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We discuss the general question of which conformal field theories have dual descriptions in terms of
quantum gravity theories on anti-de Sitter space. We analyze in detail the case of a deformed product of n
conformal field theories (each of which has a gravity dual), and we claim that the dual description of this is
by a quantum gravity theory on a union of n anti-de Sitter spaces, connected at their boundary (by
correlations between their boundary conditions). On this union of spaces, (n� 1) linear combinations of
gravitons obtain a mass, and we compute this mass both from the field theory and from the gravity sides of
the correspondence, finding the same result in both computations. This is the first example in which a
graviton mass in the bulk of anti-de Sitter space arises continuously by varying parameters. The analysis
of these deformed product theories leads us to suggest that field theories may be generally classified by a
‘‘connectivity index,’’ corresponding to the number of components (connected at the boundary) in the
space-time of the dual gravitational background. In the field theory this index roughly counts the number
of independent gauge groups, but we do not have a precise general formula for the index.

DOI: 10.1103/PhysRevD.74.086006 PACS numbers: 11.25.Tq

I. INTRODUCTION

The AdS/CFT correspondence [1] implies that any the-
ory of quantum gravity (such as string theory) on anti-de
Sitter (AdS) space is dual to a conformal field theory
(CFT). More generally, any theory of quantum gravity on
a space which has an asymptotic boundary where it ap-
proaches a (possibly warped) product of anti-de Sitter
space with another space is equivalent to a field theory
which is conformal at high energies. This can be seen
simply by computing the correlation functions of local
operators in such a theory using the methods of [2,3] and
noticing that they obey the usual requirements for correla-
tion functions in a field theory. Of course, in general it is
not known how to write down a Lagrangian formulation of
the dual field theory (or of a theory that flows to it), and it is
not even clear that such a formulation should exist. But
still, the dual field theory can be implicitly (and presum-
ably uniquely) defined through its correlation functions,
which we can compute if we understand the corresponding
theory of quantum gravity.

It is natural to ask whether this duality can be used also
in the opposite direction—namely, whether any field the-
ory is dual to a theory of quantum gravity (on some
asymptotically-AdS space, since standard local field theo-
ries are conformal at high energies).1 At first sight one

might think that the answer must be positive, since other-
wise there would be a strange division of the space of field
theories into two sets—the ones which have a quantum
gravity dual and the ones which do not. However, we
would like to argue that the answer is negative, and that
the space of quantum field theories is indeed divided into
classes, such that only one class of quantum field theories
is dual to quantum gravity on (asymptotically) AdS space.

Our argument will be based on considering products of n
conformal field theories, each of which is dual to some
quantum gravity theory on AdS space, and deforming them
by products of operators from the different CFTs in a way
which couples them together.2 We will claim that the dual
of such a deformed product theory is not given by a
quantum gravity theory on AdS space, but rather on a
union of n AdS spaces, whose boundaries are all identified
together (in the sense that the boundary conditions on the
different AdS spaces are correlated to each other). We will
construct this picture in the limit where we can describe the
quantum gravity theory semiclassically (as a theory of
weakly coupled fields living on the AdS spaces), and verify
in detail that it gives a consistent description of the de-
formed product field theory. We conjecture that the same
picture is true more generally, even beyond the semiclas-
sical gravity approximation.

It seems reasonable to assume that if some field theory
has a dual description in terms of a quantum gravity theory
on a sum of n AdS spaces, it cannot also have a dual
description as a theory living on a single AdS space;
however, it is of course difficult to be sure of such a
statement, since we do not understand quantum gravity
beyond the semiclassical limit, and it is possible that the

1Of course, in most cases this quantum gravity theory would
be highly curved, with no semiclassical approximation, for
instance since the field theory would not have any separation
between the dimensions of operators with spin 2 or less and the
dimensions of higher-spin operators. Since in general we do not
have any independent definition of quantum gravity on highly
curved spaces, another way to phrase the question is whether any
field theory can be used as a definition of a theory of quantum
gravity on asymptotically-AdS space.

2The generalization to deformations of nonconformal field
theories is straightforward.
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same theory could be described either as living on n AdS
spaces or as living on a single AdS space, despite the fact
that the topologies of these two descriptions are different
near the boundary. If our assumption is indeed true, it
suggests that quantum field theories may be characterized
by a ‘‘connectivity index’’ n, which counts the number of
separate components in their quantum gravity dual descrip-
tion; schematically this index corresponds to the number of
independent gauge groups in the theory (by independent
gauge groups we mean groups such that no field is charged
under more than one group, and such that every group has
at least one field charged under it, so that, for example, an
SU�N� � SU�N� theory with a bi-fundamental field counts
as having one independent gauge group; the gauge groups
can be continuous groups or discrete groups as in sigma
models on orbifolds). We claim that there exist theories
with n � 0 (no nontrivial gauge symmetry) which do not
have a dual gravitational description, since the energy-
momentum tensor in these theories is not an independent
operator, so there is no fundamental dual bulk graviton that
can be associated with a diffeomorphism symmetry.
Theories with n � 1 include all the known theories with
a gravity dual. Theories with higher values of n can be
constructed by (deformations of) direct products of theo-
ries with n � 1, and we claim that they correspond to a
theory of quantum gravity on a sum of n asymptotically-
AdS spaces, which are connected at their boundary. We do
not know how to define n directly in the field theory; this
may be due to our lack of imagination, or it may mean that
our assumption is wrong and n is not really a well-defined
index beyond the semiclassical limit.

We begin in Sec. II by examining in detail a product of
two conformal field theories and its deformations, and how
they are described in the dual gravitational picture. The
generalization to a product of more field theories and to
theories with no conformal invariance is straightforward.
In Sec. III we briefly discuss the case with n � 0, and in
Sec. IV we discuss further the ‘‘connectivity index’’ and its
properties. We end in Sec. V with a summary of our results
and conclusions.

II. THE DUAL OF A DEFORMED PRODUCT
OF FIELD THEORIES

A. General description

Let us consider two conformal field theories in d dimen-
sions, each of which is dual to a string theory on a product
of AdSd�1 times some space M. We consider the case
where this dual string theory has a good semiclassical
gravity limit (namely all radii of curvature are very large).
The dual description of the product of the two theories is
obviously given by the product of the string theories on the
two spaces, or equivalently by string theory on the disjoint
union of the two spaces (which do not talk to each other).

On the field theory side, we can deform such a product
by adding to its Lagrangian a term

 h
Z
ddxO1�x�O2�x�; (2.1)

where O1 is an operator in the first CFT and O2 an operator
in the second. Such a deformation could be relevant or
marginal, and in some cases it can even be exactly mar-
ginal (for instance, we can consider J1

�J2 deformations
when d � 2 and J � �J� is a holomorphic (antiholomorphic)
global U�1� current, or we can consider a product of
Klebanov-Witten d � 4 CFTs [4] and deform them byR
d2�hijkl tr�A�1�i B

�1�
j � tr�A

�2�
k B

�2�
l �, which is exactly mar-

ginal for an appropriate choice of the coefficients hijkl).
For simplicity let us consider the exactly marginal case,
where we have a CFT for every value of h, which we will
denote by CFTh; our results may be easily generalized also
to nonmarginal deformations.

