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We extend the ordinary 3D electromagnetic duality to the noncommutative (NC) space-time through a
Seiberg-Witten map to second order in the noncommutativity parameter �, defining a new scalar field
model. There are similarities with the 4D NC duality; these are exploited to clarify properties of both
cases. Up to second order in �, we find that duality interchanges the 2-form � with its 1-form Hodge dual
?� times the gauge coupling constant, i.e., �! ?�g2 (similar to the 4D NC electromagnetic duality). We
directly prove that this property is false in the third order expansion in both 3D and 4D space-times, unless
the slowly varying fields limit is imposed. Outside this limit, starting from the third order expansion, �
cannot be rescaled to attain an S-duality. In addition to possible applications on effective models, the 3D
space-time is useful for studying general properties of NC theories. In particular, in this dimension, we
deduce an expression that significantly simplifies the Seiberg-Witten mapped Lagrangian to all orders in
�.
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I. INTRODUCTION

The 4D noncommutative (NC) electromagnetic duality,
up to the subleading order in � or in the slowly varying
fields limit [1,2], via the Seiberg-Witten map [1], relates
two U�1� gauge theories and has a curious property [3–5]:
one has � as its noncommutativity parameter, while the
other has ?�g2 (where ? is the Hodge duality operator and
g2 is the gauge coupling constant). This is more than a
simple curiosity; it suggests a consistency problem [3,4].
Employing the standard quantization programme, it is well
known that a timelike noncommutativity parameter
(������ < 0) leads to unitarity violation [6]. Since � is
spacelike iff ?� is timelike, the above results suggest that a
modification on the quantization programme of NC theo-
ries is necessary [7]; otherwise only lightlike noncommu-
tativity (������ � 0) may be consistent with the U�1� NC
theory [4].1

Since the role of electromagnetic duality in NC theories
is so relevant, in this work we extend it to the 3D space-
time and evaluate the necessity of the slowly varying fields
limit from a classical field theoretical perspective, in order
to find what the fundamental properties of this duality are.
Many arguments of Ref. [3] depend on the space-time
dimension (e.g., the 4D space-time is the only one in which
� and ?� are both 2-forms and the S-dual massless gauge

fields are both 1-forms); therefore a natural question is how
the NC electromagnetic duality presents itself in other
dimensions, and to what extent the properties of the 4D
NC electromagnetic duality can be extended to those. From
all possibilities, the 3D space-time seems to be a natural
option. In this space-time, we establish to second order in �
the dual scalar action (consistently with the rule �! ?�g2)
and we show that many terms of the Seiberg-Witten
mapped action can be considerably simplified. The neces-
sity of the slowly varying fields limit, to preserve the rule
�! ?�g2 and therefore S-duality,2 starts from the third
order in � for any space-time dimension (with D � 2).

This paper is organized as follows: after a review of the
ordinary 3D electromagnetic duality, we establish its ex-
tension to the NC space-time up to first order in �, provid-
ing the duality map and some physical details. In the fourth
section, we extend this duality to second order and, through
the Seiberg-Witten differential equation, analyze its behav-
ior to higher orders. Finally, in the last section, we present
our conclusions.

II. REVISITING THE 3D ELECTROMAGNETIC
DUALITY

To introduce our framework, we briefly review the elec-
tromagnetic duality in 3D ordinary space-time. The elec-
tromagnetic theory action with a 1-form source J is

 SA�A; J� �
Z
�aF ^ ?F� eA ^ ?J�; (1)

where A is the 1-form potential; the field strength F sat-
isfies, by definition, F � dA and a � �1=�2g2�. To pre-
serve gauge invariance and to satisfy the continuity
equation, ?J must be a closed 2-form.

*Electronic address: cabral, clovis@if.ufrj.br
1It should be noted that in this work we are concerned with the

issue of duality of NC theories within the field theoretical
framework. From the string theory perspective, S-duality of
IIB strings in the presence of a magnetic background induces
a duality between spatially NC Yang-Mills N � 4 theory with a
string model called NCOS (noncommutative open string), as
conjectured in Ref. [8]. Although our approach and that of
Ref. [8] are quite different, there are similarities in the resulting
dualities, like the exchange of � with ?�g2. See our Conclusions
for further comments.

