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f(R) gravity without a cosmological constant
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In this work we consider the possibility of describing the current evolution of the universe, without the
introduction of any cosmological constant or dark energy (DE), by modifying the Einstein-Hilbert (EH)
action. In the context of the f(R) gravities within the metric formalism, we show that it is possible to find
an action without cosmological constant which exactly reproduces the behavior of the EH action with
cosmological constant. In addition the f(R) action is analytical at the origin having Minkowski and
Schwarzschild solutions as vacuum solutions. The found f(R) action is highly nontrivial and must be
written in terms of hypergeometric functions but, in spite of looking somewhat artificial, it shows that the
cosmological constant, or more generally the DE, is not a logical necessity.
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One of the most important recent scientific discoveries is
the accelerated expansion of the universe. Different data
from type Ia supernovae [1] observation, large structure
information and delicate measurements of the cosmic mi-
crowave background (CMB) anisotropies (particularly
those from the Wilkinson Microwave Anisotropy Probe
(WMAP) [2]) have concluded that our universe is expand-
ing at an increasing rate. This fact sets the very urgent
problem of finding the cause for this speed-up.

Usual explanations belong to one of the following three
classes: First one reconciles this acceleration with General
Relativity (GR) by invoking a strange cosmic fluid, DE,
with a state equation p = wp where w is very close to —1,
i.e. the fluid has a large negative pressure. For the particular
case w = —1 this fluid behaves just as a cosmological
constant A. Within this approach recent data obtained by
WMAP correspond to the cosmological parameters [2]:
Quh* = 0.14937307, Q) =0.72 2 0.04 and Hy(r =
tp) = 100 hkms ' Mpc™! with = 0.71703 and ¢, =
fioday- The main problem of this kind of description is
that the fitted A value seems to be about 55 orders of
magnitude smaller than expected (the cosmological con-
stant problem). The second type of explanations consider a
dynamical DE by introducing a new scalar field. Finally the
third one is trying to explain the cosmic acceleration as a
consequence of new gravitational physics [3]. EH action
modifications have been widely considered in the literature
[4], firstly to describe inflation, and more recently to de-
scribe the current cosmic speed-up, or even both cosmo-
logical eras simultaneously.

The simplest way of modifying EH action is by adding
some function f(R) with the required properties (see [5] for
a recent review on f(R) gravities). For example in [6] it
was introduced a gravitational model where f(R) =
—u*/R, being the total gravitational action proportional
to R — u*/R. This proposal has very interesting cosmo-
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logical properties and triggered a lot of work on f(R)
gravities applied to cosmology. However this kind of ac-
tions with negative powers of the curvature has the very
serious drawback of not having vacuum solutions with
vanishing curvature. For instance in the mentioned model
the vacuum constant curvature solution is R = =~/3u?.
Thus, even if one succeeds in reproducing cosmic accel-
eration, paradigmatic GR vacuum solutions assumed to
play a major role in any fundamental theory of gravity,
such as Minkowski or Schwarzschild, are excluded. Other
f(R) functions recently considered in the literature face
similar problems and moreover could be in conflict with
Solar System experiments [7] while some other models
could agree with Supenovae data [8].

In this work we address the issue of finding a f(R)
gravity able to reproduce the current cosmic speed-up
without any cosmological constant but having R = 0 as
vacuum solution. From a more formal point of view we are
seeking for a f(R) gravity having the same Friedmann-
Robertson-Walker (FRW) solution as the standard EH
action with cosmological constant for nonrelativistic mat-
ter (p = 0), but being analytical at R = 0. Clearly the f(R)
expansion at R = 0 must start at the R*> term to avoid
having cosmological constant or to redefine the Newton
constant.