Naively, one might think that for nonzero values of h this
CFTh (which is no longer a direct product) should be dual
to some theory of quantum gravity on a single AdS space.
One argument for this is that the original product theory
had two separate conserved energy-momentum tensors
T�1�mn and T�2�mn, while the deformed product only has one
conserved energy-momentum tensor (which in simple
cases is given by, to leading order in h, T�1�mn � T

�2�
mn �

h�mnO1O2). The dual of the product theory had two
massless gravitons corresponding to T�1� and T�2�, while
in the deformed theory one would expect to remain with
one massless graviton while the other graviton would
obtain a mass (related to the anomalous dimension of the
nonconserved combination of T�1� and T�2�; we will discuss
this in more detail below). So, one might think that the dual
theory lives on a single space. However, if we try to write
the theory on a single space we immediately run into the
problem that the two spaces M1 and M2 may be different,
so there is no natural ten-dimensional space on which to
define CFTh. This problem becomes even more serious if
we try to couple two nonconformal field theories which are
dual to asymptotically-AdS spaces, since the two
asymptotically-AdS spaces corresponding to the two field
theories may be completely different in the bulk, and there
is no natural way to identify them.

We would like to suggest a different interpretation. In
the standard AdS/CFT correspondence, deformations of
the Lagrangian are described by changing boundary con-
ditions for the fields. ‘‘Single-trace’’ deformations (defor-
mations by an operator which is dual to a single field in the
bulk) involve changing the boundary condition on the non-
normalizable mode of the corresponding field, while ‘‘mul-
titrace’’ deformations [similar to (2.1)] involve [5,6]
changes in the boundary conditions which mix the coef-
ficients of the non-normalizable and the normalizable
modes of the fields involved; for example, the deformation
(2.1) in a single CFT would imply that the coefficient near
the boundary of the non-normalizable mode of the field�1

dual to O1 must be equal to h � �2�2 � d� times the
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coefficient of the normalizable mode of �2 (dual to O2 of
dimension �2), and vice versa.3 Since the deformation is
described purely in terms of boundary conditions, if we
think of it in the two-CFT case, we do not necessarily need
the two fields (corresponding to operators in the two CFTs)
to live on the same space—it is enough if they share the
same boundary. Note that the boundary of the gravity dual
of any theory which is conformal in the UV is always the
same, and looks like the Rd (or Sd�1 � R) boundary of
AdSd�1 (the compact space M shrinks to zero near the
boundary in the natural field theory units), so it is always
possible to identify the boundaries of the spaces dual to the
two CFTs. We suggest that the proper way to think about
the gravity dual of the product of two CFTs is as living on
the sum of the two space-times (one for each CFT) but with
the boundary identified4; when the product is undeformed
the identification of the boundaries has no effect, but when
we deform we can then implement the deformation (2.1) by
an appropriate change in the boundary conditions of the
fields living on the two space-times. Note that this proce-
dure correctly implements the breaking of the symmetry
from a product of two conformal groups when h � 0 (and
the identification has no effect) to a single conformal group
when h is nonzero. Note also that, as for any multitrace
deformations, the changed boundary conditions are gener-
ally nonlocal on the compact spaces M [8,9] (and they
also seem to be nonlocal on the world sheet of the corre-
sponding string theory [8]), but this is not inconsistent with
the locality and causality of CFTh.

While this picture of two spaces connected at their
boundary may seem rather arbitrary, it actually arises
naturally in the AdS/CFT correspondence when we have
a flow from a single CFT to a product of two CFTs. The
prototypical example is the d � 4 N � 4 SU�N� SYM
theory, at a point on its Coulomb branch at which the gauge
group is broken to SU�N1� � SU�N � N1� �U�1�. The
gravity dual of this theory is exactly known; it is asymptoti-
cally a single AdS space, but in the interior of the space
there are two ‘‘throats,’’ one for each non-Abelian gauge
group factor, and the low-energy dynamics (below the
mass scale of the W bosons charged under both SU�K�
factors) is a product of two CFTs, one in each ‘‘throat.’’
Here the two low-energy theories are decoupled,5 and it is
not clear that the two throats share a boundary, but it seems
likely that if we would deform the theory by a deformation
that in the low-energy CFT would take the form (2.1), it

would look like a shared-boundary interaction of the form
described above.

In the special case where we are deforming a product of
CFTs by an exactly marginal deformation, so that symme-
try considerations imply that the two spaces remain AdS
spaces also after the deformation, we could identify the
two AdS spaces if we want, and obtain two decoupled
theories on a single AdS space which only talk to each
other through the boundary conditions related to (2.1) (if
the compact spaces M1 and M2 are the same we could
even identify the full ten-dimensional spaces if we want).
This ‘‘folded’’ picture is, of course, completely equivalent
to the ‘‘unfolded’’ picture described above involving two
spaces connected at the boundary, except that in the folded
picture we do not explicitly exhibit the two diffeomor-
phism symmetries associated with the two spaces, but
rather we work in a gauge where the spaces are identified.
The folded picture may be useful for performing compu-
tations (which can sometimes be reduced to computations
which have already been done for theories living on a
single AdS space), but we stress that it is only available
in very special cases for which the spaces on the two sides
are the same, and there does not seem to be an analogous
picture for a coupling between two nonconformal theories
which live on different spaces. Thus, we view the unfolded
picture involving a union of two spaces as the more basic
one.

The terminology which we were using for the gravita-
tional description of the deformation above depended on
having a semiclassical limit of the gravity theory, in which
there were well-defined fields to which one could assign
boundary conditions. In the absence of such a semiclassical
limit it is not clear how to phrase deformations in terms of
boundary conditions; for example, in a generic field theory
there is no distinction between ‘‘single-trace’’ and ‘‘multi-
trace’’ operators (and, indeed, even when there is a semi-
classical large N limit, the two types of operators mix
together at finite N). However, just as we believe that the
AdS/CFT correspondence makes sense even for finite N
(say, for the SU�2� N � 4 super-Yang-Mills theory,
which is very far from the semiclassical large N limit),
we conjecture that the general claims above are true even
when there is no semiclassical limit. So, we conjecture in
general that a field theory which is a deformed product of n
independent CFTs is dual to a theory of quantum gravity on
a space with n asymptotically-AdS regions connected at
their boundary (the generalization of the discussion above
to products of n CFTs rather than two is straightforward).

We begin in Sec. II B by reviewing some facts about
massive gravity on AdS space, and how it can arise from a
deformed product of CFTs as described above. The rest of
the section is devoted to a detailed computation of the mass
of the massive graviton resulting from the deformation
(2.1), both on the field theory side and on the gravity
side, in order to test our gravitational description of this
deformation.

3This picture makes sense when we have a semiclassical limit
of the gravity theory in which the bulk fields are weakly coupled
and we know what we mean by single-particle and multiparticle
states and by boundary conditions on fields.

4Note that this is completely different from the case of a single
space-time with more than one boundary, which is relevant (for
instance) for the eternal AdS black hole [7].

5Up to various irrelevant couplings, as discussed for instance
in [10,11].
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B. Massive gravity in anti-de Sitter space

It is well known that on anti-de Sitter space, unlike in flat
space, there is no discontinuity separating massive spin 2
fields from massless spin 2 fields [12,13]. Thus, it is
possible for the graviton to continuously acquire a mass,
in a way which is completely analogous to the Higgs
mechanism, see [14] for a review.

In the usual Higgs mechanism in anti-de Sitter space, a
massless vector field and a massless scalar field join to-
gether to form a massive vector field. This has a simple
interpretation in the dual field theory. Before Higgsing, the
massless vector field maps to a conserved current J� of
dimension (d� 1), @�J� � 0, while the massless scalar
field maps to an operator O of dimension d. The Higgs
mechanism in the bulk is reflected on the boundary by the
current no longer being conserved, @�J� / O, explicitly
showing that the vector operator and the scalar operator
join together into a single multiplet of the conformal
algebra.

