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We propose a construction of a 2-dimensional lattice chiral gauge theory. The construction may be
viewed as a particular limit of an infinite warped 3-dimensional theory. We also present a ‘‘single-site’’
construction using Ginsparg-Wilson fermions which may avoid, in both 2 and 4 dimensions, the problems
of waveguide-Yukawa models.
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I. INTRODUCTION AND SUMMARY

Understanding the strong-coupling behavior of chiral
gauge theories is an outstanding problem of great interest,
both on its own and for its possible relevance to phenome-
nology: the Standard Model of elementary particle physics
is a chiral gauge theory and additional strong chiral gauge
dynamics at the (multi-) TeV scale may be responsible for
breaking the electroweak symmetry and fermion mass
generation.

The only clues of the strong-coupling behavior of non-
supersymmetric chiral gauge theories come from ’t Hooft
anomaly matching and most attractive channel arguments.
Large-N expansions, including the recently considered
gravity duals in the anti-de Sitter (AdS)/conformal field
theories (CFT) (QCD) framework, do not apply to chiral
gauge theories. Thus, the space-time lattice regularization
remains, to this day, the only way to advance our limited
knowledge of chiral gauge dynamics.

The lattice, however, fails to reproduce the physics of a
chiral gauge theory due to the presence of extra, unwanted
fermion ‘‘doubler’’ modes. The difficulty of this problem is
encoded in a no-go theorem [1]. Recent reviews of the
different approaches to lattice chiral gauge theories are
[2,3]; see also Ref. [4] for a new approach.

It has long been known that the extra fermions can be
removed from the spectrum by sacrificing the gauge sym-
metry, at least perturbatively [5,6]. Recently, a proposal
was made to do that in a new way [7,8]. The fermion
masses must be chosen in a nontrivial way to break the
appropriate global symmetries in order to reproduce the
anomalies of the target theory, while still maintaining the
appropriate light fermion modes. The gauge symmetry can
then be restored through a limiting process inspired by a 5-
dimensional model in AdS space. Unfortunately for this
approach, called ‘‘warped domain-wall fermions,’’ the as-

sociated Goldstone mode is strongly coupled leaving the
model’s status somewhat uncertain.

The warped domain-wall fermion model bears some
similarity to the ‘‘waveguide model’’ [9,10], which is
known not to give a chiral theory [11,12]. There are,
however, significant differences between the models—in
particular, in the warped case the source of the gauge boson
and fermion mass are decoupled and so further investiga-
tion of this model is necessary.

In this paper, we first consider a construction analogous
to that of [7] in 3-dimensional AdS space in an attempt to
construct a 2-dimensional chiral gauge theory. We describe
a limit which results in a 2-dimensional chiral gauge theory
without a strongly coupled Goldstone mode.

We then propose a related, simplified ‘‘one-site’’ model
which consists of only a 2-dimensional lattice theory
where massless fermions are introduced using the
Ginsparg-Wilson (GW) mechanism [13,14] for imposing
a modified chiral symmetry. The symmetries and anoma-
lous Ward identities in this model are as expected in the
target theory. Furthermore, a preliminary strong-coupling
analysis (a more detailed study of this model is in
progress), which is also expected to hold in the 4-
dimensional version of the construction, indicates that no
new unwanted light fermions appear and the fermion spec-
trum of the unbroken gauge theory remains chiral in an
appropriately taken limit.

In addition to providing some insight on the workings of
the 4-dimensional warped domain-wall fermion construc-
tion, the models presented here are interesting for their own
sake as they are the simplest examples of chiral gauge
theories. It is also clear that 2-dimensional models are
the most amenable to numerical tests and to this end alone
it is desirable to have an appropriate formulation; in the
process, we will see that the warped 2-dimensional case
presents a number of subtleties compared to the 4-
dimensional warped domain-wall fermions.

This paper is organized as follows. We begin in
Section II, where we describe previous work on lattice
chiral gauge theories within the ‘‘waveguide model.’’ We
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review the earlier arguments showing that the waveguide
model gives rise to a vectorlike spectrum of massless
fermions, both at small and large Yukawa coupling.

In Section III, we explain how the proposal of [7]
addresses the difficulty with obtaining a chiral spectrum
using a warped AdS background. Motivated by the strong
fermion/Goldstone mode coupling found in the 4-
dimensional implementation of the proposal, we construct
and study the much simpler 2-dimensional version in de-
tail. Within perturbation theory and in the deconstructed
description, we show that there are no bulk Goldstone/
fermion strong interactions in this model and that the
desired spectrum and separation of scales can be achieved
while at weak coupling (two appendices describe various
important technical details). Our results of Section III in-
dicate that the ‘‘warped domain-wall’’ framework for lat-
tice chiral gauge theories is still of interest and deserves
further study, including a full lattice implementation.

In Section IV, we present another proposal: the ‘‘single-
site model.’’ It is related to the ‘‘warped domain-wall’’ in
that it is also motivated by considering the waveguide
model and its failure to give a chiral fermion spectrum,
this time in the strong-Yukawa-coupling regime. Our main
observation here is that using GW fermions helps avoid the
left/right mixing that leads to a vectorlike fermion spec-
trum. To also obtain a massless gauge boson, we have to
make use of the strong-Yukawa symmetric phase of the
Yukawa-Higgs theory. We give a plausibility argument as
to why we believe this phase can be realized in our con-
struction without fine tuning. Further analytical and nu-
merical work on the ‘‘one-site’’ model supporting our
proposal will appear in [15].

In Section V, we conclude with a summary of the pro-
posals, a list of outstanding issues, and an outlook for
future work.

II. DOMAIN-WALL FERMIONS IN 2 DIMENSIONS

We review here some features of fermions in 2 dimen-
sions and discuss some relevant previous work on chiral
gauge theories. By understanding the shortcomings of
previous attempts we will see how our construction differs
in important ways.

A 2-dimensional Dirac fermion has two complex com-
ponents:

 � �
 �
 �

� �
: (1)

We will call the  � field left-handed and the  � field right-
handed. We work with light-cone coordinates:

 x� � t� x! 2@� � @t � @x; (2)

so that the Lagrangian for a charged, massive, Dirac fer-
mion is:

 L � 2i � ��@� � iA�� � � 2i � ��@� � iA�� �

�mD
� � � �m�D � � �: (3)

The bar on these one-component, complex fields indicates
complex conjugation, while the subscript D on the mass
indicates that it is a Dirac type mass term: it does not break
a gauge symmetry. We will later introduce masses of the
Majorana type which would break gauge symmetry:
mM � � � h:c:. By Lorentz invariance there are no other
types of mass terms: any mass must couple left- and right-
handed fermions. This restriction of mass terms will be
important later.

The domain-wall fermions [9] arise from consideration
of a theory with a third dimension labeled with the coor-
dinate z. With the appropriate mass terms there will be a
light left-handed mode localized at one end of the extra
dimension and a light right-handed mode localized at the
other end. We will consider the theory with the z direction
on a lattice, keeping the other two directions as a contin-
uum. Upon discretization the kinetic term in the z direction
contributes to mass and mixing terms for the fermions on
adjacent sites:

 

� @z !
� i� i �  i�1�

�z
: (4)

This is sometimes referred to as the deconstructed model
[16]. Alternatively we may think of this as a lattice in all
three directions where the lattice spacing in the two x�

directions is much smaller than the lattice spacing in the z
direction. Indeed, we will never take the z lattice spacing to
zero.

If we place two domain-wall lattices back-to-back with
one being charged and one being neutral we have the
‘‘waveguide’’ approach. The Lagrangian is given by:
 Xk
i�1

	2i � i�@� i��2i � i�@� i���mi
� i� i��h:c:�


�
Xk
i�2

�m0i � i� i�1;��h:c:��
XN

i�k�1

	2i � i��@�� iA�� i�

�2i � i��@�� iA�� i���mi
� i� i��h:c:�


�
XN

i�k�2

�m0i � i� i�1;��h:c:� (5)

and schematically, this Lagrangian is represented in Fig. 1.
The masses mi and m0i depend upon the details of the
discretization and are not important at this point. Note
that the gauge mode is independent of the sites: we are
treating it as a 2-dimensional degree of freedom. In order to
couple the charged and uncharged fermions in a gauge
invariant manner we introduce a charged scalar, �, and
the coupling:

 y � k�1;�� k;� � h:c:: (6)
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The phases of the analogous model in both 2 and 4 dimen-
sions were analyzed for both weak and strong-Yukawa
couplings y in [11,12], with the conclusion that the theory
is nonchiral in every case. The simplest possibility is for
y � 0. In this case one can easily see that the model falls
apart into two disconnected theories. One is the fully
gauged waveguide part and the other is the ungauged
part of the domain wall. Each of these two parts themselves
form a domain-wall model, and each of these will either
have zero modes localized at both ends or at neither end.
Thus the boundary of the waveguide will act as a domain-
wall boundary itself. Nothing qualitatively different hap-
pens for small nonzero Yukawa, as long as the field� does
not acquire a vacuum expectation value (VEV).