In order to consider such as the standard EH cosmologi-
cal solution with DE as f(R) gravity cosmological solution
without DE in the same setting, we start from a general
action S = Sg + Sy + Spg where S is the gravitational
action given by:

Sa= 5 f dixlgI(R + £(R)) (1)

with k = 877G and f(R) being any arbitrary function of the
scalar curvature R = g"”R,,,, where the Ricci tensor is
given by R, = Rj,,, and the curvature tensor is defined
with the convention Ry, ~ dgl'y, where I', are the
symbols for the Levi-Civita connection since we are using
the metric formalism (see [9] for exhaustive research on
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nonmetric formalisms and references therein). Sy; and Spg
are the actions describing matter (also including dark
matter) and DE (which, in particular, includes any possible
cosmological constant A) respectively. For these two ac-
tions the corresponding energy-momentum tensor are
given by T§" = 2|g|~1/268x/8g,,, with X = M (matter)
or X = DE. For the sake of simplicity DE will be assumed

to follow ppg = —ppg as state equation (i.e. it is just a
cosmological constant) where ppg = A/k. Thus in our
notation (Tpg), = —ppeds. Assuming that matter (in-

cluding dark matter) can be described as a perfect fluid,
the corresponding energy-momentum tensor is (Ty)) =
—diag(pm, —Pms —Pms —Pm)-

In the metric formalism field tensorial equations are
found by performing variations of the above action (1)
with respect to the metric. Thus the equations are:

(14 FRIR = 3 (R + FR)gs + Dyuf (R) = KT,
2

where / represents the derivative with respectto R, D,,, =
D,D, —g,,1, 0= D,D* and D is the usual covariant
derivative. By computing covariant derivative of (2) we
find the equations of motion D,T% = 0 independently
from f(R) and A. In the following we will be interested
in the cosmological solutions of the above equations with
flat spatial sections. Thus we will consider the line element

ds* = d* — a*())(dr* + r?dQ3) 3)

From this metric the matter equations of motion in the
general case read:

pm + 31+ op)pud =0 0,py =0 €]

where k runs through r, § and ¢, the dot represents the time
derivative and we have assumed the matter state equation
to be py = wympwm- Equations in (4) can be integrated to
give:

pm(t) = PM(f0)<a(t0)>3(] o

a()

where 1, is the present time. In a flat universe it is possible
to write the scalar curvature in terms of scale parameter
a = a(t) and its derivatives as:

] e

The most recent cosmological data quoted in the introduc-
tion are compatible with a cosmological model based on a
flat FRW metric like (3) together with standard Einstein
field equations with cosmological constant A # 0 and
nonrelativistic (dust) matter (including dark matter), i.e.
pum = 0. In this case we can use the Eq. (2) with f(R) =0

and T} = —diag(pm + ppE, —PpE, —PDE —PpE)- Thus
the field equations are

(&)
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1
R/LV - Eg,uvR + g,uVA = K(TM),uV (7)
and the matter equation of motion D, (Ty)} = 0.

The u, v = t component of (7) can be written as follows

(:10 2 K A
)y = + =
<a0> 3Pmot 3 (8)

where the 0 subindex means that we are using standard EH
cosmology equations with cosmological constant. This
notation will be relevant later on when we will compare
standard cosmology with the results coming from the f(R)
action for gravity that we have found in this work. The
above equation can be solved exactly to find:

aolt) = (%)“ 3sinh2/3[§ﬂo<ro>(r AN

A

+ arcsinh<\/g:l\/;>:| )

where we have used the notation: Hy(r) = ay(2)/ao(t),
QA = A/?)H%(to) and QM = KpMo(to)/:))H(z)(lo) with the
condition ay(zy) = 1. On the other hand, by taking the trace
of (2) in this case, ie. f(R) = 0 and dust, we find:

Ro(1) = 4A = kpyo(t) (10)

Now we consider again Eq. (2) but in the case where we
have an arbitrary function f(R) in the action and dust
matter but not DE contributing to total energy-momentum
tensor, so that 7% = —diag(py;, 0, 0,0). Thus in this case
the u, v = t component of (2), becomes

3(1+ f’(R))g - %(R + f(R)) — 3ng”(R) — —kpy
(11)

where we have used that for flat FRW universes R! = 3ii/a
and D.f'(R) = —3aR f"(R)/a, In (11) we have elimi-
nated the subindex O in the different quantities to avoid
any confusion with the previous case. At this stage it is
clear that Eq. (11) solutions will depend on f(R) and lead
to different evolutions of the universe for the same initial
conditions. However, our approach to the problem will be
to find a function f(R) so that the solution a(z) of (11) will
be exactly the same as the solution in (9) that we got by
using standard cosmology and which fits the present cos-
mological data. In other words we want to find a f(R) such
that a(f) = a(¢) for the same initial (or better present, i.e.
t = ty, conditions). If it were possible to find this function
f(R) then it would be possible to avoid the necessity for
introducing any cosmological constant just by modifying
the gravitational sector of the action. In the following we
will show that such a function happens to exist and we will
give its precise form. In order to do that we first notice that
having a(f) = ay(7) in this period of universe life clearly
implies R(¢) = R, (r) and then we can substitute R by R in
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(11). On the other hand we will write the matter density as
the former matter density plus a new contribution, ie.
pm(t) = pamo(?) + Ap(1).

