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Axial anomaly of QED in a strong magnetic field and noncommutative anomaly
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The Adler-Bell-Jackiw (ABJ) anomaly of a 3 + 1 dimensional QED is calculated in the presence of a
strong magnetic field. It is shown that in the regime with the lowest Landau level (LLL) dominance a
dimensional reduction from D = 4 to D = 2 dimensions occurs in the longitudinal sector of the low
energy effective field theory. In the chiral limit, the resulting anomaly is therefore comparable with the
axial anomaly of a two-dimensional massless Schwinger model. It is further shown that the U, (1)
anomaly of QED in a strong magnetic field is closely related to the nonplanar axial anomaly of a

conventional noncommutative U(1) gauge theory.
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I. INTRODUCTION
A. Motivation

In the early days of current algebra, before the develop-
ment of QCD, it was realized both in model field theories
such as linear sigma model of the baryons and in QED that
the flavor-singlet axial current’s conservation is broken by
quantum fluctuations, the famous Adler-Bell-Jackiw (ABJ)

triangle anomaly [1], €9, j§) = — 1é’%FWF‘“’ (for recent
reviews of U(1) axial anomaly, see [2]). Later on, it was
shown that in QCD the axial-flavor symmetry, although it
is a perfect classical symmetry of massless quarks, is
broken by quantum effects. This symmetry and its corre-
sponding anomaly are sensitive to the strong coupling,
topological excitations in QCD, and also play an important
role in the properties of the theory’s vacuum. The far
reaching consequences of the discovery of the quantum
anomalies, in general, include quantitative predictions of
physical amplitudes from anomaly in global symmetries
such as in two photons decay of pions, and restriction of
consistent gauge theory models of particle physics from
cancellation of anomalies in local symmetries such as in
electroweak theory. In studying various field theories, it is
therefore important to calculate the anomalies of their
various global and local symmetries.

In this paper, we will derive the axial anomaly of 3 + 1
dimensional QED in the presence of a strong magnetic
field, where an approximation to the regime of lowest
Landau level (LLL) dominance is justified. Our result
includes two main observations, which will be worked
out in this paper:

The first observation is that our resulting U, (1) anomaly
in the presence of a strong magnetic background field is
comparable, as expected, with the axial anomaly of an
ordinary 1 + 1 dimensional massless Schwinger model
[3]. This is indeed related to the dimensional reduction
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D — D — 2 in the dynamics of fermion pairing in a mag-
netic field, which causes a generation of a fermion dynami-
cal mass even at the weakest attractive interaction between
fermion in the regime of LLL dominance [4].

The second, and probably the more interesting observa-
tion is the connection of the U,(1) anomaly of QED in the
LLL regime with the axial anomaly of a conventional
noncommutative U(1) gauge theory (see [5] for a review
of noncommutative field theory (NCFT), and [6] for a
recent review of noncommutative anomalies). The connec-
tion between the dynamics in relativistic field theories in a
strong homogeneous magnetic field and that in NCFT has
been recently studied in [7]. In particular, it is shown that
the effective action of QED in the LLL approximation is
closely connected to the dynamics of a modified noncom-
mutative QED, in which the UV/IR mixing [8] is absent—
a phenomenon which is also observed in the Nambu-Jona-
Lasinio (NJL) model [7] and in the scalar O(N) model [9]
in the presence of a strong magnetic field. The UV/IR
mixing in the ordinary noncommutative field theory mani-
fests itself in the singularity of field theory amplitudes in
two limits of small noncommutativity parameter ® and
large UV cutoff M of the theory. As it is argued in [7], the
reason for the absence of UV/IR mixing in the modified
noncommutative field theories is the appearance of a dy-
namical form factor ~ exp(—q? /4leBl) for the photon
fields in the regime of LLL dominance.

Because of this connection between the modified non-
commutative field theory and the ordinary one, it is im-
portant to calculate the Adler-Bell-Jackiw (ABJ) anomaly
of modified noncommutative QED and to compare it with
the anomaly of an ordinary noncommutative U(1) gauge
theory. As we will show later, the U, (1) anomaly of QED
in the presence of a strong magnetic field is in particular
comparable with the nonplanar anomaly of a conventional
noncommutative QED (see the second part of this section
for a review of anomalies in noncommutative QED and
more detailed comparison).

The organization of this paper is as follows: As next, we
will summarize our results by presenting some necessary
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technical details on the relation between the U, (1) anom-
aly of a3 + 1 dimensional QED in the presence of a strong
magnetic field and the anomaly of a 1 + 1 dimensional
massless Schwinger model on the one hand and the non-
planar anomaly of a conventional noncommutative QED
on the other hand. Then in Sec. II, after giving a brief
review on the effective action of QED in a strong magnetic
field, we will derive the anomaly of QED in the LLL
approximation and eventually compare it with the non-
planar anomaly of the ordinary noncommutative U(1)
gauge theory. In Sec. III, we will calculate the two-point
vertex function of the photon and determine the spectrum
of a 3 + 1 dimensional QED in the regime of LLL domi-
nance. Sec. IV is devoted to conclusions.

