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We develop the general scheme for modified f�R� gravity reconstruction from any realistic Friedmann-
Robertson-Walker (FRW) cosmology. We formulate several versions of modified gravity compatible with
solar system tests where the following sequence of cosmological epochs occurs: (a) matter dominated
phase (with or without usual matter), transition from deceleration to acceleration, accelerating epoch
consistent with recent WMAP data, (b) �CDM cosmology without cosmological constant. As a rule, such
modified gravities are expressed implicitly (in terms of special functions) with late-time asymptotics of
known type (for instance, the model with negative and positive powers of curvature). In the alternative
approach, it is demonstrated that even simple versions of modified gravity may lead to the unification of
matter dominated and accelerated phases at the price of the introduction of compensating dark energy.
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I. INTRODUCTION

Modified gravity is an extremely promising approach to
dark energy. Within a gravitational alternative for dark
energy (for review, see [1]), the cosmic speedup is ex-
plained by the universe expansion where some subdomi-
nant terms (like 1=R [2,3] or lnR [4] which may be caused
by string/M theory [5]) may become essential at small
curvature. It also explains naturally the unification of ear-
lier and later cosmological epochs as the manifestation of a
different role of gravitational terms relevant at the small
and large curvature as it happens in the model with nega-
tive and positive powers of curvature [6]. Moreover, modi-
fied gravity may serve as dark matter.

Special attention is paid to f�R� modified gravity
which may be constrained from cosmological/astrophysi-
cal observational data [7] and solar system tests [6,8–10].
Recently, a very interesting attempt to constrain such a
model (with positive and negative powers of curvature)
from fifth force/big bang nucleosynthesis (BBN) consid-
erations has been made in [11] where it was shown that it is
not easy to fulfill the known constraints and to describe the
sequence of known cosmological epochs within the simple
theory with positive and negative powers of curvature [6].
The cosmological dynamics of 1=R and other related f�R�
theories leading to late-time acceleration has been studied

in Refs. [2– 4,6,12] while Schwarzschild-de Sitter (SdS)
black holes solutions were discussed in [13].

In the situation when general relativity cannot naturally
describe the dark energy epoch of the universe the search
of alternative, modified gravity which is consistent with
solar system tests/observational data is of primary interest.
Of course, it is too strong (at least, at the first step) to
request that such a theory should correctly reproduce all
known sequence of cosmological epochs (including an
inflationary universe where quantum effects may be essen-
tial). Nevertheless, it is reasonable to constrain such a
theory (if this is really an alternative theory for general
relativity) by the condition that it reproduces a well-
established sequence of classical cosmological phases
(matter dominated phase, transition from deceleration to
acceleration, and current universe speedup) being consis-
tent with solar system tests. In the present paper we con-
struct several examples of such modified gravity where
f�R� is presented implicitly, in terms of special functions.

The important remark is in order. It is a well-known fact
that arbitrary f�R� gravity may be presented in a mathe-
matically equivalent form as a minimal scalar-tensor the-
ory (Einstein gravity with scalar self-interacting field).
Even more, it was shown [14,15] that f�R� gravity may
be formulated in a mathematically equivalent form as
Einstein gravity with the ideal field having inhomogeneous
equation of state (EOS). Then, it may look like it is not
necessary to study modified gravity and it is enough to
limit the consideration only by Einstein gravity with sca-
lars and/or ideal fluid. However, the situation is more
complicated. For instance, modified gravity of specific
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form which describes an acceptable accelerating universe
(with realistic effective equation of state) is not physically
equivalent to scalar-tensor theory [14,15]. Hence, the
equivalent scalar-tensor gravity may not lead to accelerat-
ing FRW universe (or, it may lead but with a significantly
different effective equation of state). The corresponding
examples were given in [14,15]. Moreover, a specific form
of modified gravity leads to a specific form of scalar
potential. As a result, such specific modified gravity may
comply with solar system tests (acceptable Newton law,
etc.) while the corresponding scalar-tensor theory may not
comply with it and vice versa. Hence, one should consider
all three classes of theories: modified gravity, scalar-tensor
gravity, and Einstein gravity with ideal fluid for description
of dark energy and the early universe. One should fit all
these three classes of theories with astrophysical and cos-
mological constraints (the corresponding cosmological pa-
rameters are defined from different bounds in [16]) in order
to find finally what is the realistic gravitational theory
compatible with observational data. In principle, in this
work we are not so ambitious to comply with all bounds.
We intend to present the first realistic example of modified
gravity which is compatible with solar system tests, which
is cosmologically viable (the sequence of matter domi-
nated phase, transition from deceleration to acceleration,
and acceleration phases) and which may lead even to
�CDM cosmology.

The paper is organized as follows. In the next section we
present general formulation to reconstruct the modified
f�R� gravity for any FRW given cosmology (using the
auxiliary scalar field). This formulation is applied to work
out several models. The explicit example of the model
where the matter dominated phase may be realized by
pure f�R� gravity (no matter) with subsequent transition
to acceleration phase is presented. There is constructed the
model where the function f�R� is expressed in terms of
Gauss hypergeometric functions and where the standard
�CDM cosmology is reproduced. For the specific version
of the modified f�R� gravity with matter it is shown that not
only the matter dominated phase with subsequent transi-
tion to acceleration occurs, but the acceleration epoch
complies with three years of Wilkinson Microwave
Anisotropy Probe (WMAP) data. In order to ensure that
transition from deceleration to acceleration indeed occurs,
the (in)stability analysis of the cosmological solutions is
fulfilled. We also demonstrate that corrections to Newton
law for suggested versions of modified gravity are negli-
gible. The third section is devoted to the consideration of
the modified gravity model [6] with compensating dark
energy (ideal fluid). It is shown that the role of such
compensating dark energy may be to ensure the transition
from the matter dominated to acceleration phase while
during the current speedup such compensating dark energy
quickly disappears. Some outlook is given in the discussion
section. In the appendix it is shown that our formulation is

just equivalent to standard metric formulation of f�R�
gravity (without an extra scalar).