However, if the scalar does obtain a VEV, then the light
fermion mode localized at the waveguide boundary could
be eliminated using the opposite chirality fermion local-
ized on the other side of the waveguide boundary via the
mass term y k�1;�h�i k;�. The problem with this ap-
proach is rooted in the fact that the gauge field does not
fluctuate in the extra dimension. The fermion mass ob-
tained this way will be of the order mf � yh�i. However,
in this Higgs’ mechanism, the gauge boson will also pick
up a mass of orderm0 � gh�i. To get to an unbroken chiral
theory one would like m0 � mf, however their mass ratio
is given by g=y. Since in 4 dimensions the Yukawa is an IR
free coupling, at low energies its value will be determined
by g, and it seems that no hierarchy between the masses is
possible in the weak-coupling region. In the next section,
we will explain how the ‘‘warped domain-wall’’ proposal
avoids this problem by separating the scales of gauge
boson and fermion masses.

In the opposite limit of strong Yukawa coupling, the
phase structure of the g � 0 lattice-Higgs-Yukawa model
with a fixed-length Higgs field was also analyzed in [12]
via a strong-coupling expansion in y and it was again found
that the spectrum of the model was vectorlike. This is most
easily seen at leading order in 1=y by first rescaling the
fermion fields at the boundary of the waveguide, see
Eq. (6), by 1=

���
y
p

, thus making their kinetic terms vanish
at y!1. In our deconstructed picture of Fig. 1 this results
in removing the two circles adjacent to the dashed line;

thus, after the rescaling, the remaining charged �k�1;�

loses its Wilson term in the 2-dimensional noncompact
lattice directions not shown—recall that the Wilson term
couples �k�1;� to the now absent �k�1;�. Naturally, the
loss of the Wilson term results in the appearance of a
plethora of charged and neutral massless states near the
waveguide boundary, localized at the new boundaries of
the split waveguide, leading once more to a vectorlike
spectrum [12]. Thus, it was concluded that also in the
strong-Yukawa limit it is not possible to get a chiral gauge
theory from domain-wall fermions. In Section IV, we will
explain how using the GW mechanism of imposing a
modified chiral symmetry on the lattice avoids the mixing
of light and mirror modes in the Yukawa coupling that led
to the appearance of doublers [12].

In [7] it was argued that the situation is different when
one allows the gauge field to fluctuate in the extra dimen-
sion and when one is considering a nontrivial background
metric along the extra dimension. In this case the scaling of
the gauge boson mass could be different from that of the
fermion mass in the presence of a symmetry-breaking VEV
on one of the domain-wall boundaries. This led to a pos-
sibility of recovering a chiral gauge theory in the limit
when the warping (the background curvature of the extra
dimension) is increased to infinity. We will repeat much of
that argument below in the context of a 2-dimensional
domain-wall theory.

III. A WARPED 3-DIMENSIONAL THEORY

A. Gauge fields

The key feature of this construction, as in the 4-
dimensional case [7], is the separation of scales which is
made possible by an appropriate introduction of curvature.
It is known that in a theory with a compact extra dimension
and gauge symmetry breaking at one boundary, the mass of
the gauge boson is not set by the VEV of the Higgs field
alone [17]. The lightest gauge mode bends in the extra
dimension and the associated gradient terms also contrib-
ute to the mass. In the limit that the Higgs VEV goes to
infinity, the gauge field is repelled from the location of
symmetry breaking and the mass of the gauge boson is
independent of the VEV. In flat space this mass is para-

m 2
m1

1,−

¯
k+1 ,+

mN

¯
N, +

m N

¯
1,+

N, −k,−

FIG. 1. The waveguide approach to a chiral gauge theory. Circles represent Weyl fermions. Solid lines represent mass terms and a
charged scalar couples the charged fermion, � k�1;�, to the neutral fermion,  k;�.
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metrically the same as the masses of the Kaluza-Klein
(KK) modes, but in a warped background there is the
possibility of a separation of the lightest mode from the
KK modes. We chose our warping and boundary condi-
tions so as to achieve that separation.

In order to study the strong coupling of a 2-dimensional
chiral gauge theory, we require a hierarchy not just be-
tween the KK modes and the mass of the lightest gauge
boson, but we must have the strong-coupling scale of the
theory lie between these two scales:

 mKK 
 ��GT 
 mA0
: (7)

The scalemKK is the scale at which all of the 3-dimensional
physics enters. Much below this scale we are left with a 2-
dimensional theory, as demonstrated by some simple
checks of the mass spectrum and in Appendix B. The
mass of the lightest gauge mode, mA0

, sets the scale of
the gauge symmetry breaking, and much above this scale
the theory has an unbroken gauge symmetry. The low
energy 2-dimensional gauge theory has a gauge coupling,
g2, with units of mass, and therefore the gauge coupling
itself sets the scale of strong coupling for this gauge theory.
At tree level in the 2-dimensional theory, we have ��GT �

g2.
We first describe our construction in terms of a contin-

uum theory living in a slice of 3-dimensional AdS space,
AdS3. The metric is given by:

 ds2 �

�
R
z

�
2
����dx�dx� � dz2�; (8)

where x� are the two flat directions and z is the extra,
warped direction. The space is bounded in the z direction.
One end, z � R, is called the UV brane. The other end, z �
R0, is called the IR brane, where R0 
 R. We will break the
gauge symmetry with a Higgs mechanism on the UV
brane. Note that this is different from [7] and many phe-
nomenological models [18], where the gauge symmetry is
broken at the IR end. The reason for the difference is that
the scaling of the mass of the lightest gauge boson depends
crucially on the number of dimensions as can be seen
below.

The gauge field action is:
 Z
d3x

���
g
p

�
�

1

4g2
3

FMNFMN

� ��z� R�
�
1

2
D���D��� V���

��
; (9)

where� is a UV-brane localized Higgs field, which we will
take below to have a fixed VEV. Then, the bulk equation of
motion for the KK modes of the transverse components of
the gauge field is:

 

R
z
@z

�
z
R
@zfn�z�

�
� �m2

nfn�z�; (10)

where mn is the 2-dimensional mass squared of the n-th

KK mode. The solutions for the KK modes are Bessel
functions:

 fn�z� � AnJ0�mnz� � BnY0�mnz�: (11)

The boundary conditions also come from requiring that the
boundary terms in the variation of the action vanish; with-
out boundary terms in the action, the allowed boundary
conditions are Dirichlet or Neumann. By choosing the
Higgs VEV large enough, we have effectively Dirichlet
boundary conditions at the UV end (see [18]). We choose
Neumann boundary conditions at the IR end because we
want the gauge group to be unbroken there. This leads to a
mass spectrum well approximated by:

 mAn �
n�
R0
! mKK �

�
R0
; (12)

except for the lightest mode which has a mass:

 m2
A0
�

2

R02
1

ln�R0=R�

�
1�O

�
1

ln�R0=R�

��
: (13)

We can see right away that the physics of the 3-
dimensional theory, set by the KK scale mKK can be
separated from the physics of the gauge symmetry break-
ing for large ln�R0=R�.

The powers of the ratios of R=z in the KK Eq. (10)
depend on the dimensionality of the space: had this been a
slice of AdSM5, then both R=z factors would have been
inverted. By breaking the gauge symmetry on the UV
brane we find the same scaling for the mass of the gauge
boson as in 5-dimensions with IR-brane breaking [19].