B. Technical details

1. QED in a strong magnetic field and Massless
Schwinger model

The well established magnetic catalysis of dynamical
chiral symmetry breaking is a universal phenomenon in
3 + 1 dimensional QED in a strong constant magnetic field
and leads to a dimensional reduction D — D — 2 in a
magnetic field. This is why the U,(1) anomaly of 3 + 1
dimensional QED is comparable with the axial anomaly of
a 1 + 1 dimensional massless Schwinger model

(0,500 = 5 - € P (2) (L1
T
Recognizing this as the two-dimensional version of the
triangle anomaly, the divergence of the axial vector current
j& is linear rather than quadratic in field strength tensor
F#*”_In the ordinary 1 + 1 dimensional QED, it is easy to
derive (1.1) from the vacuum polarization tensor 11 W(q).
It is enough to use the relation between the vector current
j* and the axial vector current j& using the properties of

Dirac y-matrices in two-dimensions, y#y> = —e*’y,, to
get
. : g q"q”
a) = —eilan = e £ aka) =1 5A, @)
(1.2)

Here, j,(g) is defined by the vacuum polarization tensor

I1,,(q)
. L 1
Golq)) = j dre ", (1) = =1L, (@A), (13)

Using the methods familiar from four dimensions, the one-
loop contribution of II,,(¢g) in two dimensions can be
computed and reads

H,,(9) = (8,,9° — 9,9.,)11(g%),
g 1
T ¢

[\S)

with TI(¢?) = 19
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On substituting back (1.4) into (1.3), the expression on the
second line of (1.2) is then found. Multiplying this expres-
sion with g, yields the desired axial anomaly in two-
dimensional momentum space

¢4 (q) = S evq,4,(0). (1.5)
Transforming back into the coordinate space, the anomaly
of an ordinary massless Schwinger model is given by (1.1).
In Sec. II, we will use this method to determine the
anomaly of QED in the presence of a strong magnetic field
in the momentum space. Assuming that the constant mag-
netic field is directed in x5 direction, we find

ieNy|eBlsign(eB)
27

(2
X e~ i/ 2leB gl2aby A, (q,q),

9,75 (q) =
a,b=0,3,

where the symbols L and || are related to the (1,2) and (0,3)
components, respectively. To determine the anomaly in the
coordinate space, we will compactify two transverse coor-
dinates x,; around a circle with radius R to study, in
particular, the role played by q; = 0. Taking the decom-
pactification limit R — oo, it turns out that the zero trans-
verse mode does not contribute to the unintegrated form of
the anomaly

ieNy|eB|sign(eB)
27
% e(Vi/ZleBDelZabFab(X”’ XJ.)’

(9,TE(x)) =
(1.6)

where F,, = 0,A, — d,A,, and the nonzero transverse
modes are defined by A, = A, —AE;O). Here, the zero

mode of the gauge field AY is constant along the transverse
directions x ;| and is defined by

AP (x),q = 0) = f+RR d’x  AD (x), x ).
In Sec. I1I, we will calculate the 1PI effective action for two
photons in the LLL approximation, and determine the
vacuum polarization tensor of 3 + 1 dimensional QED in
a strong magnetic field. In particular, we will show that the
spectrum of this theory consists of a massive photon of
mass M2 ~ e*|eB|. This is again in analogy to what hap-
pens in the ordinary Schwinger model whose free neutral
boson picks up a mass m, = % . Indeed, the emergence

of a finite mass arising from the 1PI effective action of two
photons in LLL approximation confirms the previous re-
sults from [4,10]. There, the photon mass of QED in a
magnetic field was calculated from the photon propagator
D,,, of QED in one-loop approximation with fermions
from the LLL

'According to [3], the photon mass m
model is one-loop exact.

y in the Schwinger
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D (q) = gw N dlql (gl —qldl/ad) _ e duts
- qzqﬁ q+ q||H(qJ_’ (]”) (%)’
(1.7)

with ¢ an arbitrary gauge parameter. Here, T1(q7, qj) is
given by Tl(q7, qf) = e_(qzi/2|“B|)H(qﬁ), and TI(qj) is
calculated in [4,10] explicitly. As it turns out, since the
LLL fermions couple only to the longitudinal (0,3) com-
ponents of the photon fields, no polarization effects are
present in the transverse (1,2) component of D,,(q).
Therefore as the full propagator, one can take the
Feynman-like noncovariant propagator

gl/lw

q + q”H(q”, qi)

D ,LLV(q) =

It was shown in [4] that the kinematic region mostly
responsible for generating the fermion mass is that with the
dynamical mass mygy, satisfying mg,,, < |qj| < leB| and
lg% | < leBl. In that region, which is indeed the relevant
regimes for the LLL approximation, the fermions can be
treated as massless [11] and the polarization operator can
be calculated in one-loop approximation. Here, one uses
the asymptotic behavior of H(q ) [4], ie.,

NfableBl

I(q?) = f > 1.8
(qj) = Sl or mg.,, > |qjl, (1.8)
2N a,leB|
M(gj) === 5— for mj, <lgjl, ~ (1.9)
qj

2
with Ny the number of flavors and «;, = —; the running
coupling. Hence (1.9) implies that

1 1

., with
q* +(I||H(Q||:QJ_) CI2 _M%/
2N ,a,|eB|
_ f&b
M%, =

The appearance of a finite photon mass is indeed a remi-
niscent of the Higgs effectin 1 + 1 dimensional Schwinger
model [3]. Note that although the IR dynamics of QED in
the presence of a magnetic field is very different from that
in the Schwinger model, the tensor and spinor structure of
this dynamics is exactly the same as in the Schwinger
model [4].

2. Anomalies of noncommutative QED and U, (1)
anomaly in a strong magnetic field

The main observation in this paper is related to the
connection of the Uy(1) anomaly of QED in a strong
magnetic field and the nonplanar anomaly of the ordinary
noncomutative U(1) gauge theory. At this stage, before
describing the similarities between these two anomalies,
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it will be instructive to summarize some of the previous
resu%ts of the anomalies in noncommutative QED [6,12—
14]:

As is well-known, noncommutative field theory (NCFT)
is characterized by a *-deformation of the ordinary com-
mutative field theory. The noncommutative Moyal
x-product is defined by

O 9 9
g 57 )1+ Oleemo
(1.10)