Assuming that matter for arbitrary f(R) is still nonrela-
tivistic (i.e. dust) in this cosmological era we have

Ap() = Apoo)(f;’o((’f))f

where according to (5) particularized for a = ag, wy; =0
and (10) we can write (12) as follows

R0_4A
K

12)

Ap(t) = —n (13)
where we have introduced the parameter 7 =
—Ap(ty)/pmo(ty) so that matter density is written as
pm(t; ) = (1 — )ppmo(f). Finally the last term on the
L.h.s. of (11) can be written in terms of the scalar curvature
by differentiating (10) and using (4). Thus we get

3(Ry — 3A)(Ro — 4A)f"(Ro) + (— SRo+ 3A)f’(Ro)

1
- Ef(Ro) —A—n(Ry—4A) =0 (16)

This last equation can be considered as a differential
equation for the function f(R) (in the following we will
omit the subindex 0 in R since no confusion is possible).
(16) is a second order linear equation so two initial con-
ditions are needed to solve it: f(0) and f’(0) for instance.
The natural choice for these initial conditions will be the
following: Firstly we do not want to have any cosmological
constant in our action, so that £(0) = 0. Secondly we want
to recover the standard EH action for low scalar curvatures
without redefine the Newton constant, ie. f/(0) = 0.
Moreover we want f(R) to be an analytical function at
the origin so that R = 0 should be a solution for the field
equations in vacuum. This is an extremely important re-
quirement since it allows Minkowski and Schwarzschild to
be vacuum solutions.

With these initial conditions (16) can be solved by using
standard methods. A particular solution is:

fp(R) = —mR +2A(n — 1) a7

The homogeneous equation associated with (16) is a Gauss
equation solved in terms of hypergeometric functions 2F;.
The general solution of the homogeneous equation can be
written as:

faR) = AK, f+(R) + K_f-(R)) (18)

where
f+(R) = a,“Filas,1 +ar —c;1 +a. —az;—a™l)
(19)

with @« =3 —R/A, a. = —(7*+73)/12 and ¢ =
—1/2. The n dependent constants K- must be determined
from the initial conditions given above. Numerically we
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find: K, = 0.6436(—0.9058n + 0.0596) and K_ =
0.6436(—0.24237 + 3.4465).

The hypergeometric functions given in (19) are gener-
ally defined in the whole complex plane. However we want
to have a real gravitational action. In principle this is very
easy to achieve since the coefficients in Eq. (16) and the
constants K, and K_ are all of them real. Then it is
obvious that the real part of (19) is a proper solution of
homogeneous equation associated with (16). Thus the
function we are seeking can be written as:

f(R) = fp(R) + Re[f1(R)] 2D

Nevertheless situation is a bit more complicated. The
homogeneous equation has three regular singular points
at Ry =3A, R, = 4A and R; = co. This results in the
solution f,(R) having two branch points R; and R,.
More concretely there are two cuts along the real axis:
one from minus infinity to R; and another from R, to
infinity. Thus one must be quite careful when interpreting
(21). From minus infinity to R; there is only one Riemann
sheet of f,,(R) where f(0) and f'(0) vanish and therefore
this is the one that we have to use to define f(R). From R,
to R, the real part of f},(R) is well defined. Finally from R,
to infinity there is only one Riemann sheet producing a
smooth behavior of f(R). To reach this sheet one must
understand R in the above equation as R + ie.