For the deconstruction description we choose a small
dimensionless lattice spacing parameter, a, and let the
physical lattice spacing scale across the space: �zi � zi,
ensuring that the interval (8) �zi=zi between two neigbor-
ing lattice points is i-independent; Eq. (14) below implic-
itly defines the exact expression for �zi. It is helpful to
define a local warp factor which encodes how much the
metric warps from one lattice site to the next:

 w �
1

1� a
! zi � w1�iR: (14)

If there are N slices, then R0 � zN � w1�NR.
We may consider the deconstructed Lagrangian coming

from Eq. (9) in the Az � 0 gauge. Alternatively this may be
viewed as the Lagrangian for the N, coupled, 2-
dimensional gauge theories in unitary gauge. The UV
boundary Higgs is left in:
 

�
1

4

XN
i�1

azi
Rg2

3

	Fi��

2 �

1

2
D1
��

�D1��� V���

�
1

2

XN�1

i�1

az2
i

Rg2
3

�Ai�1
� � Ai��2

�azi�2
� . . . (15)

The dots represent interaction terms in non-Abelian theo-
ries, the D1 is a covariant derivative under the first gauge
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group, and we have suppressed coordinates in the x�

direction.
With this discretization, the 2-dimensional gauge theory

on each slice, i, has a gauge coupling given by:

 

1

g2
i
�
az2

i

Rg2
3

: (16)

If we put h�i � 0 so that the gauge symmetry was un-
broken by the UV boundary Higgs field then there would
be a massless gauge mode comprised of equal parts of the
gauge modes from each site. The corresponding low en-
ergy gauge coupling is then approximately given (at tree
level) by:

 

1

g2
2

�
XN
i�1

1

g2
i

�
R02

2Rg2
3

: (17)

In the presence of the UV-brane Higgs mechanism, the low
energy gauge coupling comes from considering the overlap
of the wave functions for the gauge boson and fermions.
However, as the gauge symmetry is restored the above
approximation becomes exact.

To find the physical mass spectrum in the gauge sector
we need to rescale each gauge boson in order to have the
canonical kinetic normalization: �1=4. Doing so gives a
gauge mass matrix,

 �aR�2MGauge �

1� v2
0 �w 0 0

�w 2w2 �w3 0 . . .
0 �w3 2w4 �w5

..

. . .
.

0
0 �w2N�5 w2N�4 �w2N�3

0 0 �w2N�3 w2N�2

0
BBBBBBBBB@

1
CCCCCCCCCA
; (18)

where v0 is the VEVof the UV boundary Higgs. In practice
it is sufficient to take v0 � 1 in order to reproduce the mass
given by Eq. (13).

Furthermore, the discretization (14) implies ln�R0=R� �
Na. Thus, our hierarchy of mass scales, Eq. (7), can be
written, using (12), (13), (16), and (17), as:

 1
 az2
i g

2
i 


1

Na
: (19)

We see then that the site gauge couplings must be small in
comparison to the local energy scale 1=zi. By choosing to
hold a fixed, we satisfy this hierarchy requirement by
letting the gauge couplings scale as:

 g2
i �

1

z2
i

����
N
p (20)

and taking the large N limit. With these gauge couplings
smaller than other mass scales at site i, we do not expect
significant corrections to this tree-level relation.

Finally, we note that the 3-dimensional case is different
than AdS5; the fact that we can take N large and keep the
individual gauge couplings (20) in AdS3 small should not
come as a surprise—the 3-dimensional bulk theory is
superrenormalizable, in contrast to the 5-dimensional
case where taking large N is ultimately responsible for
entering the strong-coupling domain [7].

B. Fermions

The presence of an equal number of left- and right-
handed fermions on a lattice means that we must find a
way to remove the fermion of one handedness by making it
heavy. In the 4-dimensional construction of Ref. [7] this

could be done indirectly through Majorana mass terms
which only give a mass to one Weyl fermion in a Dirac
pair. However, in 2 dimensions Lorentz invariance requires
that all mass terms connect a left- to a right-handed fer-
mion. While it might be possible to remove one fermion in
a Lorentz violating manner, we will choose a different
approach: exchanging an unwanted, light, charged fermion
for a light neutral fermion.

We will increase the number of fermions, but make the
new fermions neutral under the gauge symmetry. In the
absence of the gauge symmetry breaking at the UV bound-
ary, our low energy spectrum would contain light left- and
right-handed charged Weyl modes, l� and l� respectively.
It would also have two neutral Weyl modes, n� and n�. We
then use the gauge breaking Higgs mechanism from the
previous subsection to generate an effective mass term in
the low energy theory between the unwanted charged Weyl
fermion and one of the neutral fermions:

 yh�i�l�n�: (21)

This mass leaves l� as the only charged fermion in the low
energy spectrum.

All four of these modes, l�, l�, n�, n�, may be realized
as domain-wall fermions. In the charged sector, we will
maintain consistency with the warped AdS3 background
even though this may not always be necessary. In the
neutral sector we will, for simplicity, use flat space
domain-wall fermions as in Section II. However, it is
important that the fermions in this model are able to
reproduce the anomaly for a single, light, left-handed
fermion. Since the fermions are coming from the domain
wall, there are an equal and finite number of left- and right-
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handed fermions in the measure of the path integral. The
phase of the measure is therefore well defined, so the
anomaly will not arise in the usual continuum manner.

The anomaly arises, instead, from symmetry-breaking
Majorana masses in the neutral sector and through the
couplings (of the form of Eq. (21)) of neutral and charged
modes. We will discuss anomalies and symmetries in more
detail in Section III C.

We now describe how to obtain the light (before includ-
ing effects of the UV-brane Higgs) spectrum of charged,
l�, l�, and neutral, n�, n�, modes. In order to leave a full
neutral Weyl spinor n� light we must introduce, in our
construction, two neutral Dirac spinors, n1

� and n2
�, so that

there will still be a light neutral Weyl spinor after all of the
necessary Majorana and Dirac mass terms are included. In
total we will use 3N 2-dimensional Dirac spinors for the
remainder of this subsection.

We will again use a deconstruction description for the
fermions. Alternatively, these fermions may be thought of
as ordinary Wilson fermions living on a 2-dimensional
lattice in the small lattice spacing limit. We will use the
following fermion basis for expressing the mass matrix:
 

~�T
� � ��1

1�; �
1
2�; . . .�1

N�; ��1
1�; ��1

2�; . . . ��1
N�; �

2
1�;

�2
2�; . . .�2

N�; ��2
1�; ��2

2�; . . . ��2
N�;  1�;  2�; . . .

 N�; � 1�; � 2�; . . . � N��; (22)

and likewise for ~��. In this 6N vector of Weyl fermions,
the �’s are all neutral, while the  i’s are charged under the
i-th gauge group. Again, the bar means complex conjuga-
tion. We need to include both the barred and unbarred Weyl
fermions in this vector so that we may include the
Majorana mass terms. The mass matrix,

 i ~�T
�M ~��; (23)

is almost block diagonal. In addition to the above mass
matrix, the complete Lagrangian also involves the usual
kinetic terms (Wilson, if a 2-dimensional lattice descrip-
tion is used) for the neutral �1;2

i� , i � 1; . . . ; N as well as
kinetic terms for the charged fermions  i� in the warped
AdS3 background (see Appendix A for details).

The mass matrix (23) can be thought of as representing
the mass and hopping terms for Dirac fermions in a slice of
flat 3-dimensional space—the first 4N � 4N elements—
with �1

1� and �2
1� being localized at the left end while the

�1
N� and �2

N� ‘‘live’’ at the right end. The right end of the
flat space ends at the UV brane of the AdS3 slice, where
 1� lives. Finally, the  N lives at the IR-brane end of AdS3

(this picture is further visualized by the plots representing
the locations of the various modes in Figs. 2 and 4). The
gauge fields are 3-dimensional and propagate in the AdS3

part of the lattice.
We will start by describing the mass and hopping terms

(23) in its 2N � 2N diagonal blocks,

 M � diag�M�1;M�2;M �; (24)

and add terms coupling the �’s to the  ’s at the end of this
subsection. Each of these mass matrices breaks up into
N � N blocks which represent either Dirac- or Majorana-
type masses. For example, for each �1;2 and  , we have a
2N � 2N mass matrix of the form:

 M� �
M�Majorana M�Dirac

M�Dirac M�Majorana

� �
: (25)

If we chose M�Majorana � 0 and

 aRM�D �

1 0
��1� �� 1 0

0 ��1� �� . .
.

0
1 0

��1� �� 1

0BBBBBB@

1CCCCCCA;

(26)

then we would have an exponentially light, left-handed
Weyl mode localized closer to the N-th slice and an ex-
ponentially light right-handed Weyl mode peaked at site 1.
We will call these modes n1

� and n1
�, respectively.

If we now add an equal Majorana and Dirac mass term
for the light neutral modes, then a Majorana-Weyl spinor
will remain massless. In the low energy theory this mass
term has the appearance:

 

m
a
�n1
�n

1
� � �n1

�n
1
� � h:c:�; (27)

so that the imaginary part of n1
�, stays massless and m is a

number of order one. (For now, the imaginary part of n1
� is

also massless; note, however, that it is localized near the
UV brane of the warped part of space and will further get a
mass by coupling to the UV-brane localized charged fer-
mions (32) below.) This additional mass (27) between the
light neutral modes is described by an entry in the top right
corner of both the Dirac and Majorana part of the mass

FIG. 2. The wave functions of the exponentially light modes
before adding masses which couple the neutral and charged
sectors. The right half is charged with the l� mode localized
on the far right. The n� mode is localized on the far left. The two
modes in the middle, n� and l� will pick up a mass though the
Yukawa coupling with the Higgs on the wall.
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matrix, modifying Eq. (25) accordingly:

 aRM�1M �

0 . . . 0 1
. .