(f %)) = f(x + &) exp(

Because of the specific structure of the *-product, non-
commutative field theories can be regarded as nonlocal
field theories involving higher order derivatives between
the interacting fields. Perturbatively, the theory consists
therefore of planar and nonplanar diagrams. The latter
are usually the source of the appearance of the above
mentioned UV/IR mixing phenomenon, which is shown
to modify the anomalies in noncommutative field theory
too [13,14]. The main observation in [12,13] was that the
noncommutative U(1) gauge theory consists of two differ-
ent global axial vector currents; the covariant J = = g *
o (y*y%)*P, and the invariant axial vector current j&§ =
g * bglyty 3)@f . Naively, one would expect that these
two currents have the same anomaly. But, as it is shown in
[6], due to the properties of *-product, only the integrated
form of two anomalies are the same

f Lx (DT () = [ Pxy 0,40 (L)

with x| denoting the noncommutative directions. Their
unintegrated forms are indeed different; while the anomaly
corresponding to the covariant current, arising from
the planar diagrams of the theory, is the expected
*-deformation of the ABJ anomaly [12]

62

<DM]§L(X)> = _W

F,,(x) % F#*(x), (1.12)

the anomaly in (9, Jj&), receives contribution from non-
planar diagrams and is therefore affected by the noncom-
mutative UV/IR mixing. The nonplanar (invariant)
anomaly of 9, /&) is calculated in [13,14] using various
regularization methods. Quoting, in particular, the result
from [14], where the nonplanar anomaly is calculated
using the well-known Fujikawa’s path integral method,
the divergence of the invariant axial vector current is

2Other aspects of the anomalies of NCFT have been studied in
[15]. For a more complete list of references see also [6].
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2 dk
yia — 1 _—— ~ < A
(0,,j5 (x)) A}II_IEO 167* ) Qm)*
d4 B - .
L0 o,
(kX D) - ,

where M is the UV regulator. Here, we have used the
notations ¢g=k+p, Gg+=0OHq, and kX p=
k, p*/2. To show the celebrated UV/IR mixing in the
case of nonplanar anomaly (1.13), we have considered
two limits §* > -5 and §* < 57, separately. As it turns
out the limit §> > # is equivalent with taking first the
limit M — oo and then |§| — 0. In this case, even before
taking |g| — 0, the anomaly vanishes. In the opposite case,
i.e. by taking first |G| — 0 and then M — co, a finite
anomaly arises. Note that this limit can be understood
as the limit §> < # In this case the exponent

exp(— @) — 1 and we are left with a finite nonplanar
anomaly,

2

. e .
(8#]gL =_WF#V*/F’U’V+"', (114)
where the generalized *'-product is defined by
sin(= 2 2)
(f ¥ 8)0) = flx + &) —5 =g+ Dle—go.
2 989
(1.15)

The ellipsis in (1.13) and (1.14) indicate the contribution of
the expansion of a noncommutative Wilson line, which is
to be attached to F,, and F wp 10 order to restore the
*-gauge invariance of the result [14].

In [6] we argue that the above results remain only correct
when we assume that the noncommutative U(1) gauge
theory is an effective field theory which consists of a
natural, large but finite cutoff M. However, considering
|

+R " o 62 1
f—R dsz_<3,L]5 (x)) = 1672 W f

which survives the limit R — oo, i.e.

2

Bl 1672

[ i, 0 =

Thus, the expression for the nonplanar anomaly turns out to
be independent of noncommutative coordinates X .
Although this can be interpreted as a dimensional reduc-
tion in the space-time coordinates, but the dimensional
reduction seems to be not complete here. This is because
the nonplanar anomaly (1.18) depends, as in any ordinary
3 + 1 dimensional field theory, quadratically on the field

d’ +Ra’2 Fop F
X1 . Y1 (X||,YL) a,B(XH:yJ_),

+o0 -
f, d?y  F*B(x), y 1) F g (X, ¥ 1).

PHYSICAL REVIEW D 74, 085032 (2006)

the noncommutative field theory as a fundamental field
theory and taking the limit of M — oo first, the nonplanar
anomaly vanishes except for the one point in the momen-
tum space, |G| = 0; As it can easily be checked in (1.13), in
this case, the phase factor exp(—M?§>/4) = 1, and this
leads to a finite nonplanar anomaly. This is in accordance
with the arguments in [16], where it is emphasized that a
nonvanishing nonplanar anomaly is indeed necessary to
guarantee that the covariant and invariant currents have the
same integrated axial anomaly [see the argument leading
to (1.11)].

To compute the nonplanar anomaly in such a fundamen-
tal theory, without any natural cutoff, it is necessary to
perform in addition to the familiar UV regularization, an
appropriate IR regularization. In [6], the IR regulator is
introduced by compactifying each space coordinates to a
circle with radius R. Assuming that the noncomutativity is
between the spacial coordinates x | = (x|, x,), and denot-
ing the other two directions by x| = (x¢, x3), the uninte-
grated form of the nonplanar (invariant) anomaly is given
by

e? 1

1672 (2R)?

+R > ~
X ]ﬁR d?y  F*B(x), y ) F (X)), ¥ 1).
(1.16)

(9,75 (X)) =

Here, taking the decompactification (IR) limit R — oo the
anomaly ‘“‘density”” vanishes due to 1/R? dependence on
the r.h.s. of (1.16). To obtain the desired finite result, we
should integrate both sides over the noncommutative di-
rections X | —this removes the R dependence on the r.h.s.
of (1.16)—and then, take the limit R — oo. This situation
is as if a finite charge is evenly distributed over the space
giving zero density but still being totally nonzero [6]. The
integrated form of the nonplanar (invariant) anomaly be-
comes

(1.17)

(1.18)