II. RECONSTRUCTION OF MODIFIED GRAVITY
WHICH DESCRIBES MATTER DOMINATED AND

ACCELERATED PHASES

A. General formulation

In the present section we develop the general formula-
tion of the reconstruction scheme for modified gravity with
the f�R� action. It is shown how any cosmology may define
the implicit form of the function f. The starting action of
modified gravity is:

 S �
Z
d4x

�������
�g
p

f�R�: (1)

First we consider the proper Hubble rate H, which de-
scribes the evolution of the universe, with radiation domi-
nance, matter dominance, and accelerating expansion. It
turns out that one can find f�R�-theory realizing such a
cosmology (with or without matter). The construction is
not explicit and it is necessary to solve the second order
differential equation and algebraic equation. It shows,
however, that, at least in principle, we could obtain any
cosmology by properly reconstructing a function f�R� on
the theoretical level.

The equivalent form of the above action is

 S �
Z
d4x

�������
�g
p

fP���R�Q��� �Lmatterg: (2)

Here P andQ are proper functions of the scalar field� and
Lmatter is the matter Lagrangian density. Since the scalar
field does not have a kinetic term, it may be regarded as an
auxiliary field (compare with the ideal fluid representation
of f�R� gravity [14]). In fact, by the variation of �, it
follows

 0 � P0���R�Q0���; (3)

which may be solved with respect to �:

 � � ��R�: (4)

By substituting (4) into (2), one obtains f�R� gravity:
 

S �
Z
d4x

�������
�g
p

ff�R� �Lmatterg;

f�R� � P���R��R�Q���R��:
(5)

By the variation of the action (2) with respect to the
metric g��, we obtain
 

0 � �1
2g��fP���R�Q���g � R��P��� � r�r�P���

� g��r2P��� � 1
2T��: (6)

The equations corresponding to the standard spatially flat
FRW universe are
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 0 � �6H2P��� �Q��� � 6H
dP���t��

dt
� �; (7)

 0 � �4 _H � 6H2�P��� �Q��� � 2
d2P���t��

dt

� 4H
dP���t��

dt
� p: (8)

By combining (6) and (7) and deleting Q���, we find the
following equation

 0 � 2
d2P���t��

dt2
� 2H

dP���t��
d�

� 4 _HP��� � p� �:

(9)

As one can redefine the scalar field � properly, we may
choose

 � � t: (10)

It is assumed that � and p are the sum from the contribu-
tion of the matters with a constant equation of state pa-
rameters wi. Especially, when it is assumed a combination
of the radiation and dust, one gets the standard expression

 � � �r0a
�4 � �d0a

�3; p �
�r0
3
a�4; (11)

with constants �r0 and �d0. If the scale factor a is given by
a proper function g�t� as

 a � a0eg�t�; (12)

with a constant a0, Eq. (8) reduces to the second rank
differential equation (see also [15]):
 

0 � 2
d2P���

d�2 � 2g0���
dP����
d�

� 4g00���P���

�
X
i

�1� wi��i0a
�3�1�wi�
0 e�3�1�wi�g���: (13)

In principle, by solving (13) we find the form of P���.
Using (7) (or equivalently (8)), we also find the form of
Q��� as

 Q��� � �6�g0����2P��� � 6g0���
dP���
d�

�
X
i

�i0a
�3�1�wi�
0 e�3�1�wi�g���: (14)

Hence, in principle, any cosmology expressed as (12) can
be realized by some specific f�R� gravity.

B. Exactly solvable example I: unification of matter
dominated and accelerated phases

As an example, we consider the case

 g0��� � g0 �
g1

�
; (15)

without matter � � p � 0 for simplicity. Equation (13)

reduces as

 0 �
d2P

d�2 �

�
g0 �

g1

�

�
dP
d�
�

2g1

�2 P; (16)

whose solutions are given by the Kummer functions (hy-
pergeometric function of confluent type) as [15]

 P � z�FK��; �; z�; z1��FK��� �� 1; 2� �; z�:

(17)

Here

 z � g0�; � �
1� g1 �

����������������������������
g2

1 � 2g1 � 9
q

4
;

� � 1�

����������������������������
g2

1 � 2g1 � 9
q

2
;

(18)

and the Kummer function is defined by

 FK��;�; z� �
X1
n�0

���� 1� � � � ��� n� 1�

���� 1� � � � ��� n� 1�

zn

n!
: (19)

Equation (15) tells that the Hubble rate H is given by

 H � g0 �
g1

t
: (20)

When t is small, as H 	 g1=t, the universe behaves as the
one filled with a perfect fluid with the EOS parameter w �
�1� 2=3g1. On the other hand when t is large, H ap-
proaches to constantH ! g0 and the universe looks like de
Sitter space. This shows the possibility of the transition
from the matter dominated phase to the accelerating phase
(compare with [15]). We should note that in this case, there
is no matter and f�R�-terms contribution plays the role of
the matter instead of the real matter. We will investigate
later (in the next subsection) the example that there is a real
matter. Similarly, one can construct modified gravity action
describing other epochs bearing in mind that the form of
the modified gravity action is different at different epochs
(for instance, in the inflationary epoch it is different from
the form at late-time universe).