Similarly, a massless graviton in the bulk is dual to a
conserved spin 2 operator of dimension d, @�T�� � 0.
When the diffeomorphism symmetry generated by this
spin 2 operator is broken, we have a relation of the form
@�T�� / K� for some vector operator K� which joins
together with the spin 2 operator T�� in a single multiplet
of the conformal algebra. In the bulk this means that the
vector field dual to K� joins together with the graviton dual
to T�� to form a single massive spin 2 field (of course, as in
the previous case, once T�� is not conserved, the confor-
mal algebra implies that it must acquire an anomalous
dimension which is mapped to the bulk mass). An interest-
ing difference from the previous case is that the vector field
which is swallowed is not massless. In the previous para-
graph the operator O had to have dimension d before the
Higgsing for a relation of the form @�J� / O to make
sense; similarly, the relation @�T�� / K� implies that K�
must have (before the deformation) dimension (d� 1),
corresponding to a vector field of mass m2R2

AdS � 2d [re-
call that a massless vector field in AdS maps to a vector
operator of dimension �d� 1�]. Nevertheless, the confor-
mal algebra joins together this massive vector representa-
tion with the massless spin 2 representation to form the
massive spin 2 representation.6

Of course, it is not easy to realize this ‘‘Higgs mecha-
nism for gravity,’’ since this requires a breaking of the
diffeomorphism symmetry associated to the conserved
spin 2 operator T��. Up to now, the only known realiza-
tions of this phenomenon [15–17] were in the context of
‘‘locally localized gravity’’ [18], where an AdSd-brane is

embedded into AdSd�1 and there is (in some approxima-
tion) a massless bound state of the graviton living on the
brane. In the dual description, there is a (d� 1)-
dimensional defect inside the d-dimensional field theory,
and the energy-momentum tensor of the defect is mapped
to the bound graviton. Generally, this energy-momentum
tensor is not exactly conserved since there is an exchange
of energy between the defect and the full CFT, and this
corresponds to the localized massless graviton acquiring a
mass (related to the anomalous dimension of the defect
energy-momentum tensor) [19].

If we want to realize this ‘‘Higgs mechanism’’ in the full
theory on AdSd�1 without breaking the conformal symme-
try, it seems like we need to find a conformal theory in
which the energy-momentum tensor is not conserved, but
this is not possible of course. Instead, we can start, as
described in the previous subsection, from a theory that
has more than one conserved energy-momentum tensor,
namely, a product of two conformal field theories, and then
one of the symmetries can be broken by coupling together
the two conformal field theories by an exactly marginal
deformation without breaking the overall conformal invari-
ance. From the point of view of the conformal field theory
this precisely realizes the ‘‘Higgs mechanism for gravity’’
described above. When we couple two CFTs together, each
energy-momentum tensor separately is no longer con-
served, but there is still a conserved energy-momentum
tensor which is the sum of the two original energy-
momentum tensors plus a contribution from the deforma-
tion (2.1),

 Ttot
�� � T�1��� � T

�2�
�� � h���O1O2 (2.2)

(assuming that the scalar operators contain no derivatives).
On the other hand, the difference between the two energy-
momentum tensors acquires an anomalous dimension
since it is no longer conserved: schematically we have
(this will be made more precise below)

 @��T�1��� � T
�2�
��� � h	�@�O1�O2 �O1�@�O2�
: (2.3)

The operator on the right-hand side of (2.3) is the dimen-
sion d� 1 vector operator which is swallowed by the
dimension d spin 2 operator when it acquires an anomalous
dimension; note that in this case it is a multiple-trace
operator.

The naive mapping of the CFT results above to anti-de
Sitter space would imply that the product CFT maps to a
bulk theory with two massless gravitons, and then when we
deform one of the gravitons acquires a mass by swallowing
a massive vector field, which in this case is a bound state of
two scalar fields [corresponding to the multitrace operator
on the right-hand side of (2.3)]. This is indeed what we
would find in the folded interpretation of the deformed
product CFT. In the unfolded interpretation the analysis of
the fields is somewhat more complicated, since each of the
gravitons (the massless one and the massive one) is a linear

6If we start from a supersymmetric theory, the gravitino(s)
would also continuously acquire a mass by swallowing massive
spin 1=2 fields, but this is similar to what happens in the standard
case of deformations which break supersymmetry.
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combination of the gravitons on the two AdS spaces.
However, since there is still a single conformal symmetry,
the analysis in terms of representations of the conformal
algebra is the same.

When we have a large N limit corresponding to a
semiclassical theory of gravity in the bulk, the graviton
mass described above arises through loop diagrams which
are suppressed (at least) by 1=N2 (or by Newton’s constant
GN). From the bulk point of view this occurs because the
deformation (2.1) does not directly affect the graviton, but
just modifies the boundary conditions of the scalar fields
which are dual to the operators Oi. The leading correction
to the graviton propagator thus comes from a one-loop
diagram with the scalar fields running in the loop. On the
field theory side one can easily find the same result by
noting that the first correction to two-point functions of the
stress-energy tensors T�1� and T�2� arises at second order in
h, and is suppressed by 1=N2 compared to the original two-
point functions.

In the rest of this section, which is rather technical and
can be skipped by readers who are not interested in the
details, we will compute the graviton mass in the product
of CFTs deformed by (2.1) at leading order in h, in the case
of a marginal deformation (�1 � �2 � d). We will first
compute this on the field theory side and then on the
gravity side, and we will find precise agreement between
the two computations.

C. Field theory computation of graviton mass

One method to compute the correction to the graviton
mass [at leading order in the deformation (2.1)], which is
simply related to the anomalous dimension of the non-
conserved stress-energy tensor, is by using Eq. (2.3) which
relates its derivative to a specific operator in the unde-
formed CFT (at leading order in the deformation). First,
we should be more precise about which operator in the
CFT is the nonconserved stress-energy tensor.

Naively the nonconserved operator which obtains a mass
should be T�1� � T�2�, but in fact this operator is not or-

thogonal (in the sense of having a vanishing two-point
function) to (2.2) and to the operator O1O2. After the
deformation (2.1), assuming that the deformation operators
O1 and O2 contain no derivatives, it is easy to check (by
applying separate translations of the fields of the two
CFTs) that (at leading order in h)

 @�T�1��� � h�@�O1�O2; @�T�2��� � hO1�@�O2�; (2.4)

such that the full deformed stress-energy tensor (2.2) is
conserved. We will work in the framework of radial quan-
tization, where each local operator is mapped to a state. In
this framework the two-point functions of operators map to
numbers giving the overlaps of states, proportional to the
two-point function after taking out the position depen-
dence. For scalar operators of dimension �i, with
hOi�0�Oi�x�i � Ni=jxj2�i , we simply have hOijOii � Ni
for some arbitrary normalization factor Ni. Similarly, for
traceless stress-energy tensors in a conformal field theory
we have

 hT��jT��i � c
�
������ � ������ �

2

d
������

�
;

(2.5)

where c is (one definition of) the central charge of the
conformal theory. We will denote the central charges of the
two CFTs (using this definition) by c1 and c2.