{
strength tensor. This is in contrast to our result (1.6) on the
anomaly of QED in the presence of a strong magnetic field,
which depends, as in a two-dimensional theory, linearly on
the field strength tensor, at least in the one-loop level.
Further comparison shows that while the unintegrated
form of the nonplanar anomaly (1.16) receives contribution
only from zero noncommutative mode of the Fourier trans-
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formed of F = FF, the unintegrated U,(1) anomaly of
QED in the LLL approximation receives additional con-
tribution from nonzero transverse modes. To show this, we
have to compactify the transverse coordinates along a
circle with radius R. In the decompactification limit R —
oo, the zero transverse mode reappears in the integrated
axial anomaly of QED in a strong magnetic field, i.e. we
have

ieN/|eB|sign(eB)
4772

+o00
X f dz)CJ_ GIZ‘IbFab(X”, XJ_),
— 00

(1.19)

[ it =

with the field strength tensor F',;, consisting of the nonzero
and zero transverse modes, F,, = F, + F gg. The
mechanism for the reappearance of the zero mode in the
integrated form of the QED anomaly in the LLL approxi-
mation is similar to what happens in the noncommutative
case [see how (1.18) arises from (1.16)].

II. U(1) AXIAL ANOMALY IN A STRONG
MAGNETIC FIELD IN THE LLL APPROXIMATION

In the first part of this section, we will briefly review
some results from [11] on the effective action of QED in a
strong magnetic field. This will help us to set up our
notations. We then use the LLL fermion propagator to
determine the U, (1) anomaly of QED in a strong magnetic
field.

To put the QED dynamics in a magnetic field under
control, we will consider, as in [11], the case with a large
number of fermion flavors Ny. As is well-known the mag-
netic field is a strong catalyst for dynamical chiral sym-
metry breaking and even the weakest possible attraction
between the fermions is enough for dynamical mass gen-
eration. It is shown in [4] that the dynamical mass behaves
as mgy, = +/|eB|exp(—N;) for a large running coupling
@, = Nya;. Thus, in the limit of large N, the dynamical
mass satisfies mgy, << +/|eB|. This assumption guarantees,
in particular, that no dynamical symmetry breaking occurs,
and as a consequence no light (pseudo) Nambu-Goldstone
bosons are produced. The low energy effective theory will
then consist only of photons and is given only in terms of
these fields. As for the current fermion mass m, it is chosen
to satisfy the condition m << +/|eB|, which implies that the
magnetic field is very strong, and this is in fact a guarantee
that the LLL approximation is reliable.

The effective action for photons is given by integrating
out the fermions and reads

r=ro+ro — po-_! f d*xF,, F""

4 " @2.1)
I = —iN Trin(ilp — m),
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withD, =9, — ieA#:FM,, =d,A, — 9,A, and the vec-
tor field A, = AS: + A,,, where the classical part AS =
(01A,10) and A, is the fluctuating part. To proceed, it is
useful to choose the symmetric gauge

B
A(;}' = E(O, Xp, —X1, O)

This leads to a magnetic field directed in x3 dimensions.
From now on, the longitudinal (0,3) directions are denoted
by x| = (xo, x3), and the transverse directions (1,2) by
X | = (x, x,). Using the Schwinger proper time formalism
[17], it is possible to derive the fermion propagator in this
gauge. It is given by

Ses3) = exp 'y (¢ = AT ) )8 )

= lieB/De"xyy §(x — ), ab=12 (2.2

where the first factor containing the external A%" is the
Schwinger line integral [17]. Further, the Fourier transform
of the translationally invariant part S(x — y) reads

- 0 . k2
— 7 —ism? : 2 _ 1
S(k) zﬁ dse exp(zs[k” B oct(eBs) cot(eBs)D
X {(m + ¥ - k(1 — y'y? tan(eBS))
— y1 -k (1 + tan%(eBs))}, (2.3)

where k)| = (ko, k3) and y| = (v, v3) and k| = (k;, k)
and y| = (yy, v2). After performing the integral over s,
S(k) can be decomposed as follows

S(k) = ieUa/leBD S -1y . D, (eB, k) 24
n=0

T m? — 2|eB|n’

with D, (eB, k) expressed through the generalized Laguerre
polynomials L

+ayt -k LY (2p)) 2.5)
Here, we have introduced p = % and
1
0= 5(1 — iy'y? sign(eB)). (2.6)

The lowest Landau level (LLL) is determined by n = 0.
Thus, the full fermion propagator (2.2) in the LLL approxi-
mation can be decomposed into two independent trans-
verse and longitudinal parts [7]

Splxy) = Sy(xy —y)P(x1,yL) (2.7a)
with the longitudinal part
k) . I i0
Sy(xy — = | —L piky-x-y) . (2.7b
1 =) j(27r)2e Tk &

and the transverse part
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leB] ieB_, ., leBl
P(x,,y,) = Ey CXP<T€ bxayb — T(XJ_ - YJ_)2>,
ab=12 (2.7¢)

Note that the longitudinal part (2.7b) is nothing else but
the fermion propagator in two dimensions. In particular,
the matrix O, defined in (2.6), is the projector on the
fermion (antifermion) states with the spin polarized along
(opposite to) the magnetic field [7]. Further, the Schwinger
line integral included in the transverse part (2.7¢) is re-
sponsible for the noncommutative feature of the effective
action of QED in the LLL approximation

[ =T O+ (LIL)L’
iN/|eB| . .
FEI?L = _5—77' fdle TI‘||(@ ln(l’y”(a” — leﬂ”))