We now investigate the asymptotic forms of f�R� in (5)
corresponding to (15). When � and therefore t are small,
we find

 P	 P0��; Q	�6P0g1�g1 � �����2: (21)

Here P0 is a constant. Using (3), it follows

 �2 	
6g1�g1 � ����� 2�

�R
; (22)

which gives

 f�R� 	 �
2P0

�� 2

�
6g1�g1 � ����� 2�

�

�
�=2
R1���=2�: (23)

On the other hand, when � and therefore t are positive and
large, one gets
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P	 ~P0�2���eg0�
�
1�
�1� ����� ��

g0�

�
;

Q	�12g2
0

~P0�
2���eg0�




�
1�
�9� 12�� 5�� 2��� 2�2

2g0�

�
;

�	
� 9

2� 9�� 7
2�

g0�
R

12g2
0
� 1�

:

(24)

Here ~P0 is a constant. Then we find
 

f�R� 	 12g2
0

~P0

�
1

g0

�
�

9

2
� 9��

7

2
�
��

2���




�
R

12g2
0

� 1
�
�2����1

exp
�
� 9

2� 9�� 7
2�

R
12g2

0
� 1

�
:

(25)

This shows the principal possibility of unification of the
matter dominated phase (even without matter), transition to
acceleration and late-time speedup of the universe for a
specific, implicitly given model of f�R� gravity.

C. Exactly solvable example II: model reproducing
�CDM-type cosmology

Let us investigate if �CDM-type cosmology could be
reproduced by f�R� gravity in the present formulation.

In the Einstein gravity, when there is a matter with the
EOS parameter w and cosmological constant, the FRW
equation has the following form:

 

3

�2
H2 � �0a�3�1�w� �

3

�2l2
: (26)

Here l is the length parameter coming from the cosmologi-
cal constant. The solution of (26) is given by
 

a � a0eg�t�;

g�t� �
2

3�1� w�
ln
�
� sinh

�
3�1� w�

2l
�t� t0�

��
:

(27)

Here t0 is a constant of the integration and

 �2 � 1
3�

2l2�0a
�3�1�w�
0 : (28)

It is possible to reconstruct f�R� gravity reproducing (27).
When the matter contribution is neglected, Eq. (13) has the
following form:

 0 � 2
d2P���

d�2 �
2

l
coth

�
3�1� w�

2l
�t� t0�

�
dP���
d�

�
6�1� w�

l2
sinh�2

�
3�1� w�

2l
�t� t0�

�
P���: (29)

By changing the variable from � to z as follows,

 z � �sinh�2

�
3�1� w�

2l
�t� t0�

�
; (30)

Eq. (29) can be rewritten in the form of Gauss’s hyper-
geometric differential equation:

 

0 � z�1� z�
d2P

dz2 � �~�� �~��
~�� 1�z�

dP
dz
� ~� ~�P;

~� � 4�
1

3�1� w�
; ~�� ~�� 1 � 6�

1

3�1� w�
;

~� ~� � �
1

3�1� w�
; (31)

whose solution is given by Gauss’s hypergeometric func-
tion:

 P � P0F�~�; ~�; ~�; z�

� P0
��~��

��~���� ~��

X1
n�0

��~�� n����� n�
��~�� n�

zn

n!
: (32)

Here � is the � function. There is one more linearly
independent solution like �1� z�~��~�� ~�F�~�� ~�; ~��
~�; ~�; z� but we drop it, for simplicity. Using (14), one finds
the form of Q���:

 Q � �
6�1� z�P0

l2
F�~�; ~�; ~�; z�

�
3�1� w�z�1� z�P0

l2�13� 12w�
F�~�� 1; ~�� 1; ~�� 1; z�:

(33)

From (30), it follows z! 0 when t � �! �1. Then in
the limit, one arrives at

 P���R�Q��� ! P0R�
6P0

l2
: (34)

Identifying

 P0 �
1

2�2 ; � �
6

l2
; (35)

the Einstein theory with cosmological constant � can be
reproduced. The action is not singular even in the limit of
t! 1. Note that a slightly different approach to construct
�CDM cosmology from f�R� gravity is developed in
Ref. [17].

Therefore even without the cosmological constant nor
cold dark matter, the cosmology of the �CDM model
could be reproduced by f�R� gravity. It was shown in
Ref. [18] that some versions of modified gravity contain
big rip singularities [19] (for their classification, see [20]).
Hence, the above model without future singularity and
with typical �CDM behavior looks quite realistic.
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D. Models of f�R� gravity with transition of the matter
dominated phase to the acceleration phase

Let us consider more realistic examples where the total
action contains also usual matter. The starting form of g���
is

 g��� � h��� ln
�
�
�0

�
; (36)

with a constant �0. It is assumed that h��� is a slowly
changing function of �. We use adiabatic approximation
and neglect the derivatives of h��� �h0��� 	 h00��� 	 0�.
Equation (13) has the following form:

 0 �
d2P���

d�2 �
h���
�

dP����
dt

�
2h���

�2 P���

�
X
i

�i0a
�3�1�wi�
0 e�3�1�wi�g���: (37)

The solution for P��� is found to be

 P��� � p��
n���� � p��

n����

�
X
i

pi����
�3�1�wi�h����2: (38)

Here p� are arbitrary constants and
 

n���� �
h��� � 1�

�����������������������������������������
h���2 � 6h��� � 1

p
2

;

pi��� � �f�1� w��i0a
�3�1�wi�
0 �3�1�w�h���

0 g


 f6�1� w��4� 3w�h���2

� 2�13� 9w�h��� � 4g�1:

(39)

Especially for the radiation and dust, one has

 pr��� � �
4�r0�

4h���
0

3a4
0�40h���2 � 32h��� � 4�

;

pd��� � �
�d0�

3h���
0

a3
0�24h���2 � 26h��� � 4�

:

(40)

We also find the form of Q��� as

 Q��� � �6h���p��h��� � n������n�����2

� 6h���p��h��� � n������n�����2

�
X
i

f�6h������2� 3w�h��� � 2�pi���

� pi0a
�3�1�w�
0 �3�1�w�h���

0 g��3�1�w�h���: (41)

Equation (36) tells that

 H 	
h�t�
t

(42)

and

 R	
6��h�t� � 2h�t�2�

t2
: (43)

Let us assume lim�!0h��� � hi and lim�!1h��� � hf.
Then if 0< hi < 1, the early universe is in deceleration
phase and if hf > 1, the late universe is in acceleration
phase. We may consider the case h��� 	 hm is almost
constant when �	 tm (0 tm �1). If h1, hf > 1,
and 0< hm < 1, the early universe is also accelerating,
which could be inflation. After that the universe becomes
decelerating, which corresponds to the matter dominated
phase with h��� 	 2=3 there. Furthermore, after that, the
universe could be in the acceleration phase.

The simplest example is

 h��� �
hi � hfq�2

1� q�2 ; (44)

with constants hi, hf, and q, when �! 0, h��� ! hi and
when �! 1, h��� ! hf. If q is small enough, h��� can
be a slowly varying function of �. By using the expression
of (43), we find

 

�2 � �0�R�; ���R�; �0 � �1=3
� � �

1=3
� ; �� � �1=3

� e2	i=3 � �1=3
� e�2	i=3; �� �

��0 �

������������������
�2

0 �
4�3

1

27

q
2

;

�0 �
2�2R� 6hfq� 12h2

fq�
3

27q3R3 �
�2R� 6hfq� 12h2

fq��R� 6hiq� 6hfq� 4hihfq�

3qR
� 6hi � 12h2

i ;

�1 � �
�2R� 6hfq� 12h2

fq�
2

3q2R2 �
R� 6hiq� 6hfq� 4hihfq

q2R
: (45)

There are three branches �0 and �� in (45). Equations (43) and (44) show that when the curvature is small (� � t is
large), we find R	 6��hf � 2hf�=�2 and when the curvature is large (� � t is small), R	 6��hi � 2hi�=�2. This
asymptotic behavior indicates that we should choose �0 in (45). Then an explicit form of f�R� could be given by using the
expressions of P��� (38) and Q��� (41) as
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 f�R� � P�
�������������
�0�R�

q
�R�Q�

�������������
�0�R�

q
�: (46)

One may check the asymptotic behavior of f�R� in (46).
For simplicity, it is considered the case that the matter is
only dust (w � 0) and that p� � 0. Then we find

 P��� � p��
n���� � pd����

�3h����2: (47)

One may always get

 n� � ��3h� 2�> 0 (48)

in (47). Here n� � �h��� � 1�
�����������������������������������������
h���2 � 6h��� � 1

p
�=2

is defined in (39). Then when � is large, the first term in
(47) dominates and when � is small, the last term domi-
nates. When � is large, the curvature is small and �2 	

6��hf � 2hf�=R and h��� ! h�1� � hf. Hence, Eq. (47)
shows that

 P��� 	 p�

�
6��hf � 2hf�

R

�
�hf�1�

�����������������
h2
f�6hf�1

p
�=4
; (49)

and therefore

 f�R� 	 R��h����5�
�����������������
h2
f�6hf�1

p
�=4: (50)

Especially when h� 1, we find

 f�R� 	 R�hf=2: (51)

Therefore there appears the negative power of R. As H 	
hf=t, if hf > 1, the universe is in acceleration phase.

On the other hand, when the curvature is large, we find
�2 	 6��hi � 2hi�=R and h��� ! h�0� � hi. Then (38)
shows

 P��� 	 pd�0��
�3hi�2: (52)

If the universe era corresponds to the matter dominated
phase (hi � 2=3), P��� becomes a constant and therefore

 f�R� 	 R; (53)

which reproduces the Einstein gravity.
Thus, in the above model, the matter dominated phase

evolves into the acceleration phase and f�R� behaves as

f�R� 	 R initially while f�R� 	 R��h����5�
�����������������
h2
f�6hf�1

p
�=4 at

late time.
Three years of WMAP data were recently analyzed in

Ref. [21], which shows that the combined analysis of
WMAP with supernova Legacy survey (SNLS) constrains
the dark energy equation of state wDE pushing it towards
the cosmological constant. The marginalized best fit values
of the equation of state parameter at 68% confidence level
are given by�1:14 � wDE � �0:93. In the case of a prior
that the universe is flat, the combined data gives �1:06 �
wDE � �0:90.

In our model, we can identify

 wDE � �1�
2

3hf
; (54)

or

 hf �
2

3�1� wDE�
; (55)

which tells that hf should be large if hf is positive. For
example, if wDE � �0:93, hf 	 9:51 � � � and if wDE �

�0:90, hf 	 6:67 � � � . Thus, we presented the example
of f�R� gravity which describes the matter dominated
stage, transition from deceleration to acceleration, and
the acceleration epoch which is consistent with three years
of WMAP.