.
0 0

..

.

0

0
BBBB@

1
CCCCA;

aRM�1D �

1 0 1
��1� �� 1 0

0 ��1� �� . .
.

0
1 0

��1� �� 1

0BBBBBB@

1CCCCCCA:

(28)

For the �2 masses we can completely repeat this struc-
ture with only a change in the sign of the Majorana type
mass relative to the Dirac type mass in the top right corner
of the matrix (28), or equivalently, by adding a mass term
to the low energy theory of the form (29):

 

m
a
�n2
�n

2
� � �n2

�n
2
� � h:c:�: (29)

This leaves the real part of n2
� as an exponentially light

mode. The n2
� mode is also exponentially light. However, it

is localized near the UV brane of the warped part of space
and will further get a mass by coupling to the UV-brane
localized charged fermions, see Eq. (32). Combining the
modes of n1 and n2, then, we have a massless Weyl mode
localized near site-1 (the leftmost end in Fig. 2), which in
the limit N ! 1 exhibits a chiral symmetry:

 n� � =�n1
�� � i<�n

2
�� ! ei	n�: (30)

For the charged fermions we make use of the AdS3

background. The continuum action of a Dirac fermion in
a slice of AdS3, its zero mode solutions, and the relevant
boundary conditions are given in Appendix A, where also
the discretized version is presented. As shown there, the
Majorana masses for the charged fermions are zero and the
Dirac type masses are given by:
 

� 2aRwMD 

�

	 0 . . .

�
����
w
p

w 	w 0 . . .

0
����
w
p

w2 	w2 0 0

0 0 . .
.

0 0

0 0 . .
.

	wN�2 0

0 0 . . . �
����
w
p

wN�1 	wN�1

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
;

(31)

where 	� 1 is defined in Appendix A and w � 1=�1� a�
is the local warp factor. As shown in the appendix, by
appropriately choosing 	, we have a light left-handed
mode, l�, peaked at site N (the IR brane). In addition,

the unwanted right-handed companion, l�, is peaked at site
1 (the UV brane).

Finally, to obtain the desired chiral spectrum, we need to
couple the neutral to the charged modes through the UV
boundary Higgs. Before doing that, however, let us take
stock of the spectrum. As shown in Fig. 2, there are two
light Weyl modes: l� and l�, localized near the UV brane
(middle of figure) and IR brane (right-hand side) of the
warped part of space. There are also four light Majorana-
Weyl modes: =�n1

��, =�n1
��, <�n

2
��, and <�n2

��. The
=�n1

��, <�n
2
��—the n� of (30))—are localized at the

leftmost end while the =�n1
��, <�n2

�� are close to the UV
brane. By showing the wave functions, the figure tells us
where each mode is localized. Because the� and�modes
are spatially separated we may give a mass to the l� mode
without significant impact on the l� mode. This separation
is the reason for using the domain-wall fermions in the first
place. In the large N limit the l� mode becomes massless.
In addition, in that limit, the massless neutral modes de-
couple because their wave function has zero overlap with
the charged fermions and gauge modes.

The masses which couple neutral and charged modes via
the UV-brane Higgs show up as off-diagonal entries in the
mass matrix from Eq. (24). Instead of writing a large
matrix, their contribution can be written simply in terms
of the Lagrangian as:

 i��y1
� 0��

1
N� � y2

� 0��
2
N�� � h:c:; (32)

where h�iy1;2 are of order one. These masses are sufficient
to lift the mass of the l� mode to the KK scale and to
transmit the breaking of the chiral flavor symmetry to
reproduce the anomaly as we will discuss below.

The qualitative expectations for the mass spectrum—
based on known domain-wall fermion spectra and on fer-
mion spectra in AdS backgrounds, see Appendix A—can
be further substantiated by numerically solving for the
eigenvalues and eigenvectors of the mass matrices for
various values of N. Figure 3 shows the mass spectrum
resulting from the diagonalization of the mass matrices in
Eqs. (18), (24), and (32). This figure includes the results of
all mass terms discussed in this section. The mass ratios of
the first KK modes to the lightest gauge mode, m2

A1=m
2
A0

and m2
f1=m

2
A0, are plotted as a function of N. The KK

modes are getting heavier than the light gauge mode as
expected. The log of the ratio of the light fermion to the
light gauge mode, 2 log�mf0=mA0�, is also plotted and
shows that one light charged fermion remains.

C. Anomalies

The condition for a 2-dimensional U�1� gauge theory to
be free of gauge anomalies is that the sum of the squares of
the charges of the left- and right-handed modes must
cancel:
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X
i

q2
i;left �

X
j

q2
j;right � 0: (33)

An example of such a theory which we will use here is the
‘‘345’’ theory where there are left-handed fermions of
charge 3 and 4 as well as right-handed fermions of charge
5:

 3�; 4�; 5�: (34)

Before adding gauge breaking mass terms, our warped
domain-wall construction necessarily contains the mirror
fermions as well, 3�, 4�, 5�. As mentioned above, the
Lorentz structure requires that left- and right-handed
modes be lifted in pairs and so at least one neutral mode
is needed in order to provide enough mass terms to remove
the unwanted charged modes.

If only Dirac masses are contained in the theory, then
one global fermion number U�1� symmetry will remain. A
current of charged fermions may end up in neutral modes,
with the gauge charge absorbed by the Higgs field.
However, the target continuum theory violates fermion
number and the ’t Hooft operator has the (schematic) form:

 �3��
3@��4��4��5��5; (35)

where 4� denotes a Weyl fermion field representing a left-
handed Weyl fermion of U�1� charge 4, etc. Therefore
Majorana masses are needed in order to introduce a viola-
tion of fermion number into the lattice (this has already
been noted in [20]).

To describe them, recall that, as discussed in the pre-
vious subsection, we introduced two neutral Dirac modes
�1;2, which led, before adding any of the mass terms (27),
(29), and (32), to four Weyl fermions—the left-handed
ones (n1;2

� ) localized near the UV brane and the right-

handed ones (n1;2
� ), localized at the far left in the ‘‘flat slice

bulk.’’ The wave functions of the lightest modes of �1;2 as
well as those of the 345 Dirac fields are shown in Fig. 4.

We now add the equal or opposite strength Majorana and
Dirac masses, (27) and (29), to the neutral modes, so that
one massless neutral Dirac mode remains—the n� at the
far left end and n� near the UV brane. Finally, we add the
mass terms (32), coupling the unwanted charged mirror
modes and the n� mode. In addition, we add Majorana
mass terms of the form �1

N� 
3
1� (and similar for all un-

wanted charged modes ( 3
1�,  4

1�,  5
1�, including appro-

priate powers of the Higgs field) violating the fermion
number symmetry. Note that there are an equal number
of left- and right-handed fields to which we are giving a
mass.

With all of the masses discussed above, the only remain-
ing exact symmetry in the theory is the global part of the
gauge symmetry, the 345 symmetry. However, the ’t Hooft
operator preserves also another global symmetry, 133,
where the 4� and 5� transform with 3 times the phase of
the 3�. We speculate that either this 133 symmetry will
emerge in the IR, or else we have found a theory which
preserves no symmetry beyond the gauged 345, which can
happen if 133-violating operators (e.g., 4-fermi operators
in 2 dimensions) remain relevant in the IR. Later on, we
will present a ‘‘one-site’’ model with GW fermions, where
both the 345 and 133 symmetries are exact symmetries of
the partition function while the fermion number has the
correct anomaly.

D. Scalar couplings

While the gauge couplings appear to be perturbative, we
verify here that the longitudinal mode of the gauge boson is
not strongly coupled to the fermion wave functions as it is
in the AdS5 case. We begin by writing in the gauge terms
and then calculating the relevant Yukawa coupling.

We will do this calculation in the 3-dimensional contin-
uum language in AdS where an analytic expression for the
gauge boson wave function may be found. We take the

FIG. 4. A schematic representation of the location of all (ex-
ponentially light) modes which are needed for the 345 theory to
have the correct anomaly properties. The right half is gauged; the
left is neutral. After introducing the UV-brane mass terms from
Eqs. (27), (29), and (32), the only remaining light modes will be
the 3�, 4�, and 5� from the right-hand side as well as one Weyl
combination of the n1

� and n2
� from the left-hand side.