The nonconserved operator must be some linear combi-
nation

 

~T �� � �T�1��� � 	T
�2�
�� � 
���hO1O2: (2.6)

Requiring orthogonality to (2.2) implies that at leading
order in h, �c1 � 	c2 � 0. In order to check orthogonality
with O1O2 we need to compute the leading correction to
hT�1�jO1O2i. Recall that the general prescription for com-
puting corrections to correlation functions due to the de-
formation (2.1) in conformal perturbation theory is

 

hcorrelatorifull � hcorrelatoriundeformed � h
Z
dduhcorrelator �O1�u�O2�u�iundeformed

�
h2

2

Z
ddu

Z
ddvhcorrelator �O1�u�O2�u�O1�v�O2�v�iundeformed � � � � : (2.7)

Thus, we find at leading order
 

hT�1����x1�O1�x2�O2�x3�i � h
Z
ddxhT�1����x1�O1�x2�O1�x�i

� hO2�x3�O2�x�i: (2.8)

Using the formulas for hT�x1�O�x2�O�x3�i from [20]
(which we quote below) we find that this gives an overlap
hT�i���jO1O2i � h �i

d ���N1N2, which is consistent with the

orthogonality of (2.2) with O1O2. For the orthogonality of
(2.6) with this operator we now require ��1 � 	�2 �

d � 0, so that an appropriate choice of the nonconserved
tensor ~T (with an arbitrary normalization) is given by

 

~T �� � c2T
�1�
�� � c1T

�2�
�� �

�
c1

�2

d
� c2

�1

d

�
���hO1O2:

(2.9)
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At leading order in the deformation, this operator satisfies

 @� ~T�� � h�c1 � c2�

�
�2

d
�@�O1�O2 �

�1

d
O1�@�O2�

�
:

(2.10)

As a consistency check, note that if one of the operators
(say O1) is the identity operator with �1 � 0, so that the
two theories are not really coupled together by the defor-
mation, we find that ~T is still conserved as expected.

Next, we need to compute the relation between the norm
of (2.10) and the anomalous dimension of ~T. Recall that
using the conformal algebra, a standard manipulation gives
for a scalar operator O of dimension � (with no summation
over �)

 

j@�Oj2 � jP�Oj2 � hOjK�P�jOi � hOj2i�
�
�DjOi

� 2�hOjOi; (2.11)

leading to the standard unitarity bound � � 0. The same
manipulation for the derivative of a traceless spin 2 opera-
tor gives (with no sum over �)

 j@� ~T��j
2 � 2c��~T � d�

�d� 2��d� 1�

d
; (2.12)

where c is the constant appearing in (2.5) for the 2-point
function of ~T with itself, which for ~T defined above is equal
to c � c1c2�c1 � c2�. This equation is consistent with the
known unitarity condition saying that �~T � d, with equal-
ity if and only if ~T is conserved.

Now, we can compare Eq. (2.12) to the norm of the
operator on the right-hand side of (2.10). We find

 2c��~T � d�
�d� 2��d� 1�

d
� 2h2�c1 � c2�

2N1N2
1

d2

���2
2�1 � �2

1�2�;

(2.13)

leading to a mass squared of the graviton given by (at
leading order in h, and in units of the AdS radius)

 M2
grav � d�� ~T � d� � h2N1N2

�
1

c1
�

1

c2

�
�1�2d

�d� 2��d� 1�
:

(2.14)

Note that despite the appearance of N1 and N2 this is
independent of how we normalize the operators, since h
also changes when we change the normalization of the
two-scalar operators. Note also that this scales as the
inverse central charges of the CFTs, namely, as 1=N2 in
the large N limit of an SU�N� gauge theory, as expected
since it is related to a one-loop diagram in the bulk.

An alternative way to compute the correction to the
graviton mass is by a direct computation of the logarithmic
corrections to h ~T�x� ~T�y�i, using the techniques of confor-
mal perturbation theory. We will not do this computation in
complete generality, but we will show that for the case of
equal central charges of the two CFTs it gives results which
are consistent with the previous computation.

The two-point function of ~T contains various terms. One
term involves hT�1�T�2�i; the leading order correction to this
two-point function is given by

 

hT�1����x�T
�2�
���y�ifull �

h2

2

Z
dduddvhT�1����x�T

�2�
���y�O1�u�

�O2�u�O1�v�O2�v�iundeformed � � � �

(2.15)

Since the two CFTs only interact via the deformation (2.1)
this correlator factorizes into

 

Z
ddu

Z
ddvhT�1����x�O1�u�O1�v�i�1�

� hT�2����y�O2�u�O2�v�i�2�; (2.16)

where these correlation functions are computed in the
respective undeformed theories. The general form of these
correlation functions is determined by conformal invari-
ance and is given in [20]:

 

hT�i����x�Oi�u�Oi�v�i
�i� �

Ai
�x� u�d�u� v�2�i�d�2�x� v�d

�

�
�u� x���u� x��

�x� v�2

�x� u�2
� �u� x���v� x��

� �v� x���u� x�� � �x� v���x� v��
�x� u�2

�x� v�2
�

1

d
����u� v�

2

�
(2.17)

where �i is the conformal dimension of Oi, d is the space-time dimension of the CFT, and Ai is a constant given by
Ai � �d�iNi��d=2�=2�d� 1�d=2. Inserting (2.17) into the expression (2.15) for the stress-energy tensor two-point
function of interest, and introducing the separation variable D�  x� � y�, we can rewrite the leading order correction as
a sum of 4 independent integrals:

OFER AHARONY, ADAM B. CLARK, AND ANDREAS KARCH PHYSICAL REVIEW D 74, 086006 (2006)

086006-6



 

hT�1����x�T
�2�
���y�ih2 �

h2A1A2

2

Z ddu

ud
Z ddv

vd
1

�D� u�d
1

�D� v�d
1

�u� v�4

�

��
�D� u���D� u��u�u�

�D� v�2

�D� u�2
v2

u2 � �D� u���D� u��v�v�
�D� v�2

�D� u�2
u2

v2

� ��D� u���D� v��u�v� � ��$ ��� �
�
�D� u���D� u��u�v�

�D� v�2

�D� u�2
� ��$ ��

� ���; �� $ ��; ��� � ���; �� $ ��;���
��
� ��$ �� � traces

�
: (2.18)

In general, it is quite complicated to regularize and evalu-
ate these integrals. Using dimensional regularization, for
example, requires the introduction of four Feynman pa-
rameter integrals. However, it is easy to see that at least
some of the terms in (2.18) diverge logarithmically, leading
to a nonzero anomalous dimension.

The computation of h ~T ~Ti contains also various other
terms; in particular, it contains terms of the form hT�1�T�1�i,
and these are difficult to compute at order h2 since it
requires knowing the precise form of hT�1�T�1�O1O1i
which is not determined purely by conformal invariance.
So, in general we do not know how to compute the anoma-
lous dimension directly by this method. However, there is a
trick we can use in the special case of c1 � c2. In this case
~T � c1�T

�1� � T�2� � �2��1

d �hO1O2�, and when we com-
pute the difference h ~T�x� ~T�y� � c2

1T
tot�x�Ttot�y�i the terms

proportional to hT�1��x�T�1��y�i and to hT�2��x�T�2��y�i drop
out, and the traceless part of the resulting expression is
simply given by �4c2

1hT
�1��x�T�2��y�i. Since Ttot has no

anomalous dimension, the logarithmic terms in this ex-
pression should be the same as the ones appearing in h ~T ~Ti.
Even without computing these logarithmic terms exactly,
we can see how they depend on the operators O1 and O2,
since the expression (2.18) depends on these operators only
through the combination A1A2 / �1�2N1N2. Thus, the
anomalous dimension arising from the computation above
is given by some function of d times �1�2N1N2, in full
agreement with the result (2.14) which we found above.

D. Graviton mass from a bulk gravity calculation

Since we know how to describe the deformation (2.1) in
terms of deformed boundary conditions for fields in the
bulk, as described in Sec. II A, we can calculate the mass of
the graviton in the bulk directly, using the methods of
[16,17], by a scalar loop correction to the graviton propa-
gator (with the scalars obeying the deformed boundary
conditions). Schematically, one computes the graviton
self-energy in the bulk, and then to find the mass one
extracts the coefficient of the term arising from a massive
spin-1 state by matching the long-distance behavior and
the tensor structure. In [16,17] this technique was used to
analyze the mass of the massive graviton that arises in
‘‘locally localized gravity’’ as a bound state on an AdS-
sliced brane. Here, we will use it in the bulk.