E. (In)stability of the cosmological solutions

Let us investigate the stability of the obtained solutions.
We assume

 a � a0eg���; (56)

which corresponds to (12) and P��� should be given by a
solution of (13) (andQ��� should be given by (14)). Under
the above assumptions, we consider the perturbations in (7)
and (8). By deleting Q��� in (7) and (8), one obtains
 

0 � 2
d2P���

dt2
� 2g0���

dP����
dt

� 4g00���P���

�
X
i

�1� wi��i0a
�3�1�wi�
0 e�3�1�wi�g���

� 2
d2P���

d�2

�
d�
dt

�
2
� 2

dP���
d�

d2�

dt2

� 2g0���
dP����
d�

�
d�
dt

�
2

� 4
�
g00���

�
d�
dt

�
2
� g0���

d2�

dt2

�
P���

�
X
i

�1� wi��i0a
�3�1�wi�
0 e�3�1�wi�g���: (57)

Then combining (13) with (56) it follows
 

0 � 2
�
d2P���

d�2 � g0���
dP����
d�

� 2g00���P���
�




��
d�
dt

�
2
� 1

�
� 2

�
dP���
d�

� 2g0���P���
�
d2�

dt2
:

(58)

By defining 
 as

 
 �
d�
dt
� 1; (59)

we consider the perturbation from the solution (10). Using
(58), one gets
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d

dt
� �!�t�
;

!�t� � 2

d2P���
d�2 � g0���

dP����
d� � 2g00���P���

dP���
d� � 2g0���P���

����������t
:

(60)

Then when!> 0 (!< 0), the perturbation becomes small
(large) and the system is stable (unstable).

As an example, the case (36) may be considered. It gives
(38) with (39). Especially when p� � pi0 � 0 except pdi,
we find

 ! �
2�12h2 � 13h� 2�

�2� h�t
: (61)

Here the derivatives of h��� like h0��� are neglected again.
Then ! goes to infinity when h � 2 and h! �1 and !
vanishes when

 h � h� �
13�

������
63
p

24
� 0:872 38 � � � ; 0:210 947 8 � � � :

(62)

Therefore !> 0 and the system is stable when h < h� or
h� < h< 2. Hence, for the case that the universe starts
from the deceleration phase with h � h0 < 1, if h0 > h�,
there is a stable solution where the universe develops to the
acceleration phase h! 2> 1. Even if we started with
h��� � 2=3, which corresponds to the matter dominated
phase a	 t2=3, the solution is unstable since h� < 2=3<
h�, the perturbed solution could develop into the stable
solution with h > h� and therefore there could be a tran-
sition into the acceleration phase. If h goes to 2 from the
region with h < 2, since !! �1, the solution becomes
extremely stable. Hence, hmay pass through the point h �
2 and h could become larger than 2, where the effective
EOS parameter w � 1� 2=3h � 7=9.

Note that when p� � pi0 � 0 (i � d: dust), one gets

 R	��2; f�R� 	 R3h=2: (63)

Therefore in the matter dominated phase h	 2=3, the
action behaves as the Hilbert-Einstein action.

In the more general case where there is only one kind of
matter with w and p� � 0, we find
 

R �
3h���f12�1� w�h���2 � 2�7� 9w�h��� � 4g

f3�1� w�h��� � 2g�2 ;

f�R� 	 R3=2�1�w�h���R��: (64)

Note that ! in (60) is given by

 ! �
3�1� w��4� 3w�h���2 � �13� 9w�h��� � 2

f��1� 3w�h��� � 2gt
:

(65)

Next we consider the case that pd0 � 0 and pr0 � 0 but
p� � 0 and pi0 � 0 except i � d, r. Then it follows

 

! � �
1

�
f4pr�10h2 � 8h� 1�

� 2pd�12h2 � 13h� 2��hg


 f2pr�h� 1� � pd�h� 2��hg�1; (66)

or by using (39),

 

! � �
2

�

�
4�r0�4h

0

3a4
0

�
�d0�

3h
0 �

h

a3
0

�
�10h2 � 8h� 1�


 �12h2 � 13h� 2�
�
4�r0�4h

0

3a4
0

�12h2 � 13h� 2�


 �h� 1� �
�d0�

3h
0

a3
0

�h�10h2 � 8h� 1��h� 2�
�
�1
:

(67)

As is clear from (11), (36), and (56), �r03a�4
0 and �d0a

�3
0

correspond to the energy density for radiation and dust
(usual matter plus cold dark matter), respectively, when
t � � � �0. Let us choose t � �0 corresponding to the
present universe. It may be assumed

 � �
�
4�r0�4h

0 �
h

3a4
0

��
�d0�

3h
0

a3
0

�
�1
 1: (68)

In the expression (67), ! vanishes when h � h� (62) and
h � ~h�, defined by

 

~h� �
4�

���
6
p

10
� 0:6449 � � � ; 0:155 05 � � � : (69)

Under the assumption (68), ! diverges at

 h � 2�
24

25
�; h � ~h� � �
�;


� � �
�28� 17

���
6
p
���6�

���
6
p
��16�

���
6
p
�

25 000
:

(70)

Here 
� > 0. Near the singularities, if ! is negative, there
could be very large instability, which should be avoided. In
the case p� � 0, the singularity could be avoided. The
points where ! vanishes could remain even if p� � 0 but
the instability becomes finite and there can be a solution
which describes the transition from the matter dominated
phase to the acceleration phase.

We now consider the case that the contribution from the
matter could be neglected in (38) and therefore we could
assume that pi0 � 0. Furthermore when one of p� van-
ishes, one finds

 R	��2; f�R� 	 RN� ; N� � 1�
n�
2
: (71)

The behavior of N� is as the following:
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when h! 0; N� ! 1 and N� !
3

3
;

h! �1; N� ! �
h
2

and N� ! 2;

h � 1; N� ! 1�
1���
2
p ;

h �
2

3
; N� !

1

3
and N� !