20 30 40 50
N

-30

-20

-10

10

20

30

40

FIG. 3 (color online). (Color online) Mass ratios of the light
modes as a function of lattice size, N. The growing lines give
�mKK

mA0
�2, the ratio the KK modes’ mass to that of the light gauge

boson. The green (highest intercept) line is for the first gauge KK
mode, while the red (middle intercept) line is for the first fermion
KK mode. The falling (negative intercept) line gives the mass of
the lightest fermion mode, mf0, by showing 2 ln

mf0

mA0
. Clearly,

there is an exponentially light fermion in the spectrum.
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lightest longitudinal gauge mode to be:

 A� � f0�z�@�’�x�: (36)

By using the previously found wave function for arbitrary
mass, Eq. (11), and considering the kinetic terms for the
gauge field we can find the proper normalization:

 f0�z� �
����
R
p

ln�z=R�: (37)

To see how this longitudinal mode couples to the fermions
we look at the gauge terms in the fermion kinetic term:

 

Z
d2xdz

�
R
z

�
2
��2i���ig3�� � �A� � � � �A� ��; (38)

where we are working in the A3 � 0 gauge. In terms of the
longitudinal mode after an integration by parts we have

 2g3

Z
d2xdz

�
R
z

�
2
f0�z�’	@�� � � �� � @�� � � ��
:

(39)

After expanding these derivatives we have four terms in-
volving derivatives on the fermions. By making use of the
equations of motion we can turn these four terms into
expressions involving the fermion masses, the @z, and the
gauge modes. The terms involving the bulk mass and
gauge modes cancel, leaving us with

 g3

Z
d2xdz

�
R
z

�
2
f0�z�’

�
�@z � � � � � �@z �

� @z � � � � � �@z � �
2

z
� � � � � � � ��

�
: (40)

We can now perform an integration by parts in z on two of
these terms (for example the first two). Most terms cancel
(including the 2=z terms) leaving us with:

 g3

Z
d2xdz

�
R
z

�
2
@zf0�z�’�x�� � � � � � � ��: (41)

The fermion kinetic term has the same leading factor of
�R=z�2 and so we should rescale the fields to get canonical
kinetic terms. This leaves us with a Yukawa coupling
between the longitudinal mode, ’, and the fermions:

 y�z� � g3@zf0 �
g3

����
R
p

z
: (42)

From the scaling requirements in Section III A we found
that we must have g2

3R� 1. This means that our Yukawa
coupling is smaller than the local scale 1=z which sets the
fermion masses at that location. In addition, this Yukawa
coupling has units of mass as we expect for a coupling
between a 2-dimensional scalar and two 2-dimensional
fermions.

To see that this Yukawa really is perturbative we can
estimate the size of loop corrections to the fermion mass
and kinetic terms. Consider one-loop contributions to the
fermion two-point function which involve one scalar and

one fermion in the loop. The external fermion legs are in
the site basis (at sites i and j), but the propagator in the loop
must be in the mass eigenstate basis. This gives a contri-
bution:

 yiyj
X
k

	ik	jk
Z
d2p


�p� �m
�k�
 

p2 �m�k�2 � i�

�
1

�q� p�2 �m2
’ � i�

; (43)

where 	 relates the site and KK bases:

 �i �
X
k

	ik��k�: (44)

After combining the denominators and shifting the mo-
mentum we see that on dimensional grounds the result
scales as

 

X
k

	ik	jk
yiyj

m�k�2 

�
�q� �m
�k�
 �: (45)

First, let us heuristically argue that this is small and then
compute this matrix using our numerical solutions for the
wave functions. The KK modes tend to be localized in that
part of the space which corresponds to their mass: z�
1=m. If the modes were exactly localized then the matrix 	
would be diagonal. Furthermore 	 is unitary and the
masses scale like m�k� � 1=�azk� for most of the KK
modes. In that case we have

 Rg2
3a

2�ij�
�q� �m
�i�
 �: (46)

This is clearly a small correction to the action at each site.
In fact the matrix relating site and KK bases is not

diagonal, but we can find a numerical solution for 	ij
and the KK masses. We may then calculate this sum over
KK modes in Eq. (45). (This sum includes the charged
mode, l�, which became heavy along with the neutral
mode, n�). Doing this shows that the results are in fact a
small number (of order a2) times our leading small factor
of Rg2

3. Note that the exchange of the fermion zero modes
has been ignored because it is IR divergent. However, that
IR divergence is present in the target theory as well, so it is
to be expected (see Appendix B for a calculation of the
domain-wall beta function in the deconstucted version of
the theory).

IV. A ONE-SITE CONSTRUCTION

In this section, we present a one-site model using GW
fermions which has precisely the light field spectrum dis-
cussed at length above. It also exhibits exactly the right set
of symmetries and anomalies to be a candidate for a lattice
formulation of the 345 theory. The advantage of this for-
mulation is that its chiral symmetries—which are only
expected to emerge at large N in the warped domain-wall
model—are exact symmetries of the lattice theory. Thus
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one can study their consequences, including the associated
exact (anomalous or nonanomalous) lattice Ward
identities.

Furthermore, a strong-coupling analysis at the end of
this section indicates that the spectrum of this theory is
chiral and that this proposal may be a road to constructing
the fermion measure for chiral gauge theories with GW
fermions starting from a vectorlike theory, where the mea-
sure is well defined.

In essence, the idea is to consider a ‘‘one-site limit’’ of
our construction of Section III, using 2-dimensional GW
fermions in order to implement exact lattice chiral symme-
tries. Schematically, the field content and couplings of the
model are represented in Fig. 5. There are, for the 345U�1�
theory, three 2-dimensional Dirac fermions, �3, �4, �5,
charged under the U�1� gauge group with charges 3, 4, 5,
respectively. There is also a neutral Dirac fermion, �0.

The fermion fields live on the sites, labeled by fxg, of a 2-
dimensional lattice and their lattice action consists of
kinetic terms:

 Skin �
X

q�0;3;4;5

X
x;y

��q�x�Dq�x; y��q�y�; (47)

where Dq is the GW operator for a fermion of charge q,
obeying the GW relation (for a review of the GW relation
and exact chiral symmetry on the lattice, see, for example
[3] and references therein):

 fDq; 
5g � Dq
5Dq: (48)

Here 
5 is the appropriate matrix in 2 dimensions and the
lattice spacing has been set (from now on) to unity. The
lattice action (47) has a large number of exact global
symmetries:

 

Y
q�0;3;4;5

U�1�q;� �U�1�q;�; (49)

where U�1�q;� acts only on the Dirac fermion field of
charge q as follows:

 �q ! ei	q;�P��q
��q ! ��qe�i	q;�P̂� ; (50)

where P� � �1� 
5�=2 and P̂� � �1� 
̂5�=2 with 
̂5 �
�1�D�
5 (
̂2

5 � 1 follows from the GW relation (48);
also note that �q and ��q transform differently, which is
perfectly natural in Euclidean space). The projector used
for every �q involves the appropriate GW operator Dq.

That the symmetries in Eq. (50) are all exact follows
from P̂�D � DP�—yet another consequence of the GW
relation (48). Furthermore, the measure of integration is
not invariant under any individual U�1�q;� or U�1�q;�.
Instead, under a U�1�q;� transformation (50) with parame-
ter 	q;�, the measure changes:
 

U�1�q;�:
Y

r�0;3;4;5

d ��rd�r!
Y

r�0;3;4;5

d ��rd�r

�	1� i	q;�Tr�P�� P̂��


�
Y

r�0;3;4;5

d ��rd�r

�

�
1� i	q;�Tr

�

5�

1

2
Dq
5

��
:

(51)

Eq. (51) implies that for vectorlike symmetries U�1�qV
(	q;� � 	q;�), there is no Jacobian and thus they are
true symmetries of the theory. On the other hand [21,22],
since Tr�
5 �

1
2Dq
5� � n0

� � n
0
� (the difference be-

tween the number of left- and right-handed zero modes
of Dq), the continuum violation of charge for anomalous
symmetries is reproduced by the nonzero Jacobian.

