

bw��������������������
b2w2 � 1
p

�
3=2
�
; (25)
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v
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2
p
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1�

bw��������������������
b2w2 � 1
p

�
3=2

�

�
1�

bw��������������������
b2w2 � 1
p

�
3=2
�
; (26)

are solutions of the evolution equations previously deduced
for the following choice of the potential
 

W��;�� �
3v2



� ~�2 � ~�2�2 �

3v2



� ~�2 � ~�2� �

15v2

32


�
7v2



�j ~�� ~�j2=3 � j ~�� ~�j2=3 � 1�

	

�
1

2
� ~�2 � ~�2

�
2
: (27)

In this case the Einstein-Lanczos equations, i.e. Eqs. (9)
and (10), are satisfied only if

 a0 � 2
���


p
b; v2 �

8

3�
; (28)

i.e. the a0 is the same as in Eq. (19) while the relation of v2

to � is different. It is clear that Eqs. (25) and (26) look like
being the sum and the difference of the two profiles dis-
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FIG. 1 (color online). The kink-antikink solution (left plot) and the trapping-bag solution (right plot) are illustrated as a function of
the bulk radius.
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cussed above in Eqs. (17) and (18). The system under
consideration is, however, intrinsically nonlinear and,
therefore, the compatibility of the solutions (25) and (26)
entails necessarily a different relation between v2 and �
(compare Eqs. (19) and (28)) and also a slightly different
form of the potential.

In Fig. 1 (plot at the right) the analytical solution of
Eqs. (25) and (26) is illustrated for v � 1. From Fig. 1 it is
also clear the rationale for the terminology employed in
naming these solutions. The � field is the ‘‘bag’’ that
‘‘traps’’ the � field. As already mentioned this type of
trapping-bag solutions can be found, in (1� 1) dimen-
sions, and with an appropriate nonlinear potential possess-
ing a global U�1� symmetry [23–25]. By inserting
Eqs. (25) and (26) into Eq. (24), it is easy to show that
whileQ� � 0,Q� � v=�. So, while the � field illustrates
a nontopological profile, the � field is still topological.

The constructive technique exploited in the present pa-
per can be extended in other cases when, for instance, the
form of the underlying geometry is different from the one
of Eq. (14). In particular, it might be interesting to discuss
the warp factor

 a�w� � a1��bw�
2	 � 1��1=2	; (29)

where 	 
 1 is an integer parameter. Notice that for 	 � 1
Eq. (29) gives exactly Eq. (14). For 	 > 1 AdS5 is always
recovered, asymptotically, for large absolute value of the
bulk radius. Single field defects (both topological and non-

topological) arising in the geometry (29) have been ana-
lyzed in [26] in the case of Einstein-Hilbert gravity. It
would be interesting to generalize these solutions to the
case of Einstein-Lanczos gravity and in the presence of a
pair of scalar degrees of freedom. Along similar lines it
seems also reasonable to think about the possibility of
multidefects, i.e. gravtating profiles of two (or more) scalar
degrees of freedom.

In the present investigation it has been argued that there
may be a nontrivial interplay between five-dimensional
Gauss-Bonnet gravity and the presence of unusual defects
that may arise when two scalar degree of freedom are
simultaneously present. Solutions describing both kink-
antikink profiles and trapping bags have been presented.
While the possibility of qalitatively similar profiles in
nonlinear (1� 1) dimensional field theories has been es-
tablished in a number of different ways, in the context of
five-dimensional Gauss-Bonnet gravity no attention has
been payed to these configurations, to the best of our
knowledge. One of the interesting features of the obtained
solutions is that the geometry which solves the Einstein-
Lanczos equations in the presence either of kink-antikink
profiles or in the presence of trapping-bag profiles is al-
ways of AdS5. More specifically the warp factor tends to
AdS5 for jwj ! 1. Close to the core of the defect, i.e. for
jwj ! 0 the geometry is always regular (i.e. all curvature
invariants are regular); both� and � (as well as �0 and �0)
are finite and regular.
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