3

2
:

(72)

Thus, in the case p� � 0 but p� � 0, when h! �1, the
higher derivative inflationary model f�R� 	 R2 appears.
We should also note ! in (60) has the following form:

 ! � !� � �
2�h��� � 1� � 4

�����������������������������������������
h���2 � 6h��� � 1

p
5h��� � 1�

�����������������������������������������
h���2 � 6h��� � 1

p :

(73)

Now ĥ� may be defined as

 ĥ� �
13� 4

������
10
p

3
� 8:5497 � � � ; 0:116 90 � � � : (74)

Then !� < 0 when h > ĥ� or h < 0, and !� > 0 when
0< h< ĥ�. We also find that when !� > 0, h > 2=3, or
h < h�, and !� < 0 when ĥ� < h< 2=3. Hence, the
model where p� � 0 but p� � 0 is stable when h > 2

3 .
Thus, one can make a stable model where the matter
dominated phase h	 3=2 evolves to the acceleration phase
h > 1.

We should note that p� � 0 and pi0 � 0 but p� � 0, if
we put

 h � 10
3 ; (75)

we obtain N� � �1 or f�R� 	 1=R. Let us put

 h��� � 10
3 � 
h; j
hj  1: (76)

It follows that

 N� � �1� 18
17
h: (77)

When h	 10=3, from (3), the curvature is given as

 R	
6h�h� n���n� � 2�

n��
2 	

220

3�2 : (78)

Hence, with the choice
 


h	�
17

18 ln 220
3�2�2

�
2202

18�2�6�4
�

2203�

27�6�6

�

	�
17

18 ln R
�2

�
R2

2�2�6
�
�R3

�6

�
; (79)

with a constant �, which has a dimension of mass, one
arrives at

 f�R� 	
�6

R
�

R

2�2 � �R
2; (80)

which reproduces the action proposed in [6]. (Note that
such a class of actions does not describe the sequence of
the matter dominated/acceleration phase [22]). Thus, using
stability analysis we demonstrated that indeed the matter
dominated phase may transit to the acceleration phase for
some implicit model of f�R� gravity found in the previous
subsection. Moreover, it is shown that the model of Ref. [6]
with positive and negative powers of the curvature is just
an asymptotic form of such a consistent f�R� theory (at
some specific values of parameters) at the acceleration
epoch. The complete, implicit version of f�R� theory found
in previous subsection describes the sequence of the matter
dominated phase, transition from deceleration to accelera-
tion, and then the acceleration epoch of the universe.

F. Corrections to Newton law

In the present subsection we will discuss the contribu-
tions to Newton law in the modified gravity under consid-
eration. Note that there is a big number of papers devoted
to the study of the Newtonian regime in modified f�R�
gravity [6,8]. However, these papers are mainly devoted to
the study of the Newtonian regime for 1=R models. We
now check when the corrections to the Newton law are not
essential in f�R� gravity under consideration. For this
purpose, we put a point source at r � 0:

 �m �
m

a�t�3

�r�: (81)

Transforming

 g�� ! g�� � 
g��; �! �� 
�; (82)

one finds the �t; t� component of (6) has the following form:
 

0 � G0 �G1;

G0 � �
1

2

gttfP����6 _H � 12H2� �Q���g

�
1

2
P���
R� P���
Rtt;

G1 �
1

2
fP0����6 _H � 12H2� �Q0���g
�

� 3� _H �H2�P0���
��
1

2
P0���rt
gtt

� 3HP0���
gtt � P
00���
gtt �HP

0���gij
gij

�
1

2
P0���rt�g��
g��� �

m

2a�t�3

�r�:

(83)

Here the gauge condition is chosen

 r�
g�� � 0: (84)

On the other hand, Eq. (3) gives

 0 � �P00��� �Q00���R�
��Q0���
R: (85)

We now consider the region for r � jrj as
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1

m
 r

1

H
; (86)

or

 m�
@
@r
� H: (87)

We should also note that

 

@
@t
	

1

�
	H 	

����
R
p

: (88)

Then if

 P0���  HP���; P00���  H2P���; (89)

G1 (83) could be neglected if compared with G0. Then
since � can be regarded as a constant and therefore 
� �
0 as long as (86) is satisfied, Eq. (83) reduces to that in the
Einstein gravity by identifying P��� with 1=�2 and
Q��� � �2=�2 since P��� and Q��� are slowly varying
(almost constant) functions. From (85), 
� � 0 implies

R � 0. Then Eq. (83) gives the �t; t� component of the
usual perturbation in the Einstein equation:
 

0 � G0

� �
1

2�2 
gttfR0 ��2g �
1

�2

�
1

2

R� 
Rtt

�

�
m

2a3
0


�r�;

R0 � 6 _H � 12H2:

(90)

Here a0 is the scale factor in the present universe a0 �
a�t�, which may be chosen to be unity a0 � 1. For the
almost flat universe as our current one, we can neglect the
first term in (90): R0 ��2 	 0 and we obtain

 0 � �
1

�2

�
1

2

R� 
Rtt

�
�m
�r�; (91)

which further reduces, since the universe is almost flat and
the source and the universe are static in a region where we
are investigating the Newton law, to

 0 �
1

2�2 �4
gtt �4�g
��
g���� �m
�r�: (92)

Here 4 is the usual Laplacian. Therefore if the conditions
in (88) are satisfied, the correction to the Newton law could
be neglected. In the case of (42), if we choose p� and p� to
satisfy (89) in the present universe, the correction to the
Newton law could be small. (It is interesting to note that
standard Newton law is valid also in an arbitrary F�G�
gravity [23] whereG is Gauss-Bonnett invariant). One may
consider an even simpler situation: admitting that Newton
law is satisfied only in the current universe. Then, the form
of Newton law should be fixed only at the present universe
(in other words, the initial value of f�R� should be re-
stricted). We should also note that if P��� changes its sign,

as we identified P��� with 1=�2, there could appear the
antigravitation effect. For instance, the form of modified
gravity may be changed in the future, at the end of the
acceleration epoch, driving the Newton law to its opposite
sign form.