To construct our candidate 345 chiral lattice theory, we
introduce a unitary Higgs field, ��x�, living on the lattice
sites (we assume that the issues with building a UV com-
pletion, or the necessity thereof, see [23], for the unitary
Higgs field are independent of the problem of chirality on
the lattice). We will use��x� to write all possible Dirac and
Majorana mass terms that violate all symmetries (49) of the
kinetic term (47) except:

 U�1�3;� �U�1�4;� �U�1�5;� �U�1�0;�: (52)

The explicit form of the mass matrix is described in what
follows, Eq. (55), and is also schematically indicated in
Fig. 5. The lattice path integral measure is not invariant

3̄+

4−

n−

n̄+

4̄+

3−

5̄+

5−

FIG. 5. The 2-dimensional model using GW fermions. The
lines represent arbitrary O�1=a� masses of both Dirac and
Majorana type. Because of the chiral symmetry present in the
GW formulation, each fermion is exactly massless before an
explicit mass term is added. Therefore, four modes remain
massless: n�, 3�, 5�, and 4�.
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under all four U�1� symmetries (52) of action. It only
respects three linear combinations: the U�1�345 and the
U�1�133 chiral symmetries—linear combinations of
U�1�3;� �U�1�4;� �U�1�5;� with coefficients 345 and
133, respectively—and the U�1�0;�, which acts only on
the n� � P��0 neutral field, whose dynamics are ex-
pected to decouple from the physics of the charged sector.

The 345 and 133 U�1�’s are exact global symmetries of
the partition function. On the other hand, the third linear
combination of the first three U�1�’s in Eq. (52)—the
fermion number symmetry of the light fields, which can
be taken to be the ‘‘111’’ symmetry—has an anomaly
exactly reproduced by the Jacobian, Eq. (51), of the cor-
responding transformation of the measure; see [21,22], and
references in [3]. Thus, the lattice theory obeys exact Ward
identities, including the anomalous ones. For example,
using (51) one finds that the 111 transform of an operator
O obeys the exact lattice Ward identity:

 h�	111
Oi � i

	
2
hOTr	
5�D3 �D4 �D5�
i: (53)

The continuum limit expansion Tr
5Dq �
R
d2x���F��

[22] implies that the anomalous Ward identity (53) has a
continuum limit exactly as expected.

To ensure that the dynamics of this theory reproduce that
of the desired unbroken chiral gauge theory, we next focus
our attention on the coupling of the Higgs field to the
fermions, as well as on its kinetic term (i.e., the mass
term for the gauge field). In particular, we will study the
possible existence of the strong-Yukawa-coupling sym-
metric phase (recall again the strong-coupling analysis of
[12] which showed that in the waveguide model the spec-
trum in this phase was vectorlike). Remarkably, as we find
below, to leading order in the strong-Yukawa-coupling
expansion and small gauge coupling—precisely the re-
gime where the waveguide idea broke down—there appear
no new massless modes and the spectrum of the unbroken
gauge theory is now chiral.

We begin by writing the most general mass matrix which
breaks the symmetries of Eq. (49) to the four chiral U�1�’s
of (52). To this end, we relate the Dirac fields �q to their
chiral components: �q;� � P��q, ��q;� � ��qP̂�; note
that the definition of the ��� chiral modes is now both
momentum and gauge-background dependent. We then
write down the most general Dirac and Majorana cou-
plings—giving mass of order the inverse cutoff—to the
fields:

 X� � ��
T
3;�

��3;��T
4;�

��4;�� Y� �

�5;�
��T

5;�
�0;�
��T

0;�

0BBB@
1CCCA; (54)

where T denotes transposition (we treat unbarred Dirac
spinors as columns and barred ones as rows) of the form:

 Smass � �
X
x

X��x�MY��x�: (55)

The structure of Smass is evident from Fig. 5, where both
Dirac and Majorana masses are to be included for the
connected fields. We note that if Majorana masses are
omitted, there will be extra unbroken chiral symmetries
and unlifted zero modes in an instanton background, re-
sulting in failure to reproduce the ’t Hooft vertex (35);
moreover, consistent with the symmetry argument, a care-
ful analysis shows that with Dirac masses only, the mass
matrix (55) has a zero eigenvalue at the end of the Brillouin
zone; details will be given in a future publication.

Instead of writing explicitly the entire matrixM, we give
an example of a Dirac mass term: ��0;���

��3�3;� �
��3;��3�0;�, and of a Majorana mass of the form:
��5;�
2�8� ��3;��

T ��T
3;�
2����8�5;�. Here 
2 is the

(hermitean) 2d gamma matrix that appears when
Majorana masses are written using Dirac spinors, while
� is the unitary Higgs field. Thus, the explicit form ofM in
(55) contains appropriate powers of � and 
2-insertions.
The general mass matrix (55) violates all U�1� symmetries
from (49) and preserves the desired U�1�3;� �U�1�4;� �
U�1�5;� �U�1�0;� symmetry (52).

The total action of our lattice model is, finally:

 S � SWilson � Skin � Smass �
�
2

X
x

X
�̂

	2

� ���x��U�x; �̂���x� �̂� � h:c:�
; (56)

where Skin is defined in (47), Smass —in (55), the last term is
the kinetic term for the charge-1 unitary lattice-Higgs field
�, and SWilson is the usual plaquette action for the link
variables U�x; �̂� (appropriately modified to restrict the
gauge field path integral to admissible gauge field back-
grounds, see [3]).

In the broken phase, when h�i � 0, we already analyzed
the fermion spectrum and found that there are four light
modes: the charged �3;�, �4;�, �5;�, and the neutral
�0;�. The dynamical issue that needs to be addressed is
the existence of an unbroken phase where h�i � 0, such
that the gauge boson is ‘‘massless.’’ The gauge symmetry
can thus be thought of as ‘‘emerging’’ in the IR [24]. The
essential idea behind the ‘‘Foerster-Nielsen-Ninomiya
(FNN) mechanism’’ [24] is that integrating out the fluctua-
tions of the unitary Higgs field, whose correlation length in
the symmetric phase is a few lattice spacings, results in
renormalization of the gauge coupling plus a tower of
higher-dimensional gauge invariant local operators which
are irrelevant for the long-distance physics of the gauge
theory. The fact that lattice-Higgs models exhibit such
behavior is well known; for the 2-dimensional case, see
also [23,25] for a general analysis in various dimensions.
Previous discussions of the use of this mechanism to the
lattice definition of chiral gauge theories are given in
Refs. [26,27].
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In our case, an important requirement further to the
‘‘restoration’’ of the gauge symmetry at distances larger
than a few lattice spacings should be that there are no new
massless fermions in addition to the desired massless chiral
spectrum.

To study the continuum limit in the asymptotically free
theory it is sufficient to begin at leading order in the g! 0
expansion; in fact, apart from a few comments, here we
will confine our analysis to this limit. This freezes the
gauge degrees of freedom to U � 1. The resulting theory
is a unitary Higgs-Yukawa model whose phase structure
can be studied in various limits. We are interested in the
symmetric phase of the lattice O�2� model and will take
� < �c (simple random-walk intuition leads to the estimate
��1
c � 2d in d dimensions on a hypercubic lattice [24])

while also taking the �! 1 limit. Recall that this was
precisely the limit where the strong-coupling analysis of
the waveguide showed that new massless fermions were
appearing at the waveguide boundary, see our discussion at
the end of Section II and Ref. [12].

Since d� � d��d��, the lattice partition function
factorizes, in a trivial gauge background, into a product
Z � Zlight � Zmirror:
 

Zlight �
Z Y

x

d�3;�d�4;�d�5;�d�0;�e�Skin��
light�

Zmirror �
Z Y

x

d�3;�d�4;�d�5;�d�0;�d�

� e�S
mirror
kin ��mirror��S�����Smass��

mirror�: (57)

For conciseness, we omitted the conjugate fields in the
measure and denoted collectively by �light the fields
�3;�, �4;�, �5;�, �0;�, and by �mirror the heavy charged
mirrors �3;�, �4;�, �5;�, and the neutral �0;�. The mass
term is given by Eq. (55) and the kinetic term for� by (56).

The most important point is the splitting of the kinetic
terms (47) into light and mirror modes in (57). This follows
from the identity (note that it also holds in an arbitrary
gauge background):

 

�� qDq�q � ��q;�Dq�q;� � ��q;�Dq�q;�; (58)

where the cross terms vanish due to the GW relation (48).
Thus the mirror and light partition functions factorize at
g � 0; recall our discussion of Section II showing that the
lack of factorization in the kinetic terms was the cause of
failure of the waveguide. Of course, for g � 0 the factori-
zation of the measure depends on the gauge field (see
discussion in the following paragraphs), but we are only
interested in the spectrum of the Yukawa-Higgs model at
this point. We stress that the GW relation was crucial in
order for (58) to hold; we know of no other way to achieve
(58) and hence the factorization (57) on the lattice.