At the present moment we do not know if this analytical
structure has any fundamental meaning or it is just an
artefact of our construction. Much more important is the
fact that the function R + f(R) + f,(R), which is the
analytical extension of our Lagrangian, is analytical at R =
0, having at this point the local behavior R + O(R?).
Therefore our generalized gravitational Lagrangian R +
f(R) does guarantee that R = 0 is a vacuum solution while
it reproduces the current evolution of the universe without
any cosmological constant. Once the f(R) function has
been obtained it is possible to check out our result by
solving (11) in terms of a(z) for the f(R) given in (21).
The numerical solution a(7) shows a nice agreement with
ay(7) given in (9).Thus we can be sure that our gravitational
action proportional to R + f(R) provides the same cosmic
evolution as EH action R — 2A in a dust matter universe.
Therefore, our model will verify, in the same range of
precision, all the experimental tests that the standard cos-
mological model verifies in the present era.

Notice also that in principle this can achieved for any
value of 7, i.e. for any desired amount of matter.
Nevertheless some restrictions should be imposed over
the parameter 7. For instance it is obvious that in a dust
matter dominated universe py(#; 7) = 0 implies = 1.

Much more stringent bounds can be set on 7 by demand-
ing our model to work properly back in time up to Big
Bang Nucleosynthesis (BBN) era. Observations indicate
that the cosmological standard model fits correctly primor-
dial light elements abundances during BBN with a 10% of
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relative error for Hy(t). Therefore by the time of BBN,
departure of our model from the standard cosmology must
not be too large and (11) should give similar behavior to the
one given by the standard Friedmann Eq. (8) where now
pMO(t) — pgust(t) + p{)adiation(t)'

At BBN era cosmological constant is negligible com-
pared with dust and radiation densities. The scalar curva-
ture is of order 1073 eV? (with A= c =1 for these
calculations) and by that time dust and radiation densities
are of the order of 10'® eV* and 10! eV* respectively.
Since R = R, we can rewrite (11) as a modified Friedmann
equation as follows

H*(1) = Hz(t){ 10°R — R + ;(Rf'(R) — f(R)) }
0

10°R[1 + f'(R) = 3f"(R)(1 — n)R]
(22)

As it was commented above, it is required that H?(t) =
H3(1)(1 = 0.2) for curvatures of order Rgpy. This implies
that the second factor on the r.h.s. 0of(22) should be between
0.8 and 1.2 by that period. Thus in order to match our f(R)
gravity model with the standard cosmology at the BBN
times we need to tune 7 to a value about 0.065. Therefore
the matter content of our model is not too different from the
one in the standard cosmology and the difference is in fact
smaller than experimental precision in [2].

To conclude we have succeeded in finding a f(R) gravity
which exactly reproduces the same evolution of the uni-
verse, from BNN up to the present time, as standard
cosmology, but without the introduction of any form of
DE or cosmological constant. In particular our model
reproduces - by construction - a DE dominated universe
at low curvatures like other models previously considered
do by using rather different f(R) functions (see for instance
[10]). The gravitational lagrangian R + f(R) is analytical
at the origin and consequently R = 0 is a vacuum solution
of the field equations. Therefore Minkowski,
Schwarzschild and other important R = 0 GR solutions
with no DE are also solutions for this f(R) gravity. The
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price we have to pay for all those good properties is that our
lagrangian, considered as a function of R, has a very
complicated analytical structure with cuts along the real
axis from infinity to R = 3A and from R = 4A to infinity.
Obviously the only reasonable interpretation of our action
is as some kind of effective action. For example several
types of nontrivial f(R) gravities have been derived from
compactifications of 4 + n dimensional gravity in the con-
text of String/M-theory [11]. In classical physics one typi-
cally starts from some action principle, obtains the
corresponding field equations and finally solves them for
some initial or boundary conditions. In this work we have
proceeded in the opposite way: we started from solutions
obtained in the standard cosmological model and then we
have searched for an action that, possessing certain prop-
erties, gives rise to field equations having the same solu-
tions. Classical actions are of course real but effective
quantum actions usually have a complex structure coming
from loops and related to unitarity. The presence of an
imaginary part in the action, evaluated on some classical
configuration, indicates quantum lost of stability by parti-
cle emission of this configuration [12]. Therefore it is
tempting to think that our action could have some inter-
pretation in terms of an effective quantum action. However,
our action determination procedure does not allow to make
such a kind of statement.

The complicated structure of this action may be an
indication that the cosmological constant problem is even
much harder to solve than we have previously thought.
Obviously much more insight and research are needed in
order to get further progress in this issue.
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