III. MODIFIED GRAVITY AND COMPENSATING
DARK ENERGY

In the present section we will present another approach
to modified gravity. Specifically, we discuss the modified
gravity which successfully describes the acceleration
epoch but may be not viable in the matter dominated stage.
In this case, it is demonstrated that one can introduce the
compensating dark energy (some ideal fluid) which helps
to realize the matter dominated and deceleration-
acceleration transition phases. The role of such compensat-
ing dark energy is negligible in the acceleration epoch.

We now start with general f�R� gravity action:

 S �
Z
d4xff�R� �Lmatterg: (93)

In the FRW metric with flat spatial dimensions one gets

 � � f�R� � 6
�

_H �H2 �H
d
dt

�
f0�R�;

p � �f�R� � 2
�
� _H � 3H2 �

d2

dt2
� 2H

d
dt

�
f0�R�;

R � 6 _H � 12H2:

(94)

If the Hubble rate is given (say, by observational data) as a
function of t: H � H�t�, by substituting such an expression
into (94), we find the t dependence of � and p as � � ��t�
and p � p�t�. If one can solve the first equation with
respect to t as t � t���, by substituting it into the second
equation, an equation of state follows:

 p � p�t����: (95)

Of course, � and p could be a sum with the contribution of
several kinds of fluids with simple EOS.

We now concentrate on the case that f�R� is given by [6]

 f�R� � �
�
Rn
�

R

2�2 � �R
2: (96)

Furthermore, we writeH�t� as Eq. (42) and assume h�t� is a
slowly varying function of t and neglect the derivatives of
h�t� with respect to t. Then one gets (43).

First we consider the case that the last term in (80)
dominates f�R� 	 �R2, which may correspond to the early
(inflationary) epoch of the universe. It is not difficult to find

 �	�
36���1� 2h�t��h�t�2

t4n
;

p	�
36���1� 2h�t��h�3h�t� � 1�

t4n
:

(97)
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If h goes to infinity, which corresponds to the de Sitter
universe, we find �	 p	 h3 although, from (43), R	 h4.
Therefore �, p �R2 and contribution from the matter
could be neglected. Then the inflation could be generated
only by the contribution from the higher curvature term.

Second, we consider the case that the second term in
(80) dominates f�R� 	 R

2�2 , which may correspond to the
matter dominated epoch after the inflation. In this case �
and p behave as

 �	
12h�t� � 6h�t�2

�2t2
; p	�

4h�t� � 6h�t�2

�2t2
: (98)

In the matter dominated epoch, we expect h	 2=3 (a	
t2=3). Hence, one gets

 �	
32

3�2t2
; p	 0: (99)

Therefore in the matter sector, dust with w � 0 (p � 0)
should dominate, as usually expected.

Finally we consider the case that the first term in (93)
dominates f�R� 	 ��=Rn, which might describe the ac-
celeration of the present universe. The behavior of � and p
is given by
 

�	 �f6�n� 1��2n� 1�h�t� � 6�n� 2�h�t�2g


 f�6h�t� � 12h�t�2g�n�1t2n;

p	 �f�4n�n� 1��2n� 1� � 2�8n2 � 5n� 3�h�t�

� 6�n� 2�h�t�2gf�6h�t� � 12h�t�2g�n�1t2n: (100)

Thus, the effective EOS parameter wl is given by
 

wl �
p
�
	 f�4n�n� 1��2n� 1� � 2�8n2 � 5n� 3�h�t�

� 6�n� 2�h�t�2gf6�n� 1��2n� 1�h�t�

� 6�n� 2�h�t�2g�1: (101)

In order that the acceleration of the universe could occur,
we find h > 1. Let us now assume that h�t� ! hf when t!
1. Then one obtains
 

wl ! wf � f�4n�n� 1��2n� 1�

� 2�8n2 � 5n� 3�hf � 6�n� 2�h2
fg


 f6�n� 1��2n� 1�hf � 6�n� 2�h2
fg
�1;

(102)

andH�t� ! hf=t. Since the matter energy density �wf with
the EoS parameter wf behaves as

 �wf / a
�3�1�wf� / exp

�
�3�1� wf�

Z
dtH�t�

�
; (103)

the energy density is

 �wf / t
�3�1�wf�hf : (104)

Comparing (104) with (100), we find

 2n � �3�1� wf�hf; (105)

which can be confirmed directly from (102).
From the above consideration, we find � and p contain

mainly contributions from dust with w � 0, �d�t�, p�t� �
0, and ‘‘dark energy’’ with w � wl in (101), �l�t�, pl�t�. In
the expressions of ��t� and p�t� in (94), there might be a
remaining part:

 �R�t� � ��t� � �d�t� � �l�t�; pR�t� � p�t� � pl�t�;

(106)

which may help the transition from the matter dominated
epoch to the acceleration epoch. By deleting t in the
expression of (106), we obtain the EOS for the remaining
part:

 pR � pR��R�; (107)

which may be called the compensating dark energy. More
concretely, according to (99), one may have

 �d 	
32

3�2t20
e
�3
R
t

t0
dt�h�t�=t�

; (108)

and according to (100),
 

�l 	 �f6�n� 1��2n� 1�hf � 6�n� 2�h2
fg


 f�6hf � 12h2
fg
�n�1t2n1 e

�3�1�wf�
R
t

t1
dt�h�t�=t�

: (109)

In (109), we choose t1 to be large enough. When t	 t0,
��t� 	 �d and when t! 1, ��t� 	 �l. Thus, �R only
dominates after t � t1 but it becomes smaller in late times.
Hence, the role of �R (which perhaps may be identified
partially with dark matter) is only to connect the matter
dominated epoch to the acceleration epoch.