The only diagrams that can contribute to the graviton
mass at leading order are those involving the scalars �1

and �2, dual to the operators O1 and O2. In the unde-
formed bulk theory, if we denote the boundary conditions
for the scalars (in the coordinate system ds2

AdS �

z�2�dz2 � dx�dx��) by �i�z! 0� � �i�x�zd��i �

	i�x�z
�i where �i is the conformal dimension of the dual

operator Oi (we assume �i � d=2), the boundary
conditions were given by �i�x� � 0. After the deformation
we are considering, the boundary conditions change
to �1�x� � h�2�2 � d�	2�x� and �2�x� � h�2�1 �
d�	1�x�: the ‘‘non-normalizable mode’’7 of the scalar in
one of the AdS spaces is related via the deformation to the
normalizable mode of the scalar in the other AdS space. In
the scalar loop diagram contributing to the graviton mass,
these altered boundary conditions create a situation in
which the scalar in the loop can propagate across the
boundary from one AdS space to the other and back.

In principle we could compute the correction to the
graviton mass directly in this two-AdS-space picture, but
in practice it will be simpler to do the computation thinking
about the two gravitons and the two scalars as living on the
same AdS space (of course, this does not change the
physics, but just simplifies the language of the computa-
tion). We will limit ourselves to the case of c1 � c2.
Working in this folded picture, we may directly apply the
results of [9] to find the corrections to the scalar propagator
arising from the deformation (2.1). The corrected propa-
gator is a 2� 2 matrix since the boundary conditions mix
the two-scalar fields, and it is given by [9]:

 Gij
� �

1

1� ~h2

G1
� �

~h2G2
�

~hG1
� �

~hG2
�

~hG1
� �

~hG2
� G2

� �
~h2G1

�

 !
; (2.19)

where ~h  �2�1 � d�h and Gi
� is the propagator of the ith

scalar field in the undeformed theory, namely, the propa-
gator corresponding to a field dual to an operator of di-
mension �i. The contribution of these scalar propagators to
the graviton propagator (which is now also a 2� 2 matrix),

7Since we are interested in the case of �< �d� 1�=2, the
mode proportional to � is actually normalizable, but it is still
nonfluctuating in the undeformed theory because of the bound-
ary condition.
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through the one-loop diagram shown in Fig. 1, in which
g�1��� couples only to �1 and not to �2, and similarly for
g�2���, are proportional to:

 Gij
grav �

1

�1� ~h2�2
�G1

� �
~h2G2

��
2 ~h2�G1

� �G
2
��

2

~h2�G1
� �G

2
��

2 �G2
� �

~h2G1
��

2

 !
:

(2.20)

As expected, this results in no correction for one linear
combination of the graviton propagators (the sum) and a
correction starting at order ~h2 to the other (the difference).
In the formalism of [17], the two-point function of stress
tensors must now be promoted to a 2� 2 matrix and
evaluated carefully with the corrected scalar propagators.

To extract a graviton mass to match against the field
theory result of the previous subsection we need to com-
pute the correction to the mass of the ‘‘off-diagonal’’
graviton. For the case of c1 � c2 we need to look at the
one-loop correction to the propagator of the graviton dual
to ~T � �T1 � T2�=

���
2
p

(at leading order in h), where for
convenience we normalized ~T to have the same 2-point
function as T1 and T2. This normalization differs from how
we defined ~T in the field theory, but it is trivial to see that
the normalization of ~T does not affect the graviton mass
(which, in the field theory language, is the scaling dimen-
sion of the operator). The graviton dual to ~T couples to �1

with a positive sign (times 1=
���
2
p

) and to �2 with the
opposite sign. Plugging the scalar propagators into the 1-

loop diagram correcting the mass of this specific graviton,
one finds that the diagram is the same as in the unperturbed
theory, minus 2~h2

�1�~h2�2
�G1

� �G
2
��

2. Thus, the answer we are

looking for is the correction to the graviton mass coming
from a scalar running in the loop with propagator G1

� �

G2
�, multiplied (at leading order in h) by [� 2h2��1 �

�2�
2]. While our field theory analysis of the previous

subsection was valid only to leading order in h, the gravity
calculation is done at leading order in 1=N (we only
calculate the 1-loop correction), but it is exact to all orders
in h as long as we keep the full ~h2

�1�~h2�2
prefactor [Eq. (2.19)

is exact at leading order in 1=N]. For comparison we
restrict ourselves to the leading term in h, but gravity gives
us a prediction for the field theory answer at largeN for any
h, while the field theory predicts the leading h behavior of
the gravity answer to all orders in 1=N.

In fact, we will now do a more general computation; we
will consider the graviton mass induced by a one-loop
diagram of a scalar whose propagator is a�1

times the
propagator of a scalar dual to an operator with dimension
�1, plus a�2

times the propagator with dimension �2 �

d� �1. This is a generalization of the calculation of [17]
to arbitrary d and �1. As we just argued, the case we are
interested in corresponds to a�1

� �a�2
� 1 and has an

additional overall factor of [� 2h2��1 � �2�
2] in the

graviton mass.
We need to calculate corrections to the graviton self-

energy or the two-point function, hT̂���x�T̂�0�0 �y�i, of
stress-energy tensors in the bulk. We follow the conven-
tions of [21–23] where unprimed indices indicate tensor
indices evaluated at xwhile primed indices are evaluated at
y. Since we are deforming the boundary conditions of
scalar fields, it will suffice to consider only the scalar field
contribution to the bulk stress tensor T̂. Since AdS is a
maximally symmetric space-time, the stress tensor two-
point function may be decomposed in the following basis
of 5 linearly independent bi-tensors [17,21,23]:

 

O1  g��g�0�0 ;

O2  n̂�n̂�n̂�0 n̂�0 ;

~O3  g��0g��0 � g��0g��0 ;

O4  g��n̂�0 n̂�0 � g�0�0 n̂�n̂�;

~O5  g��0 n̂�n̂�0 � g��0 n̂�n̂�0 � g��0 n̂�n̂�0 � g��0 n̂�n̂�0 ;

(2.21)

where ~� is the geodesic distance between x and y, n̂��0� 
r��0� ~� is the unit tangent vector to the geodesic from x to y,
evaluated at one end point or the other according to
whether the index is primed, and g�	0 is the ‘‘parallel
propagator’’ which transports unit vectors between the
two points. Rules for manipulating these objects are sum-
marized in Table 1 of [21]. To extract the graviton mass
following [17], one must obtain the constant piece of the

g(1) g(2)

φ1

φ1

φ2

φ2

FIG. 1. The scalar loop graph contributing to the graviton mass
in the two-AdS-space picture. The dashed lines are graviton
propagators, and the solid lines are scalar propagators. The
graviton mixes with a two-scalar state and becomes massive.
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coefficient of the transverse-traceless part of the graviton
propagator. Since this must arise as the effect of a (bound
state) massive spin-1 particle, it suffices to focus on that
tensor structure in the long range behavior of the graviton
self-energy. First, one computes the full graviton self-
energy, ����0�0 � 8GNhT̂���x�T̂�0�0 �y�i, by evaluating
the stress tensor two-point function of free scalars and
expanding in the bitensor basis in the limit of large sepa-
ration of points (large ~� or large negative Z  � cosh� ~��).
This allows one to neglect contact terms that may arise
through use of the equations of motion to simplify expres-
sions. Second, one separately computes the transverse-
traceless piece which arises due to the exchange of a
massive spin-1 particle (with the appropriate mass for
being swallowed by the graviton, as discussed in
Sec. II B), �spin-1

���0�0 . This may be found by taking covariant
derivatives of the massive spin-1 propagator, D��0 :

 �spin-1
���0�0 � �2r�r�0D��0 ���: (2.22)

Matching the coefficient and tensor structure of the leading
large jZj behavior allows one to identify the mass of the
graviton in this framework, as was done in [17] for the
special case of a conformally coupled scalar in AdS4.