Finally, let us study Zmirror and its effect on the light
modes, in the �! 1 and � < �c limit. Of particular
concern is the possible appearance of extra massless states

and the associated vanishing of the mirror determinant. To
this end, we redefine the mirror fermion fields in (57)
(�3;�, �4;�, �5;�, and the singlet �0;�) by 1=

����
�
p

. This
multiplies their kinetic terms by 1=�. Thus, as �! 1, the
mirror fields kinetic terms vanish, and the mirror action
consists solely of a mass term given by (55) with � � 1.
We can now perform the integral over the mirror fermions
in Zmirror, leading to a factor of detM—by construction
manifestly nonzero and �-independent. Hence, to this
order of the strong-coupling expansion, there are no new
massless states.

Admittedly, the argument of the previous paragraph is
oversimplified. The true story is more complicated, due to
the fact that the ��� chiral components are somewhat
smeared due to the nonlocality of the chiral projectors,
and will be explained in [15]. Nevertheless, the results
there indicate that the scalar dynamics are not significantly
affected by the fermions’ quantum fluctuations, with the
conclusion that the ‘‘FNN mechanism’’ continues to apply,
and that there are no light mirror modes.

Ideally, turning on a small gauge coupling will not cause
a dramatic rearrangement of the spectrum. While the g � 0
case clearly deserves further detailed study, we expect that
the effect of the mirror fermions on the gauge field and the
light chiral fermions is parametrically suppressed by 1=�
(the one notable exception should occur if the massless
fermion spectrum is anomalous, when the gauge coupling
is turned on, a mass for the gauge boson is generated
[28,29], with the details controlled by the ultraviolet phys-
ics). To argue for this, we note that the factorization of the
partition function into mirror and light, Eq. (57), due to
(58), occurs also in fixed nontrivial gauge backgrounds
(details, including the factorization of the fermion mea-
sure, are under investigation and will be given elsewhere).
The integral over the mirror fermions can now be per-
formed as in the U � 1 case above, by noting that the U �

1 gauge field background interacts with the mirror fermi-
ons only through their kinetic terms. Thus, one expects that
all effects of the mirror fermions on the gauge field effec-
tive action are local and of order 1=�. Taking into account
the kinetic terms of � and the mirror fermions in a strong-
coupling expansion leads to corrections to �: �!
��O�1=��, as well as to other O�1=�� terms, likeP
x���x��

3���x�����3, etc., including higher powers of
�. A detailed study of the phase diagram away from the
1=� expansion is beyond our scope here; we stress again
that this stage of our analysis—the g � 0 analysis of the
Yukawa-Higgs model—was precisely where the wave-
guide model failed [12] to reproduce the chiral gauge
theory spectrum.

We should also note that nothing (except for the need,
coming from 2-dimensional Lorentz invariance, to intro-
duce the spectator neutral fermions) about the proposal
considered in this section is intrinsically 2-dimensional.
In fact, all the steps and relevant properties, including the
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factorization (58) of the GW fermion kinetic terms and the
existence of a ‘‘high-temperature’’ disordered phase of the
compact Higgs variables, hold in a 4-dimensional theory as
well, particularly in the Abelian case considered here. A
more detailed study of a similar construction of non-
Abelian chiral theories will be given elsewhere.

Finally, we reiterate why we think that this ‘‘one-site’’
proposal is of interest. It is a) a full lattice proposal (not
deconstructed—all dimensions are latticized) of a local
action and measure for a chiral gauge theory, b) the real-
ization of both the anomalous and anomaly-free global
symmetries is exactly as in the target continuum theory,
and, c) we gave plausibility arguments why the FNN
mechanism may work and the breaking of gauge symmetry
be irrelevant in the infrared.

While we have not proven that the proposal results in a
chiral lattice gauge theory, we believe that the three points
above warrant its presentation and further study. Clearly,
the study of the g � 0 dynamics currently underway [15]
has to be followed by a detailed study of the g � 0 case,
both in perturbation theory and nonperturbatively, and by a
convincing demonstration that an unbroken lattice gauge
theory with a chiral spectrum of fermions has been
constructed.

V. SUMMARY, RELATION BETWEEN THE TWO
MODELS, AND OUTLOOK

Let us first summarize the main results of this paper.
(1) We began by a study of the earlier proposal of the

warped domain-wall model [7]. Motivated by the
strong-coupling issues encountered by this proposal
in 4 dimensions [7], we turned to the simpler 2-
dimensional case, where the target 2-dimensional
chiral theory is the IR limit of a 3-dimensional
theory in a slice of AdS3. We studied in detail the
spectrum and perturbative expansion of the decon-
structed version of the theory (it is expected that this
analysis is adequate also for small enough lattice
spacing in the 2 dimensions of the target theory).
We showed through a perturbative analysis that in
the N ! 1 limit the IR theory has massless gauge
bosons and a chiral spectrum of massless fermions
in the weak-coupling regime. We found no strong
coupling of the Goldstone mode to the fermions, in
contrast to the 4-dimensional case. Thus, while our
2-dimensional study has nothing to say about the
viability of warped domain walls in the physically
interesting case of 4 dimensions, it indicates that this
proposal is still of interest and worthy of further
study. We believe that it is a useful first step towards
the full lattice study of this proposal (which still
awaits implementation).

(2) Next, we proposed a purely 2-dimensional lattice
theory, a ‘‘one-site model.‘‘ It uses the GW mecha-
nism of exact realization of chiral global symmetries

at finite lattice spacing. The model has modified,
momentum and gauge-background dependent, chi-
ral symmetries, which reduce to the usual contin-
uum chiral symmetries for the low-lying modes. The
exact chiral symmetry also ensures that the Ward
identities at finite lattice spacing are the ones of the
continuum theory. We argued, in a preliminary
strong-Yukawa-coupling analysis, for the existence
of an unbroken phase with a chiral spectrum of
fermions (at g � 0), in contrast to the analogous
phase of the waveguide model. Admittedly, a more
detailed analysis is needed; in this regard, we note
that the forthcoming results of [15] offer a strong
indication that the plausibility arguments given in
Section IV indeed hold.

The common theme of the two proposals is that the chiral
spectrum is obtained after a particular limit of a vectorlike
theory is taken, which decouples the mirrors while keeping
the gauge boson massless. Thus, both proposals are similar
to the ‘‘waveguide’’ models.

The first proposal uses warping and localization to ad-
dress the weak-coupling problems of the waveguide mod-
els, discussed in Section II and Ref. [11]) where the Higgs-
Yukawa sector of the theory is in the broken phase. On the
other hand, the ‘‘one-site’’ proposal is inherently a strong-
coupling one—it was motivated by the observation that
GW fermions avoid the left-right mixing that led to a
vectorlike spectrum in the strong-Yukawa limit of the
waveguide model [12]. The mechanism of the ‘‘one-site’’
proposal depends on the existence of the strong-coupling
symmetric phase of the Higgs-Yukawa theory and on the
validity of the ‘‘FNN mechanism.’’

For finite values of N and a we expect that these theories
are not equivalent—the global symmetries are different
since the 1-site model respects the 133 symmetry, while the
warped domain-wall model does not. In addition, the GW
fermion model has a massless gauge mode, while the
domain-wall model has just a light gauge mode. Thus, if
they are the same it could only be in the intermediate
energy regime.

Which of the two proposed lattice theories is more
amenable to study in practical simulations is a question
that we have not touched upon. We note that, once the two
noncompact directions are latticized via Wilson fermions,
the action of our proposed ‘‘warped domain wall’’ will be
manifestly reflection positive. On the other hand, the ques-
tion of reflection positivity (Hermiticity in real time) of the
single-site model deserves further study; to this end, a
Hamiltonian formulation might be desirable. Here, we
only point out that nonpositivity may be irrelevant in the
continuum limit—examples of nonreflection positive lat-
tice actions appear commonly in lattice constructions of
supersymmetric target theories (for a recent review, see
[30]). These lattice actions preserve some exact nilpotent
supersymmetries; in fact, demanding invariance under
these is the ultimate reason for nonpositivity. Despite non-
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positivity, however, it has been argued or shown [31,32]
that in the continuum limit the models possess a positive
self-adjoint transfer matrix.

Another issue left for future work is the positivity of the
fermion determinant. We have nothing to say about it here
and only note that both the overlap formulation of Ref. [33]
and the construction via GW fermions of Ref. [14] have a
complex measure problem: the Euclidean effective action
for 4-dimensional fermions in nonreal representations is
generally expected to be complex [34].

Finally, we note that our proposal suggests a way to
define the fermion measure for the construction of [14] by
obtaining the unbroken chiral gauge theory—our light
partition function Zlight of (57))—from a particular limit
of a vectorlike theory. The fermion measure in our vector-
like models is well defined and hard questions of how its
phase or dimensionality change as one varies the gauge
background do not arise. To this end, it would be desirable
to understand in more detail the behavior of our ‘‘single-
site’’ model in topologically nontrivial backgrounds.
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APPENDIX A: FERMIONS IN CONTINUUM AND
DISCRETIZED SLICE OF ADS3

For completeness, in this appendix we present the for-
mulas relevant for the description of fermions in a slice of
AdS3 in the continuum and on the lattice (deconstructed
version). These expressions are relevant for obtaining the
mass matrix (31) of the charged fermions.