—m)y, (2.8)
where T'© is defined in (2.1). Here, the * is the Moyal
*-product defined in (1.10). The appearance of this product
on the r.h.s. of the above equation shows that the effective
QED in the LLL dominant regime is indeed an effective
noncommutative field theory. In (2.8) the longitudinal
smeared gauge fields A = (A, Aj;) is defined as
A (x) = eVi/HeBD A (x). (2.9)
Note that here, since the one-loop contribution to the
effective action includes only the longitudinal A field,
the spin structure of the LLL dynamics is (I + 1) dimen-
sional [4,11], i.e. the LLL fermions couple only to longi-
tudinal components of the photon field. Note further that
the Gaussian-like form factor e¥1/4Bl in the definition of
the smeared field arises essentially from the Schwinger line
integral in the transverse part of the fermion propagator
(2.7a)—(2.7¢), and is responsible for the noncommutative
property of the effective action in the regime of LLL
dominance and the cancellation of the UV/IR mixing [8]
of the modified noncommutative field theory [7,9,11,18].
Using these results, it is easy to calculate the n-point
vertex function of longitudinal photon in the LLL (from
now on we will omit the subscription || in the longitudinal
gauge field A )

_(ie)"N|eB|
! 2mn
X ./;Zl(XL, Xg s S||(X|y|, - Xlll)jzl(XLy Xlll))*,

F(L”L)L = fdledlell e P! tr(S”(xIl| - Xg

where S (x; — yj) is defined in (2.7b) and A = Y- Al
At this stage, we have all the necessary tools to determine
the ABJ anomaly in this modified noncommutative U(1)
gauge theory.

Let us now consider the axial vector current associated
with the U4 (1) symmetry of the original QED Lagrangian

PHYSICAL REVIEW D 74, 085032 (2006)

T () = g(x)y*y (). (2.10)
To determine (9, 7% (x)) we will calculate first (7% (¢)) in
the momentum space, and then, build ¢ ,(J £) in analogy
to what is performed in (1.5) to determine the anomaly in
the ordinary two-dimensional Schwinger model from (1.3).
To do so, we will use the LLL fermion propagator (2.7a)—
(2.7¢). Note that here, in contrast to the ordinary 3 + 1
dimensional QED gauge theory where a triangle diagram
of one axial and two vector current was responsible for the
emergence of the anomaly, the two-point function of lon-
gitudinal photons which gives rise to the anomaly of our
modified noncommutative U(1). This is in analogy to the
1 + 1 dimensional QED and can be again regarded as a
consequence of the dimensional reduction in the presence
of a strong magnetic background field.

In the momentum space the vacuum expectation value of
the axial vector current 7% (x) is given by

(TH) = j dxe o TED). @11

In the first order of perturbation theory, we have

(THQ) = —e [ dxdtye () YRy P FAG)

X ¢(y)), (2.12)
that, after contacting the fermionic fields, leads to
(TS (q) = —ejd“xd“ye_iqx r(y* Yy Sy(xy — yp)
X P(x 1,y )A®S(yy — x)P(yL, x 1))
(2.13)
Substituting Sy (x — y;) from (2.7b), we get
d*p ) dky d*€
M I d4 d4 A ipy II Il
(50 = e [dsaty [ EEa e[S

X e~ i ik x=y) pity (y—x)!
i
Xtr(YMYSP(Xl’ yJ_) T
viky—m

i
X Oy"Ply,, xl)”7(9>. (2.14)
vl —m
Now using
fdledzheﬁql'xlp(xly y1)e®rY Py, x))
= 27|eB|8*(py — qy)e 9L/HED, (2.15)

and performing the integration over x| and y) coordinates,
we arrive first at
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u glgBl (@ /21eBI) d2k“ To calculate this integral, let us first concentrate on the
(T5(q) = e A,(g) [ Q) expression in the nominator. Using the property of the
matrix O as the projector in the longitudinal direction,

tr(V" YK+ mOy' Ky —di +mO)  0y0 = 0y, we get
(k” - m?)((ky — q))* — m?)

(2.16)
|

r(y“y> (K + mOy" (K — dy + m)O)A,(q) = tr(y*y> Ky + m)y} Ky — ) + m)O)AL(q)

B % w(y S (Ky + m)yi (K — dy + m)AL(q)

~ 1 sign(eB) uly*y Ky + myi(Ky — dy + myy' y)ablq).

Here, we have used the definition of @ in (2.6). To calculate the traces of Dirac y-matrices, we use the relations
tr(y> y¢yPyPy?) = 4ie*Pr7 and

tr (Y2 yeyPyPy yryT) = 4ig, (e®PrnsoATE — eTATNgaBpE) (2.17)
with s@BPo = gaBgro — gap B 4 a0 oBp After some straightforward calculation, (2.16) can be written as
: 2
(740 = ~ AP g, [ 2N
™ Qm)?
{612p.b(m _ k|| (k — q)”) + (612,ucgab + gbc€12,ua)k||(k q)ll} 2.18)

(ki — m*)((ky — qp)* — m?)

where we have omitted the symbol || on the gauge field A, and the metric g wv- Instead, we have used the indices a, b,
¢ =0, 3, to denote the projection into the longitudinal directions x| = (xo, x3). Note that due to the antisymmetry of the
€*BYP tensor, w in €'>#¢ on the r.h.s. must be chosen to be . = 0, 3. This is indeed the first signature for the dimensional
reduction from D = 4 to D = 2 dimensions in the result of the anomaly. The rest of the calculation is a straightforward
computation of the two-dimensional Feynman integral over k. Introducing first the Feynman parameter 0 < a = 1 and

then performing a finite shift of integration k; — k|| + aq), we arrive first at

(TS (q) =

_ 2e leB|sign(eB)
T

where A = m? — a(l — a)qlzl. As for the first two inte-
grals, it can be shown that although they are both infinite in
the UV limit |k | — oo, they cancel each other, and we are
left with

leleB|31gn(eB) o

= l/2|eB|)612,uaAb(q)
27

(T5(q) =

qﬂqﬂ) fl daa(l — a)i.
0 A
(2.20)

X (qﬁgab

In the chiral limit, m — 0, using the definition of A, we
3
get

>The chiral limit is taken just to isolate the anomaly in the
divergence of the axial vector current arising from the quantum
effects. According to the arguments in [11], the fermions can be
treated as massless in the regime of LLL dominance.