We need to perform this calculation for a free scalar field
X in d� 1 dimensions with Lagrangian

 L �
�������
�g
p

�
�

1

2
�@X�2 �

m2

2
X2 � �

d� 1

8d
RX2

�
; (2.23)

where we allowed contributions to the mass coming either
from explicit masses or from couplings to the background
curvature; the case of m � 0, � � 1 corresponds to a
conformally coupled scalar. We normalize the radius of
curvature of AdS space to one. The two possible dimen-

sions of the dual operator are given by �1;2 �
d
2�

1
2 ������������������������������������������������

d2 � 4m2 � ��d2 � 1�
p

. The case considered in [17] cor-
responds to d � 3, m � 0, � � 1, �1 � 2. From the dual
field theory point of view it is clear that the final answer
should not depend on � andm individually, but only on the
combination �1, and we will find that this is indeed the
case. The stress tensor derived from this Lagrangian (after
using the scalar equation of motion) is
 

T̂�� �
�
1� �

d� 1

2d

�
@�X@�X� �

d� 1

2d
Xr�@�X

� g��

��
1

2
� �

d� 1

2d

�
�@X�2 �

�
m2

2
� �m2 d� 1

2d

�
���d� �� d�

8

�d� 1�2

d

�
X2

�
: (2.24)

Calculating the hT̂ T̂i two-point function is straightforward
using Wick contractions and taking up to four covariant
derivatives of the scalar propagator. Because of the sheer
number of terms to keep track of, we implemented the rules
of Table 1 of [21] for manipulations in intrinsic coordinates

in MATHEMATICA, and performed the calculation of the
correlator, as well as the subsequent decomposition into
tensor structures, on the computer. For the scalar propaga-
tor we use a superposition of the dimension �1 and �2 �
�d��1� propagators [24], written using the hypergeomet-
ric function F:

 GX�Z� � a�1
2��1

���1�

d=2�2�1 � d����1 �
d
2�

� ��Z���1F
�
�1

2
;
�1 � 1

2
;�1 �

d
2
� 1;

1

Z2

�

� a�2
2��2

���2�

d=2�2�2 � d����2 �
d
2�

� ��Z���2F
�
�2

2
;
�2 � 1

2
;�2 �

d
2
� 1;

1

Z2

�
:

(2.25)

For the decomposition into tensor structures we only need
the leading terms in a power series expansion of hT̂ T̂i in
large jZj; in order to simplify these expansions in
MATHEMATICA we only kept the cross-terms proportional
to a�1

a�2
in the hT̂ T̂i correlator, since we expect the mass

to vanish in the case where either a�1
or a�2

vanishes. It is
also easy to see that unless �1 is a half-integer, only cross-
terms lead to integer powers of Z which can match the
massive spin-1 structure (2.22) we are looking for. For
comparison with [17] one needs to substitute the notations
a�1
� 1

2 �a� � a��, a�2
� � 1

2 �a� � a��.
The extraction of the massive spin-1 piece in principle

works along the same lines as in [17]. One new complica-
tion in our case is that while for the conformally coupled
scalar considered in [17], the hT̂ T̂i correlator and hence the
self-energy were transverse and traceless automatically, for
the general massive scalar one first needs to isolate the
transverse-traceless part. The self-energy can easily be
made traceless by subtracting out the �, � and the �0, �0

traces. The remainder then can be decomposed as
 

�traceless
���0�0 � �?���0�0 �

�
r�r� �

1

d� 1
g��r2

�

�

�
r�0r�0 �

1

d� 1
g�0�0 �r

0�2
�
B�Z� (2.26)

for some function B�Z�, where �?���0�0 is the desired
transverse-traceless piece that contains the graviton mass.
The decomposition of a general linear metric fluctuation
could also contain a vector piece r�A� �r�A�. A corre-
sponding structure is not present in our expression for
����0�0 ; presumably this is due to the fact that the vector
piece is not sourced by the conserved stress tensors. The
decomposition (2.26) was once more performed using
MATHEMATICA. The result obtained for the graviton mass
using the (generalized) formalism of [17] is
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 M2
grav � �GN

24�d3=2�d=2

�d� 2���d�3
2 �

a�1
a�2

�1�2���1����2�

���1 �
d
2����2 �

d
2�

;

(2.27)

which for d � 3, �1 � 2 was previously obtained in [17].

E. Comparison between field theory and gravity

We are now in a position to put all the bits and pieces
together to compare our result (2.27) for the mass of the
graviton with the field theory result for the anomalous
dimension of the nonconserved stress tensor. As we argued
earlier, the case of two CFTs coupled together via a double
trace deformation corresponds to a�1

� �a�2
� 1 and has

an additional overall factor of �2h2��1 � �2�
2 compared

to the case of a single scalar with mixed propagator we
worked out in the previous subsection. So, the final gravity
prediction for the graviton mass is

 M2
grav � �h2��1 � �2�

2GN
25�d3=2�d=2

�d� 2���d�3
2 �

�
�1�2���1����2�

���1 �
d
2����2 �

d
2�
: (2.28)

Note that this expression is positive (even though the
expression (2.27) is not necessarily positive), consistent
with our theory being unitary.

To compare this with our field theory answer (2.14) we
need to plug in the appropriate values of N1, N2, and c, that
is the normalization of the two-point functions of the
operators dual to canonically normalized bulk scalar fields
(as we assumed in the computation above), as well as the
central charge of the field theory in terms of the bulk
Newton’s constant. For a canonically normalized scalar
the two-point function of the dual operator with dimension
�i is [24]

 

Ni
jxj2�i

�
1

d=2

�2�i � d����i�

���i �
d
2�

1

jxj2�i
; (2.29)

so that for our case with �2 � d� �1 one gets

 N1N2 � ���1 � �2�
2 ���1����2�

d���1 �
d
2����2 �

d
2�
: (2.30)

The value of the central charge may be read from the
results of [25],

 c �
1

16GN

d�d� 1���d�

�d� 1�d=2��d2�

�
d

d� 1

��d�3
2 �

GN24�d�3=2���d=2�
(2.31)

(in [25] the prefactor of 1=16GN was set to one, but we
are reinstating it here). Plugging these values into (2.14),
we find an exact agreement with (2.28), confirming our

description of the deformation coupling the two conformal
field theories.

III. NON-DUALITY FOR NON-GAUGE THEORIES

In the previous section we argued that some conformal
field theories are not dual to quantum gravity on AdS space
(but rather to a sum of AdS spaces); this naturally raises the
general question of classifying which conformal field theo-
ries are dual to quantum gravity on AdS space, which are
dual to a sum of AdS spaces, and which (perhaps) have no
quantum gravity dual at all. In this section we will discuss
the case of free field theories with no gauge symmetry and
the theories which one can flow to from these, and in the
next section we will discuss this question more generally.