2In the sense of a global inversion of the coupling constant
(string S-duality is not of concern in this approach).
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As usual, the dynamics of the electromagnetic fields
comes from the equation of motion and the Bianchi iden-
tity, namely,

 d?F � �
e

2a
?J and dF � 0: (2)

Except for the sign of the first equality, the above equations
are valid in any space-time dimension. These equations can
be expressed on more ‘‘observational grounds’’ through the
electric and magnetic fields given by Ei � Fi0 and B �
~r	 ~A � ��ij@iAj � �F12. We adopt the conventions
g � diag��;�;��, F � 1

2F��dx
� ^ dx�, ~E � �E1; E2�,

~r � �@1; @2�, �12 � �12 � 1; Greek indices can assume
the values 0, 1, or 2, and Latin indices only 1 or 2. Using
this notation, Eq. (2) becomes

 

~r 
 ~E �
e

2a
�; (3)

 

~r	 B � _~E�
e

2a
~j; (4)

 

~r	 ~E � � _B; (5)

where J� � ��; ~j�; a dot over a field means a temporal
derivative and, by definition, � ~r	 B�i � �ij@jB. These
equations have curious similarities and differences with
the usual 4D Maxwell equations. Among the differences,
since ~E is a vector and B a pseudoscalar, even in the case
without sources, there is no hope of finding a simple dual-
ity which simply interchanges electric and magnetic fields.
However, Eq. (3) with � � 0 hints to set ~E � � ~r	�,
which implies Fi0 � ��ij@j�. Thus, to preserve Lorentz
symmetry, we shall set

 F�� � ����@�� �for J � 0�: (6)

Consequently, B � � _�. Using the map (6), it is straight-
forward to show that Eqs. (3) and (4), without sources, turn
into an identity, while (5) becomes the free scalar field
equation, @�@�� � 0. Note that there is no violation of the
number of degrees of freedom; both descriptions (vectorial
and scalar) have 1 degree of freedom.

To conclude this introduction, we shall present the 3D
electromagnetic duality with a source J and introduce the
master Lagrangian approach [9]. Consider the action

 SM�F;�� �
Z �

aF ^
�
?F�

e
a

�
�
� d� ^ F

�
; (7)

where F is regarded as an independent 2-form and � is a 1-
form. Equating to zero the variation of the above action
with respect to �, we obtain dF � 0. This implies, in
Minkowski space, that F � dA. Replacing F by dA and
setting ?J � d�, SM becomes equivalent to the action in
Eq. (1).

On the other hand, the variation of Eq. (7) with respect to
F produces

 

?F �
1

2a
�d�� e��: (8)

Inserting Eq. (8) into the master action SM (and recalling
?? � 1 for any differential form in the 3D space-time), we
find

 SM�F;�� $ �
1

4a

Z
�d�� e�� ^ ?�d�� e��

� S��
���: (9)

We use the symbol ‘‘$’’ instead of ‘‘�’’ to be clear that
equivalence of actions (functionals) is to be understood as a
correspondence between their equations of motion; that is,
if S1 $ S2, the set of equations of S1 can be manipulated,
using its own equalities, or inserting new redundant ones,
to become the set of equations of S2 (the inverse also
proceeds).

The two equations of motion of SM [dF � 0 and Eq. (8)]
generate a map between the equations of motion of SA and
S�, viz.,

 

?dA �
1

2a
�d�� e��: (10)

Applying d on both sides, we find Eq. (2), while the
application of d? results in d?d� � ed?�, which is the
equation of motion of S�.

III. 3D NC ELECTROMAGNETIC DUALITY TO
FIRST ORDER IN �

The NC version of the U�1� gauge theory, whose gauge
group we denote by U��1�, is given by [10]

 SÂ� � a
Z
F̂ ^�

?F̂; (11)

where a is a constant, F̂ � dÂ� iÂ ^� Â �
1
2 	

�@�Â� � @�Â� � i�Â�; Â����dx
� ^ dx�, �A;B�� �

A � B� B � A and

 �A � B��x� � exp
�
i
2
���@x�@

y
�

�
A�x�B�y�jy!x (12)

is the Moyal product. In particular, �x�; x��� � i���. �����
can be any real and constant antisymmetric matrix.