- BB - e v [
w

e WLl 12#&Ab<q)<q.|gab a.q)) f daa(l - a) f

Pk 2klk) Py g
[ @m)? (kj — A)? f (2m)? (kﬁ—m}
d’k 1
@y w-a @Y
<~7§L((])> =+ Mei(qi/zleBl)euﬂaAb(q)
272
I
X(«?ab q;(zlb> 21)
I

The ABJ anomaly of QED with N, flavors in a strong
magnetic field in the LLL approximation is then found by
multiplying (2.21) with ¢, and using the antisymmetry
property of €'%® tensor

ieN¢|eB|sign(eB)
4,475 (@) = + ==

X ¢~ WL/AeBN gl2abglA, (qy, q ).

(2.22)

Before transforming this result back into the coordinate
space, let us compare it with (1.13), the nonplanar anomaly
of the invariant current j§ = ¢ % y*(y#y°),p5 of the
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ordinary noncommutative QED. Assuming that the non-
commutativity is defined only between two coordinates x;
and x,, (1.13) can be written as

2
. . iec  _ -
9u (5 (@) = Jim — sy e”(MOaD

d*p sin(g X p)
x | 2L p (qg—p—d P
](277)4 w4 = p) qgXp

X Fr(p) + - -+, (2.23)

with ¢ = k + p. Here, we have transformed (1.13) into the
momentum space and replaced the phase factor e~ M7 /4
with G, = 0 ,,q” by e"MO’41/4 \where ¢ is defined by
@,-j = 0¢;;, with 7, j = 1, 2—this gives us the possibility
to compare (2.23) with (2.22). As we have argued in Sec. I,
the phase factor e~ MO’aL/4 g indeed the origin of the
appearance of UV/IR mixing; Assuming that the ordinary
noncommutative U(1) gauge theory is a fundamental the-
ory and taking the limit M — oo, the nonplanar anomaly
vanishes everywhere in the momentum space except for
the point q; = 0. In this case the phase factor

e~ MOPal/4 — 1, forq; =0,

and the nonplanar anomaly turns out to be given by (1.16),
where a compactification around a circle with the radius R
is performed. Only in this way it could be shown in [6] that
although the unintegrated form of the nonplanar anomaly
vanishes in the decompactification limit R — oo, the inte-
grated form of the nonplanar anomaly is finite and is given
by (1.18). Note that (1.16) can also be interpreted as if the
|

PHYSICAL REVIEW D 74, 085032 (2006)

unintegrated nonplanar anomaly receives a finite contribu-
tion only from the zero mode of the Fourier transformed of
JF = F,,F"*” in the noncommutative coordinates x| , i.e.
from

@800 ~ Foxpar =0 = s [, Fiy ),

(2.24)

1
(2R

This contribution vanishes in the R — oo limit.

The above analysis of the nonplanar anomaly of the
ordinary noncommutative QED shows the special role
played by q; = 0 in the expression (2.22) for the anomaly
of QED in a strong magnetic field in the LLL approxima-
tion. Note that in this case the magnetic field provides a
natural cutoff for the modified noncommutative QED in the
LLL approximation, and can be compared with the product
of the UV cutoff M and the IR cutoff # of the ordinary

noncommutative field theory; +/|eB| ~ (M#0)~', where
here, in contrast to the ordinary noncommutative case,
both M and 6 are kept finite, so that q5 << |eB] is correct
and thus the reliability of the LLL approximation is
guaranteed.

To transform (2.22) back into the coordinate space and to
be specially careful about the role played by q; = 0, we
compactify, as in the case of the ordinary noncommutativ-
ity, two transverse coordinates x; around a circle with
radius R. Multiplying both sides of (2.22) with ¢/¢* and
integrating (summing) over the continuous (discrete) mo-
menta g (g, ), we have first

eN(|eBl|sign(eB) [ d> L L
(0, T8 () = ——2 > 5 ;1)"2 R Y et vauxad 2AeB) gl2aby A, (g, q), (2.25)
qL
where we have used the relation
d*q, 1 mn
— , ith =_49 2.26
2m)?  (2R)? g Wit 4L =5 (2.26)

To proceed, we separate the sum over discrete transverse momenta q | into the nonzero q ; # 0 and the zero mode q; = 0,

so that (2.25) can be written as

dq 1

(aﬂjg(x)) _ eN¢|eBlsign(eB) 612ab(

272
d’q 1
(2m)* (2R)?

(2m)* (2R)?

eiq”.xl\ quE)O)(q”’ q, = 0))

Z ei(qux\l+ql~xl)e*(qi/2|eBl)qu‘b(q”, q, # 0)
qJ_#:(]

(2.27)

Substituting the Fourier transformed of the nonzero transverse modes A,

A o 0 R o3 iy, v
Ab(q”’ qJ_ # 0) = d y” R d yLAb(y”y YL)e nq -y Tqr-y ,

and the zero transverse modes A©,

+
AV (q qL =0) = /

00 +R .
d?y) / Ay | AY (y, y ey,

(2.28)

(2.29)

—R
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into the r.h.s. of (2.27) and using the identities

d? d-q

el =y — 52 _ d
o)’ (x)—yy) an

> eVt = 52(x) —y)),
(2R)2

q, 70
we arrive after integrating over y and y, at

ieN¢|eB|sign(eB)
27

(0,T§ ) = <€(vzl/zleBl)GlzabaaAb(Xn, X1)+

a (0)
(ZR)Z/ d*y €29 ,A)7 (x|, yL)>

Using now the notations
9,AY — 9,4,

Fab = aaAb - abA_a, and F{(Iob)

the U, (1) anomaly of QED in a strong magnetic field for finite compactification length R reads

ieN|eB|sign(eB) +R
d 1.7 f_R d*y) €2 FO)(x), YJ_))

(0,T%(x)) = (2.30)

2 _
(evl/2|eB|€12abFab(X”, XJ_) +

1
(2R)?
Apart from the fact that the anomaly of 3 + 1 dimensional QED in the strong magnetic field is, in contrast to the ordinary
noncommutative QED, linear in F,,, at least at this one-loop level, the above situation is the same as in (1.16), i.e. by

taking the decompactification limit R — oo, the contribution from the zero mode vanishes and we are left with the R
independent first term in (2.30) from the contribution of the nonzero transverse modes to the anomaly

ieNy|eB|sign(eB) S

= /2leBl) 12abF (x” XJ.)