Consider a free field theory including some number of
free scalars, fermions and U�1� gauge fields. Can this
theory have a quantum gravity dual ? We claim that the
answer is no. A free theory has many conserved spin 2
operators, which are the energy-momentum tensors of each
free field in the theory, so if it had a dual it would have to
involve many massless gravitons (from the field theory
point of view there is nothing special about the ‘‘total
energy-momentum tensor’’). However, each of these spin
2 operators is not an independent operator, but rather a
product (or a sum of products) of other (gauge-invariant)
operators; for a scalar field we have T�� � �@����@���,
and for a free vector field T�� � ���F��F��. In the AdS/
CFT correspondence, we generally map operators to fields
in the bulk, but this is really only true for a special class of
operators (‘‘single-trace’’ operators when the duality in-
volves a large N gauge theory); the states created by these
operators map to single-particle states of the corresponding
fields in the bulk, while the states created by products of
these operators map to multiparticle states in the bulk.8 If
we use this rule for free field theories, we would conclude
that the dual bulk theories (for each free field) involve a
single field in the bulk, which would be dual to a basic
operator (a free scalar field, a free fermion field, or F�� for
free gauge fields); all other operators in the theory are
products of (descendants of) this basic operator, so they
would map to multiparticle states of this single field in the
bulk. However, this implies that the energy-momentum
tensor of the free field theory would map to a two-particle
bound state of this basic field, and it does not seem likely
that this bound state can really be identified as a massless
graviton in the bulk (at least, we do not know of any
consistent examples in which a massless graviton arises
as a bound state, and there are arguments against it in flat
space [26]).

Thus, we claim that free field theories do not map to bulk
quantum gravity theories. This is supported by a well-

8The distinction between these two types of states is not sharp
when the bulk theory is interacting, since they mix together, but
we assume that it still exists.

OFER AHARONY, ADAM B. CLARK, AND ANDREAS KARCH PHYSICAL REVIEW D 74, 086006 (2006)

086006-10



known example which arises (for instance) in the near-
horizon limit of N D3-branes in string theory. The low-
energy field theory living on N D3-branes is a U�N�N �
4 super-Yang-Mills theory. This decomposes into a direct
sum of a freeU�1�N � 4 theory (including a vector field,
six scalar fields and four fermions) and an interacting
SU�N� theory (at least in the absence of any external
sources in the fundamental representation). Obviously,
type IIB string theory on AdS5 � S5 does not decompose
into a product of two decoupled theories; and indeed, the
spectrum of propagating fields in this theory seems to map
just to the spectrum of operators in the SU�N� theory,
without the U�1� part.9 The supergravity spectrum in the
bulk [27] does contain so-called ‘‘singleton’’ fields (which
are sometimes called ‘‘doubleton’’ fields in this case),
which are in a one-to-one correspondence with the free
fields of the U�1� multiplet, but these fields can always be
gauged away in the bulk. So, one can think of these fields
as living on the boundary; for most purposes one can just
set them to zero and think of the theory as a pure SU�N�
theory, but for other purposes it is sometimes more conve-
nient to include them (see, for example, [28]). Clearly, the
U�1� theory itself does not have any bulk gravitational dual
(at least not with a propagating graviton).

Based on this example and on the general arguments
above, we suggest that in general free field theories have no
gravitational dual, and that if one couples a free field theory
to a gauge theory with a gravity dual, one should think of
this free field theory as living on the boundary. Once we
accept this for free field theories, it seems that it must be
true also for any deformations of free field theories, since it
is hard to imagine how a bulk theory would suddenly
emerge when we deform. So, we claim that any deforma-
tion of a free field theory, such as the infrared fixed point of
the �4 field theory of a single scalar field in 2� 1 dimen-
sions, also has no gravity dual. Note that we are discussing
here deformations by adding gauge-invariant operators to
the Lagrangian; by such deformations we cannot obtain a
theory with nontrivial gauge interactions. It is easy to see
that the key feature of the stress tensor failing to be an
independent operator survives such a deformation. Turning
on nongauge interactions will add terms to the stress
tensor, but the new terms will also be products of gauge-
invariant operators, not independent operators.

Which theories can have a gravity dual? In all known
examples which have an explicit Lagrangian description,
these theories have a gauge group which acts nontrivially
on all the fields. Then, the energy-momentum tensor can
no longer be written as a product of gauge-invariant op-
erators (it is generally a sum of products of non-gauge-
invariant operators), and it makes sense to identify it with a
massless bulk graviton. The gauge group can be continuous

(as in SU�N�k gauge theories with bifundamental and
adjoint fields) or discrete (as in the 1� 1 dimensional
sigma model on the T4N=SN orbifold). In some cases the
gauge theory could have a free field limit where it does not
contain any interactions (for instance, in the N � 4
SU�N� super-Yang-Mills theory one could take the gYM !
0 limit), but even in this limit it is not identical to a free
field theory of the type discussed above, since the path
integral still involves a division by the gauge symmetry, so
(at least on a compact space) the spectrum of a free SU�N�
theory is very different from the spectrum of a free
U�1�N

2�1 theory.
Does every gauge theory have a quantum gravity dual?

We do not know the answer to this question, but it seems
likely that the answer is positive; many theories can be
reached by flows from known examples, and there is no
natural separation of gauge theories into two classes (one
which would have a gravity dual and one which would
not). Then, when we couple additional singlet fields to a
gauge theory, these fields would live on the boundary
rather than in the bulk (this has a simple description in
the AdS/CFT correspondence, by just making the coupling
constants of the CFT, which have a known description as
boundary conditions in AdS space, dynamical). However,
our discussion of the previous section suggests that the
story is more complicated, and that some gauge theories
are actually dual to a quantum gravity theory on a sum of
several spaces; we will discuss this in the next section.

IV. THE ‘‘CONNECTIVITY INDEX’’

The discussion of Sec. II suggests that the space of
conformal field theories can be classified according to a
‘‘connectivity index’’ n, labeling the number of compo-
nents in the gravity dual space-time (which are only con-
nected at their boundary). As discussed in the introduction,
it is not clear that this index is well defined (in the sense
that theories with different n’s could not be identified in
some way), but it certainly seems to be well-defined in the
semiclassical approximation, and it is hard to see how
quantum corrections could change the number of compo-
nents of space-time (near the boundary), so we will assume
here that it is well-defined, and see if we can understand
this from the field theory point of view.

The discussion of the previous sections suggests that the
‘‘connectivity index’’ n is related to the number of inde-
pendent gauge groups, and that it can be defined in the
following way: given a Lagrangian formulation of a field
theory in terms of a gauge group G (continuous or dis-
crete), then n is the maximal number such that we can write
G � G1 �G2 � � � � �Gn, and such that no field is
charged under more than one Gi factor.

The definition above raises several immediate questions.
One disturbing issue is that it involves not only having a
Lagrangian formulation for the theory, but also a counting
of gauge groups, even though gauge groups are not really

9So far this has only been checked in the supergravity ap-
proximation, but it is believed to be true more generally.
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physically well-defined objects but just redundancies in
our description of a theory. Obviously, if n is really well-
defined, there should be a way to define it which does not
refer to a counting of gauge groups or to a Lagrangian
formulation, but just to abstract properties of the theory. So
far we have not been able to find such a more general
definition, but we believe that it exists. Clearly, a theory
with connectivity index n should have at least n spin 2
operators which cannot be written as (sums of) products of
other operators, and which can be identified with (linear
combinations of) the gravitons on the n components of
space-time. However, generally all but one of these spin 2
operators have dimensions bigger than d, and generic
theories have many such operators, so that it is difficult
to identify which of the spin 2 operators correspond to
gravitons and which do not (the question may not even
make sense beyond the semiclassical gravity limit). In
examples of the type we discussed in Sec. II, we can
deform the parameters of the field theory with index n
continuously to a point where it is a product of n indepen-
dent theories (with n independent spin 2 operators of
dimension d), and then it is clear that the index must be
at least n; but it is not clear if it is always possible to do this
for any theory with n > 1.