The bulk action for a 3-dimensional Dirac fermion in a
slice of AdS3, in terms of their 2-dimensional Weyl com-
ponents, is:
 

Sbulk
� �

Z
d2x

Z R0

R
dz
�
R
z

�
2
�

2i � �@� � � 2i � �@� �

�
i
2
� � �@z � � @z � � � � � �@z �

� @z � � �� � i
mR
z
� � � � � � � ��

�
; (A1)

wherem is a real mass parameter (odd under 3d parity) and
R is the AdS3 curvature radius (the contribution of the spin
connection is ‘‘hidden’’ and can be recovered upon inte-
grating by parts some of the z-derivatives). The equations
of motion are trivially solved for the fermion zero modes
(@� � @� � 0) and yield two solutions of opposite chi-
rality:

  �0�� � c1z
1�mR;  �0�� � c2z

1�mR: (A2)

Clearly, the zero modes (A2) can be localized anywhere
with the right choice ofmR. To see that, let us substitute the
 � zero mode (and set  � � 0) into the action (A1):

  �0�� � ���x�
�
z
R

�
1�mR

; (A3)

where ���x� is now an x0, x1 dependent function—the
wave function of the zero mode; note that ��x� has the
same mass dimension (one) as  . Clearly, only the
� �@� � term in (A1) contributes, giving the following

2-dimensional action for ���x�:

 Sc1
� R

Z
d2x2i ����x�@����x�

Z R0=R

1
dyy�2mR

�
R�R01�2mR � R1�2mR�

1� 2mR

Z
d2x2i ����x�@����x�:

(A4)

We interpret (A4) by taking various limits: if mR> 1=2,
we can certainly take R0 ! 1, i.e., the IR brane to infinity,
and still have a finite action 2-dimensional mode. This
implies that the �� zero mode is localized near the UV
brane if mR> 1=2. If mR< 1=2 the localization is nearer
the IR brane (this is clear from (A2): for, say, negativemR,
we have  �0�� growing at large-z, indicating IR
localization).

Clearly, the story is the opposite for the  �0�� zeromode—
the two cases simply differ by the sign of mR—so when
mR<�1=2 (regime where  �0�� was IR-localized) we have
UV localization of  �0�� . Conversely, when mR>�1=2,
 �0�� is IR-localized.

Next, we discretize the following continuum action,
obtained from (A1) upon integration by parts and dropping
of the boundary terms—this is needed, as in [7], in order to
obtain Wilson terms and hence no doublers in the discre-
tized bulk:
 

Sbulk
� �

Z
d2x

Z R0

R
dz
�
R
z

�
2
�

2i � �@� � � 2i � �@� �

� i� � �@z � � @z � � ��

� i
mR� 1

z
� � � � � � � ��

�
: (A5)

Now we have N 2d Dirac fermions � k�;  k��
T , k �

1; . . .N, each charged under the corresponding gauge
group,  k� ! gk 

k
�; @� ! D� � @� � iA

k
�. Gauge in-

variant ‘‘hopping’’ terms between the different groups
can be written using the unitary bifundamental links Uk,
k � 1; . . .N � 1.

The bulk lattice fermion Lagrangian we thus (note that
@z in (A5) is replaced by the symmetric lattice derivative)
obtain is:
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 Lbulk
� � i

XN
k�1

aRwk	2 � k�D� 
k
� � 2 � k�D� 

k
�


�
XN�1

k�1

w2k�1� � k�1
� Uk 

k
� � � k�U

y
k  

k�1
� �

�
XN
k�1

w2k�1�1� awmR�� � k� k� � � k� 
k
��:

(A6)

Similar to the gauge field case, we define new fermion
fields:

  k� !  k��2w
kaR���1=2�; (A7)

and the complex conjugate for the � fields. The new fields
now have proper canonical dimension 1=2. We also define:

 	 � 1� awmR; (A8)

in terms of which the new bulk Lagrangian is:
 

Lbulk
� � i

XN
k�1

� k�D� k� � � k�D� 
k
�

�
XN�1

k�1

wk��1=2�

2awR
� � k�1
� Uk 

k
� � � k�U

y
k  

k�1
� �

�
XN
k�1

wk�1 	
2awR

� � k� 
k
� � � k� 

k
��: (A9)

The mass matrix of Eq. (31) can be then easily read off
Eq. (A9). It is also possible to use Lbulk

� to find analytically
the zero modes in the discretized version and show that
they are well approximated by the continuum expressions
(A2) at large N.

APPENDIX B: DOMAIN-WALL �-FUNCTION

Our warped domain-wall construction arising from
AdS3 has the spectrum of fermions that we expect for a
chiral gauge theory. As explained in Section III B the tower
of KK modes becomes heavy and the light neutral modes
decouple in the N ! 1 limit. Since this theory is pertur-
bative in the large N limit, we expect naı̈ve decoupling
arguments to hold for individual modes.

One might wonder, though, if the large number of modes
could have a nontrivial contribution even in the IR.
However, the masses of most of the KK modes for our
deconstructed AdS3 are given approximately by:

 mn � O

�
w�n

aR0

�
: (B1)

Only the lightest and heaviest handful of modes deviate
from this expression (this spectrum of modes is different
from the 3-dimensional continuum where the spacing is
linear in n). These masses are rising exponentially, and so
we expect that the contribution to an IR propagator from all

N modes is not much larger than the contribution from just
one mode at the KK scale: 1=R0.

To verify this expectation, we outline here a 2-
dimensional continuum calculation of the 
-function for
our theory in the IR using all of the fermions in the entire
mass matrix. We may write our fermion Lagrangian as

 

i
2
� ~�y�; ~�

y
��

D� � ~MT

~M D�

� � ~��
~��

 !
; (B2)

where ~M is related to the full fermion mass matrix given in
Eq. (23). The only difference being that some rows were
interchanged since our action here is written with �y

rather than �T . The appropriate covariant derivative is
D� � @� � iĝ f̂ A�;0�x�, where A�;0�x� is the 2-
dimensional wave function of the lightest gauge mode, ĝ
is the charge matrix, diagonal with either the site charges gi
for charged modes or zero for neutral modes, and the
matrix f̂ has the wave function of the gauge boson zero
mode down its diagonal entries: f̂i;j � fi�i;j, so that these
factors together reproduce the gauge coupling of the light-
est mode. We are only interested in the lightest gauge mode
since we want the one-loop beta function at low energies.
The corresponding wave function is given in Eq. (37), or it
can be found from the gauge boson mass matrix.

The momentum space fermion propagator can be written
as:

 G�p� � �2i p� � ~MT

~M p�

� �
�1

: (B3)

The one-loop correction to the A�A� correlator is:

 

Z
d2pTr

ĝ f̂
2 0
0 0

 !
G�p�

ĝ f̂
2 0
0 0

 !
G�q� p�

" #
; (B4)

and similarly for the A�A� or A�A� correlators. These are
all well defined matrices and may be manipulated numeri-
cally. More specifically, we can plot the momentum de-
pendence of the integrand for the one-loop correction in the
IR and verify that it is what we expect for a chiral theory.
Only the light left-handed modes: 3� and 4�, should
contribute to the A�A� correlator and only the light
right-handed mode: 5� should contribute to A�A�. The
A�A� correlator only gets contributions from the massive
modes and so it should be suppressed by the KK scale
(whatever regulator is used to define our formal continuum
2-dimensional perturbative expansion also contributes to
the A�A�, with a coefficient that can be determined solely
by demanding gauge invariance in the anomaly-free the-
ory, hence we need not specify it; see, e.g., the calculation
of the 2-dimensional anomaly in [35]).

Since the 345 theory is anomaly-free, the contribution
from the left- and right-handed modes to their respective
A�A� and A�A� correlators will be equal; it is therefore
sufficient to consider the anomalous theory of
subsection III B, where there was only one light charged
field, l�. By numerically calculating and plotting the mo-
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mentum dependence of the integrand of Eq. (B4) we see
that there is a pole at both p� � 0 and q� � p� � 0. The
coefficient of this pole is in fact approximately g2

2, the
charge of the light fermions under the restored gauge

symmetry. The related expressions for the A�A� and
A�A� correlators do not show any momentum poles. We
therefore conclude that this theory gives the appropriate
chiral 
-function in the IR.
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