(0,T5(x) = (231
A finite nonvanishing contribution of the zero transverse mode to the axial anomaly of QED in a strong magnetic field
arises only when we integrate, as in the case of nonplanar anomaly [see (1.17) and (1.18)], over x | on both sides of (2.30).%
In this way, the R-dependence in the second term of (2.30) cancels and the integrated form of the anomaly of QED in a
strong magnetic field becomes

ieN/|eB|sign(eB +R _
f| 47|T2g ( )<fR d2xle(Vzl/2|eB|)612abFab(X”’Xl)

1 +R +R
_ f,R dle ‘/1R d2yJ_€12abF53))(X”’ )l)):

[ o, 70 =

which survives even in R — oo limit, i.e.,

ieN¢|eB|sign(eB)
4772

[IRERONATE

Expanding now the phase factor eVi/2eBl gnq neglecting

the surface term arising from the term including the trans-
verse derivatives V | , we get
ieN/|eB|sign(eB)

472

+ 00
X f d2XJ_ flzabFab(X”, XJ_),
(2.32)

with F, = F,, + F Ezb 1nclud1ng the nonzero F,, and the
zero transverse modes F, ) . Hence, in contrast to the non-
planar anomaly of the ordmary noncommutative QED,

[ st =

“In the case of nonplanar anomaly, x; = (x;, x,) are the
noncommutative directions.

+0o0 _ +0o0
([_m dlee(vi/”em)elzabFab(x”,xl) + f_m dz)’lflzabonb)(X”,YJ_)).

{
where the integrated anomaly in the limit R — oo receives
contribution only from the zero modes of the fields in
noncommutative directions, here, the integrated form of
the axial anomaly of QED in the LLL approximation
includes both nonzero and zero transverse modes.

III. TWO-POINT VERTEX FUNCTION OF
PHOTONS IN THE LLL APPROXIMATION AND
THE PHOTON MASS

In this section, the two-point effective vertex function of
photons in the LLL approximation will be determined. In
particular, the special role played by the zero transverse
mode of the photon field will be studied in detail. We start
with the expression of the two-point vertex function at one-
loop level
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', = —(ie)’N, [ d'xdy t(Sp(x AQ)

X Sp(y, ) Ay — x)). (3.1)

Substituting Sr(x, y) from (2.7a)—(2.7c), using the relation (2.15), and integrating over x| and y;, we arrive after a
straightforward calculation at

o Ky +dy +m)
(ky +qp? —m )
witha = 0,3 and » = 0,1, 2, 3. Here, as in the previous section, we have used the property of the O matrix (2.6), Oy* O =

Oy™, with u = 0, - - -, 3 and m = 0, 3. Using further the definition of @, and following the standard procedure to evaluate
the two-dimensional Feynman integrals, i.e. introducing the Feynman parameter « and performing a shift of integration

2 _
FLLL -

€2Nf|€B| d4q d? k“ *(q 2 /2leBl) ¢ <(k s m)

2w ) @ @m2 e p—— 7 A@A,-a),

variable k| — k|, — aqy, we arrive first at

2 2 Iyl 2
@ _ _€NfleB| o (@ /21eBD a( )b k) 2kaky, Pk gw
S AN [ Aol [ amrag-ar ) emr &g - )
2€2Nf|eB| d q (q? d k
_ . —(q? /2leBl) pa b(_ 2 Il I _ ||
. f B¢ N AGA —0) G — alal) f daa(l - a) f A)z’ (3.2)

where A = m? — a(l

— a)q:. Here, as in the ordinary 1 + 1 dimensional Schwinger model, the two-point vertex function

(3.2) is closely related to (& Jq)} from (2.19). As in that case, the first two integrals cancel each other and we are left with

. 2 4
@ _ _i&NyleBl d*q (o sl yaq \abi_ e ]
M= -2 | gape A @AC)Wgw — @) | dera(l - a) 3. (3.3)
Taking again the chiral limit m — 0, we get
je*N /| eB| d*q 2 ‘l q)
1“(2) — _le f 7(q /2|eB|)Aa Ha¥lp Ab 3.4
LLL 22 @) L ()| &an q” (—q). (3.4)

To extract the one-loop vacuum polarization tensor II ,,, of

the modified noncommutative QED from this result, we
use, as was suggested in [7,11], the definition of the
smeared fields in the momentum space

A ,(q) = e Wi/HBIA (o). (3.5)

Using now the general relation between the two-point
vertex function and the vacuum polarization tensor of the
smeared photon fields

= | (d"ﬂv(q)( ML) AY(—q),  (3.6)

and comparing with (3.4), the projection of the vacuum

polarization tensor II,, into the longitudinal directions,

I1,, with a, b = 0, 3, reads
Iyl M;,
L (qy) = (gap4j — 4aqp)I(qy),  with I1(qy) = (sz
Il
(3.7)
and the photon mass
eszleBl

[
According to the structure of II,(qy) in (3.7), there are no
polarization effects in the transverse directions, and the
strong screening effect appears only in the longitudinal
components of the photon propagator ~ (g% q|| qj q”)
In an alternative treatment, it is possible to work w1th the
ordinary gauge fields A , instead of the smeared fields A ,,.
After redefining (3.6) in terms of A, the vacuum polar-
ization tensor is given by
alq))ll(qy, qu),