Note that the value of n can change when we take a low-
energy (IR) limit of a nonconformal field theory. Clearly, n
can decrease in the IR if we have a product of some gauge
groups, and some of them confine and develop a mass gap.
In the gravity dual this would mean that some of the n
spaces do not host any low-energy fields, so that the IR
limit involves only the other spaces. It is also possible for n
to increase as we flow; a simple example of this which we
mentioned above is the point on the moduli space of the
N � 4 SYM theory where SU�N� is spontaneously bro-
ken to SU�N1� � SU�N � N1� �U�1�. Despite the prod-
uct structure, this theory has n � 1 (since there are
bifundamental fields), but as we flow to the IR it decouples
into a product of three theories, two which have a gravity
dual (which is just a smaller AdS5 � S5) and one (the U�1�
theory) which does not. Again, this has a simple picture in
the gravity dual, as we discussed above; we have a flow
which in the UV is given by a single AdS5 � S5 space, but
there are two throat regions in this space where low-energy
fields live. Each of these regions locally looks like AdS5 �
S5, and as we go to energies below the scale of the string
stretching between the two ‘‘throats,’’ we get two de-
coupled theories (which in some sense share the same
boundary where the throats connect).

Let us consider two more examples. The theory of
SU�Nc� SQCD with Nf flavors and Nc � Nf < 3Nc=2 is
believed to flow to a free theory in the IR. For Nf � Nc �
1 this is a free theory of scalars and fermions, so we have a
flow from n � 1 to n � 0, while for Nf > Nc � 1 the IR
theory is a free SU�Nf � Nc� gauge theory, so we have a
flow from n � 1 to n � 1. For 3Nc=2<Nf < 3Nc the

theory flows to an interacting superconformal field theory,
which is believed to also be the end-point of the flow from
the dual ‘‘magnetic’’ SU�Nf � Nc� theory [29]. In this case
it seems that on both sides of the duality we have a flow
from n � 1 to n � 1, since it seems unlikely that the
energy-momentum tensor in the IR SCFT would be a
composite operator. Note that the magnetic theory has
many singlet fields, and in the dual gravitational descrip-
tion we argued that they should be interpreted as living on
the boundary of space-time.

Another example is the d � 3 N � 2 supersymmetric
U�1� gauge theory with one positively charged and one
negatively charged chiral multiplet (Nf � 1). This theory
is believed [30] to flow to the same nontrivial IR fixed point
as the theory of three chiral multiplets with a superpoten-
tial W � XYZ. So, in this case we have flows to the same
fixed point from theories with n � 0 and with n � 1. It
seems likely that the IR theory in this case has n � 0, since
it includes X, Y, and Z as primary operators, and the
energy-momentum tensor is a composite in these variables.

According to our conjectures the O�N� vector model in
d � 3 should not have any quantum gravity dual (it has
n � 0), even in the large N limit; however, when the O�N�
symmetry is gauged (even very weakly), such that only the
singlet sector of this model is physical, the model (with
n � 1) could have a quantum gravity dual (as suggested in
[31], see [32] for a recent discussion).

Unfortunately, it seems that even with all the caveats
above the definition that we gave is too naive. This is
because10 there is a counter-example where we can connect
a theory with n � 0 to a theory with n � 1 by a marginal
deformation (which should not change n according to our
arguments); this is the example of the c � 1 conformal
field theory of a free scalar field on a circle, which is
connected by marginal deformations to the theory of a
scalar on S1=Z2. According to our general arguments, the
first theory should have n � 0 and the second (involving
gauging a discrete group) should have n � 1. Thus, it
seems that our definition above is too naive (at least
when low dimensions and discrete gauge groups are in-
volved), and that it should be made more precise. We hope
that there exists some direct and precise field theory defi-
nition of n, but we have not yet been able to find it.

V. SUMMARY AND CONCLUSIONS

In this paper we constructed the natural generalization of
the AdS/CFT correspondence to product CFTs deformed
by multitrace operators. The natural gravitational dual to a
product of n CFTs is quantum gravity on n AdS spaces,
with their boundaries identified in the sense that the bound-
ary conditions of fields on one AdS space are related to the
boundary conditions of fields in the other AdS spaces.
These altered boundary conditions will generically create

10We thank D. Kutasov for reminding us of this fact.
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a situation where one linear combination of the bulk grav-
itons remains massless while all other linearly independent
combinations acquire some mass proportional (at leading
order in the deformation, but valid for any conformal field
theory, independent of the large N limit) to the square of
the deformation parameter, h, via the AdS Higgs mecha-
nism for gravitons. For special cases when the CFTs are
identical, the bulk picture can be folded and thought of as a
single AdS-space with one massless and several massive
gravitons. For more general theories, the unfolded picture
is necessary to accommodate theories whose gravitational
duals have different compact spaces or which are different
in the IR (for instance, one could consider a product of a
conformal gauge theory with a confining gauge theory).

We have made this construction explicit in the semiclas-
sical limit (which, for gauge theories, is the same as the ’t
Hooft large N limit), in the case of a product of field
theories which admit semiclassical gravitational duals.
Our construction suggests the existence of a ‘‘connectivity
index’’ characterizing field theories, which on the gravity
side counts the number of components of space-time, and
on the field theory side roughly counts the number of
independent gauge groups. We have only explored this in
detail in the semiclassical limit. However, since it is diffi-
cult to imagine that quantum effects could change the
integer number of components of space-time which share
a common boundary, we conjecture that this integer is in
fact a true index, and that a general definition of this index
can be found for field theories, which does not rely on a
Lagrangian or gauge theory formulation. We conjecture
that this index could then be used to classify field theories
according to whether they have a gravitational dual de-
scription in the following way: field theories with n � 0
will not have a dual description as quantum gravity on
some asymptotically anti-de Sitter space, while field theo-
ries with n � 1 will have a dual description as quantum
gravity on n asymptotically anti-de Sitter spaces with a
common boundary, in the manner discussed above.

We have discussed in detail only the case of coupling
together conformal theories in a way which preserves
conformal invariance, but the generalizations to many
other cases are straightforward. For instance, it is easy to
discuss the case of coupling together two theories at finite
energy density or temperature, by replacing the AdS back-
grounds by AdS black holes. When the two theories have
the same temperature the system is in thermal equilibrium,
while otherwise there will be a flow of energy from one
theory to the other across the boundary (which will be very

slow in the large N limit). It may also be interesting to put
in a finite UV cutoff (integrating out the high-energy
modes), in which case our model becomes a version of
the two-throat Randall-Sundrum [33] model (involving
two field theories coupled to gravity). In the presence of
a finite cutoff, one could also couple directly the stress-
energy tensors of the two CFTs, and obtain a graviton mass
of order the curvature scale (rather than a one-loop mass
suppressed by GN as in our discussion), as discussed in a
similar context in [34].

We did not discuss here the string theory construction of
the theories dual to deformed product CFTs, but the pro-
cedure to obtain this is a straightforward generalization of
the discussion in [8]. The string description of a product of
CFTs is by a world sheet theory which is a sum of two
sigma models (on a product of AdS space with some
compact space), such that each connected component of
the world sheet maps to one of the two space-times. The
deformation couples the two sigma models together, but
this coupling is nonlocal on the world sheet, and given by
the translation to the world sheet of (2.1) (with each space-
time operator mapping to an integrated vertex operator on
the world sheet).
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