Since dF̂ � 0, previous duality arguments cannot be
directly applied. However, Seiberg and Witten have shown,
for infinitesimal gauge transformations, that aU��N� gauge
theory can be mapped into a U�N� one [1]. As a corollary,
also useful for our purposes, this map provides a more
direct treatment of the observables [11]. To first order in �,
for the U�1� case, this map reads

 Â � �A� � ���A��@�A� �
1
2@�A���dx

� (13)
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in which Â transforms as 	�̂Â � d�̂� 2iÂ ^� �̂, while A
transforms as 	�A � d�.

Inserting (13) into action (11) one obtains an effective
U�1� gauge theory whose action contains explicit � cor-
rections. The action for this effective theory is denoted by
SA� and the products between its fields are the ordinary
ones. Up to first order in �,

 SA� � a
Z
F ^ ?F�1� h�; Fi�

� �a
Z
� ~E2 � B2��1� ~� 
 ~E� �B�d3x; (14)

where F � dA, � ~��i � �i0, � � �12, and h; i is the scalar
product between differential forms,3 in particular, hF; �i �
?�?F ^ �� � 1

2�
��F��. In order for SA� to be dimension-

less, the constant a must have dimension of length. The
term F��F����
F
�d3x, which appears in 4D electromag-
netism, also occurs in 3D, but it is proportional to ?F ^
FhF; �i [12]. The equations of motion are

 

~r 
 ~D � 0; (15)

 

~r	H � _~D; (16)

 

~r	 ~E � � _B: (17)

In the above, ~D � ~E�1� ~� 
 ~E� �B� � 1
2
~�� ~E2 � B2� and

H � B�1� ~� 
 ~E� �B� � 1
2��

~E2 � B2� (these definitions
are analogous to the one used in Ref. [13]). Equations (5)
and (17) are equal because both come from the Bianchi
identity. Clearly ~� is responsible for a violation of spacial
isotropy.

Exploiting the Bianchi identity, we propose the follow-
ing master action:

 SM�
�F;�� �

Z
�a?F ^ F�1� h�; Fi� � d� ^ F�: (18)

We will use the above master action to find the first order
duality, and a natural generalization of it will be employed
to unveil the duality in higher � orders.

However, this is not the only possible master action; the
following actions also ascertain dualities between the same
vector and scalar descriptions of NC 3D electromagnetism:
 

SM�;c
�G;�� �

Z �
aG ^ ?G�1� ch�;Gi�

�

�
1�

1

2
�c� 1�h�;Gi

�
d� ^G

�
; (19)

 

SM0��B;A� �
Z �
�

1

4a
B ^ ?B

�
1�

1

2a
h�;? Bi

�
� B ^ dA

�
:

(20)

The first one is a generalization of the master action in
Eq. (18) by a continuous and arbitrary parameter c, the
latter being recovered for c � 1. The master SM�;c

has the
interesting feature of balancing the NC contribution be-
tween its two terms. Nevertheless, for any c, the models it
connects are the same vector and scalar ones that are found
by SM�

. In Eq. (20), A and B are 1-forms. This other
equivalent master action appears to be better suited for
the inverse of our problem, that is, of finding the vector
picture if the scalar one is already known.

Resuming the analysis of (18), from its variation with
respect to �, we obtain dF � 0, which implies F � dA;
inserting this result into SM�, SA� is obtained. To settle the
other side of duality, the variation in regard to F is eval-
uated, leading to a nontrivial NC extension of Eq. (8)
without a source, namely,

 

1

2a
d� � ?F�1� h�; Fi� �

1

2
hF;Fi?�: (21)

In the above, the property F ^ ?FhF; �i � hF;Fi?� ^ F
was employed. Regarding the fields ~D and H, this reads

 �
1

2a
~r	� � ~D; (22)

 �
1

2a
_� � H: (23)

To first order in �, the inverse of the above relations
reads

 

?F �
1

2a
d�

�
1�

1

2a
h?d�; �i

�
�

1

8a2 hd�; d�i
?�;

(24)

 

~E � �
1

2a

�
1�

1

2a
~� 
 ~r	��

1

2a
_��
�
~r	�

�
1

8a2 �
~r� 
 ~r�� _�2� ~�; (25)

 