IV. DISCUSSION

In summary, we developed the general formulation of
modified f�R� gravity which may be reconstructed for any
given FRW metric. The resulting action is given in the
implicit form (usually, in terms of some special functions).
Nevertheless, its early and late times asymptotics may be
defined, it turns out to have quite a simple form, for
instance, as model [6] with negative and positive powers
of curvature. Several examples predicted by realistic cos-
mology are constructed. These specific f�R� theories de-
scribe the sequence of cosmological epochs: the matter
dominated stage (if necessary even without matter), tran-
sition from deceleration to acceleration, and current cos-
mic speedup consistent with three years of WMAP data.
Moreover, the study of their Newtonian regime indicates
that such models are consistent with solar system tests. It is
not difficult to extend such a formulation to include con-
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sistently also the radiation dominated phase (perhaps, even
inflation). Hence, modified f�R� gravity indeed represents
the realistic alternative to general relativity, being more
consistent in the dark epoch. It is also shown that some
implicit version of f�R� gravity may describe �CDM
cosmology without the need to introduce the cosmological
constant and without singularity near R � 0.

In the alternative approach we also demonstrate that
even simple models like the ones of Refs. [6,15] become
cosmologically viable if compensating dark energy is in-
troduced. It remains to study if such compensating dark
energy or the version of f�R� gravity which mimics the
matter dominated phase without matter may serve as dark
matter of the universe.

Definitely, more careful study of modified gravity and
fitting the above models against the observational data/
various constraints [16] should be done. First of all, one
should study the linear perturbations in the matter domi-
nated epoch. Such a study made for the scalar-Gauss-
Bonnet gravity model of Ref. [24] in Ref. [25] shows
that there is no really strong change if compared with usual
general relativity. Hence, one may expect that the same
will occur in the present model while a careful study
should be made, of course. It is also known [7] that
Supernovae Ia constraints are easy to fit in the class of
models under consideration (subject to the assumption that
they are treated as usual candles). Second, the cosmic
microwave background radiation (CMBR) peak locations
are weakly model dependent. Nevertheless, it is important
to check constraints appearing from the CMBR shift pa-
rameter and baryon oscillations as well as nucleosynthesis
bounds which restrict the amount of dark energy in the
current universe. Third, solar system constraints (time
variation of the effective gravitational constant, study of
parametrized post-Newtonian (PPN) parameters) should be
considered in detail. The preliminary expectation is that
this may be achieved due to the fact of freedom of the form
of modified gravity (as well as first time derivative of the
gravitational Lagrangian) at some specific (initial) time.
This will be investigated in detail elsewhere. Having in
mind that new, more precise observational data will be
available soon, one may expect that the question: is modi-
fied gravity suitable as dark energy will be answered in
near future.
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APPENDIX

Let us show for the explicit example of f�R� that our
formulation with the auxiliary scalar fixed as time is
equivalent to the usual metric formulation. The starting
action of the modified gravity coupled with matter is:

 S �
Z
d4x

�������
�g
p

ff0R
� �Lmatterg: (A1)

The FRW equation is given by

 

0 � f0f�
1
2�6

_H � 12H2�� � 3�� _H �H2��6 _H � 12H2���1

� 3�H@tf�6 _H� 12H2���1gg � 1
2�0a

�3�1�w�: (A2)

An exact solution of (A2) is given by

 

a � a0th0 ; h0 �
2�

3�1� w�
;

a0 �

�
�

6f0h0

�0
��6h0 � 12h2

0�
��1f�1� 2���1� ��

� �2� ��h0g

�
��1=3�1�w��

: (A3)

Instead of action (A1), one now starts with the action (2).
Equation (A3) shows

 H �
h0

t
or g�t� � h0 lnt: (A4)

Hence

 

0 � 2
d2P���

d�2 � 2g0���
dP����
d�

� 4g00���P���

� �1� w��0a
�3�1�w�
0 e�3�1�w�g�t�

� 2
d2P���

d�2 �
2h0

�
dP����
d�

�
4h0

�2 P���

� �1� w��0a
�3�1�w�
0 ��2�:

(A5)

Here we have used a relation h0 � �2=3���=�1� w�� in
(A3). A solution of (A5) is given by

 

P � P0�
�2��2;

P0 �
�1� w��0a

�3�1�w�
0

4f�1� ���1� 2�� � h0�2� ��g
:

(A6)

Then we find
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Q��� � �6�g0����2P��� � 6g0���
dP���
d�

� �0a
�3�1�w�
0 e�3�1�w�g�t�

� Q0��2�;

Q0 � �6h0�h0 � 2�� 2�P0 � �0a
�3�1�w�
0

�
6�1� ��h0�2h0 � 1�P0

�
:

(A7)

In the last line, we used the definition of P0 in (A6).
Therefore it follows

 0 � P0���R�Q0���

� 2�1� ����2��1R� 2�Q0��2�; (A8)

which gives

 �2 �
�Q0

�1� ��P0R
�

12h2
0 � 6h0

R
: (A9)

Then the action (2) has the following form

 

S �
Z
d4x

�������
�g
p

ff00R
� �Lmatterg;

f00 �
�

�
1� �

�
���1 Q���1

0 P�0
�

�
�12h2

0 � 6h0�
���1�0a

�3�1�w�
0

6f�1� ���1� 2�� � h0�2� ��g
: (A10)

Comparing f00 (A10) with (A3), one gets

 f0 � f00; (A11)

which shows the action (A1) is surely reproduced. On the
other hand, Eq. (A3) shows

 R �
12h2

0 � 6h0

t2
: (A12)

Comparing (A12) with (A9), we find

 � � t: (A13)
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