1 ar(d), L) = (gabq”

o M2(qy) (3.9)
with H(q”, (]J_) = ngl ,

and the “‘effective mass”

2
e’N/|leB| _ .
M%(qj_) = _f 5 e (qL/2|€B|)’

depending on the transverse coordinates. Keeping in mind
that the LLL approximation is only valid when g3 < |eB],

the phase factor e~ 01/21Bl can be neglected, and we arrive

at the same momentum independent mass (3.8). This con-
firms the result computed in [4,10] using similar
arguments.
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Now, in analogy to the evaluation of the anomaly in the previous chapter, we will check the special role played by the
momentum q; = 0. To do this we compactify two transverse coordinates around a circle with radius R. The two-point

vertex function (3.4) is therefore given by

FS}L _ iesz|eB| [+°° dzq”

21 (2m)? (2R

)22 —<ql/2|e3|>Aa(q)<g L -

Il
— 2%y >A” (—q),
qj

(3.10)

where we have used (2.26). Separating the zero and the nonzero modes, we have first

o _ e NerBl +oo d2q
LLL

—w 27 (2R)2 o

_ iesz|eB| +oo dzq”
272 —» (27)% (2R)?

> e (@L/2eBD fa(q, qJ_)<gab

Aa’(O)(qH’ q. = 0)<gah

Il
q —
2b>Ab(—q”, —q)
Il

qaqb>Ab (o)( qp —qL = 0),
qj

where A denotes the nonzero and A©) the zero transverse modes of QED in a strong magnetic field. Using the Fourier

transformations (2.28) and (2.29) for the gauge fields, we get

ie?NleB| [+ +R : 2le) 7 949\ 4
il j_ iy, f_R Ay eVi/HeB) Ay, YL)<gab —V>Ab(yﬂ’ y)

ie’NyleB| [+ 1 +R
R d2 - d2 Aa,(O) ’
277'2 '/700 Yl (2R)2 j*R yi (y” yJ_) Sup —

@ _
I =

9,9,

)f d*z APO(y), z,).

Taking the limit R — oo, the second term vanishes and we are left with

r(z) - le NfleBl
LLL 2t

Hence the zero transverse mode does not contribute to the
vacuum polarization tensor of the theory.

IV. CONCLUSIONS

In this paper, we have calculated the U, (1) anomaly of a
3 + 1 dimensional QED in a strong and homogeneous
magnetic field in the lowest Landau level (LLL) approxi-
mation. Because of the well established dimensional re-
duction D — D — 2 in the dynamics of fermion pairing in
a magnetic field, this anomaly is comparable with the axial
anomaly of a 1 + 1 dimensional Schwinger model. On the
other hand, it is comparable with the axial anomaly of the
ordinary noncommutative field theory. The motivation be-
hind this comparison was the recently explored connection
between the dynamics of relativistic field theories in a
strong magnetic field in the LLL dominant regime and
that in conventional noncommutative field theories.
Different aspects of the axial anomaly of noncommutative
U(1) gauge theory are studied widely in the literature.
Among other results, it is well-known that noncommuta-
tive QED consists of two anomalous axial vector current,
whose anomalies receive contribution from planar and
nonplanar diagrams of the theory, separately. Nonplanar
(invariant) axial anomaly is affected by UV/IR mixing, a
phenomenon which is absent in the dynamics of a 3 + 1
dimensional QED in a strong magnetic field.

- f, dPyydy eVi/2eB) Aa(y,, yi)<gab v2 )Ab(YII’YJ_)

(3.11)

{

Apart from the fact that the axial anomaly of QED in the
regime of LLL dominance depends, in contrast to the
ordinary 3 + 1 dimensional QED, linearly on the field
strength tensor F,,, it is comparable with the nonplanar
anomaly of noncommutative U(1) gauge theory. To show
this, we have compactified the transverse directions to the
external magnetic field along a circle with radius R. A
procedure which was also performed in the case of non-
planar anomaly of noncommutative QED to explore the
UV/IR mixing phenomenon. We have shown that in the
limit R — oo, the unintegrated form of the axial anomaly
of QED in the LLL approximation receives contribution
only from the nonzero modes of the field strength tensor in
the transverse directions. In the case of nonplanar anomaly,
however, the zero mode of the Fourier transformed of F =
FF in the noncommutative coordinates contributes to the
unintegrated form of the nonplanar anomaly only for finite
R. In the limit R — oo, the zero mode contribution and thus
the unintegrated form of the nonplanar anomaly vanish. We
have further shown that the contribution from the zero
transverse mode of the field strength tensor, i.e. the mode
which is constant in the transverse direction to the external
magnetic field, reappears in the integrated version of the
axial anomaly of the QED in the LLL approximation. The
mechanism of this reappearance is quite similar with the
mechanism in which the integrated form of the nonplanar
anomaly was shown to be finite in R — oo limit. The main
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reason for all these effects, is the fact that QED in a strong
magnetic field consists of a natural UV cutoff M ~ JeB
which is kept large but finite, whereas noncommutative
field theories are treated as fundamental theories with
infinitely large UV cutoff.

Further, motivated by the connection between the axial
anomaly and the vacuum polarization tensor in the ordi-
nary two-dimensional Schwinger model, we have calcu-
lated the two-point vertex function of QED in the LLL
approximation. We have shown that the theory consists of a
massive photon of mass M., ~ ¢?|eB|. This is in analogy to

PHYSICAL REVIEW D 74, 085032 (2006)

the case of ordinary two-dimensional Schwinger model
whose massive photon picks up a mass m3 = g*/. This
can be again interpreted as a signature for the above
mentioned dimensional reduction from D =4 to D = 2
dimensions.
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