B � �
_�

2a

�
1�

1

2a
~� 
 ~r	��

1

2a
_��
�

�
1

8a2 �
~r� 
 ~r�� _�2��: (26)

The insertion of the F expression into SM�
leads to a NC

extension of the scalar field action, namely,

 SM�
$ �

1

4a

Z
d� ^ ?d�

�
1�

1

2a
h?d�; �i

�
� S��

:

(27)

3In odd dimensional Minkowski space, the internal product of
two n-forms A and B is defined by hA; Bi � ?�?A ^ B� �
1
n!A�1:::�n

B�1 :::�n .
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The correspondence of the equations of motion between
vector and scalar models, as expected, is given by F � dA
together with Eq. (21) (and its inverse). Indeed, if d is
applied on both sides of Eq. (21), with F � dA, the equa-
tion of motion of SA� is obtained, while the application of
d? in Eq. (24) produces the equation of motion of S��

.
It is straightforward to verify that the map (21) correctly

relates the Hamiltonians and brackets of both
representations.

With the last result, we defined a new scalar field model
whose action is, to leading order in the noncommutativity
parameter, classically equivalent to the U�1� model of

electromagnetic theory in 3D space-time. Although there
are cubic terms in the Lagrangian, this duality also holds in
the Feynman path integral.4 An analogous claim was done
in Ref. [3] and explicit computation with the path integral
for the NC extension of the duality of Maxwell-Chern-
Simons and self-dual models was done in Ref. [14], which
presents the same resulting duality of Ref. [15], which does
not use the partition function approach. This result can be
generalized. Schematically, let L1�A� and L2�B� be two
classically equivalent Lagrangians that are related by the
master Lagrangian Lm�A;B� whose partition function is

 Z �
Z

DADB exp
�
�i

Z
�a1A2 � �A3 � a2BA� f�B��dDx

�
: (28)

Introducing two new fields, the integral over A becomes a Gaussian integral, as follows,

 Z �
Z

DADBDCDD exp
�
�i

Z
�a1A2 � �ACC�D�C� A� � �a2BA� f�B��dDx

�
: (29)

Now integration over A can be readily computed; we
should replace A by 1

2a1
���CC�D� a2B�. Hence, in the

above theory, if classical action duality holds for any � and
partition function duality holds for � � 0, partition func-
tion duality also holds for � � 0. The same arguments are
valid to the NC scalar/vector duality presented here.

IV. HIGHER � ORDER DUALITY

To second order in �, (14) reads5 [3,16,17]

 SA� �
a
2

Z �
F��F��

�
1�

1

2
���F��

�
� L�2

�
d3x; (30)

with
 

L�2 � �2 tr��F�F3� � tr��F2�F2� � tr��F� tr��F3�

� 1
8 tr��F�2 tr�F2� � 1

4 tr��F�F� tr�F2� (31)

and tr�AB� � A��B
��, tr�ABCD� � A��B

��C�
D

�, etc.

Fortunately, in 3D space-time, the above expression can
be considerably simplified. We have already used in
Eq. (14) that tr�FF�F� � 1

2 tr�FF� tr�F��; with some re-
flection, this relation can be generalized to

 tr �AB1AB2:::ABn� �
�
1

2

�
n�1 Yn

k�1

tr�ABk�; (32)

for any antisymmetric 2-rank tensors A, fBkg. Therefore,

 L�2 � 1
4 tr�FF� tr��F�2: (33)

The master action SM�
(18) can now be extended to

second order in �; this is achieved by adding �a
R
?F ^

FhF; �i2 to the first order expression. Thus,
 

?F �
d�
2a

�
1�
h�; ?d�i

2a
� 3
h�; ?d�i2

4a2 � h�; �i
hd�; d�i

8a2

�

� ?�
hd�; d�i

8a2

�
1� 5

h�; ?d�i
2a

�
(34)

and
 

S��
� �

1

4a

Z
d� ^ ?d�

�
1� h~�; d�i � 3h~�; d�i2

�
1

4
h~�; ~�ihd�; d�i

�
; (35)

where ~� � ?�=2a. Hence, in the scalar picture, at least to
second order, ~� is the Lorentz violation parameter and � is
unnecessary. Note that only through the employment of ~�
the coupling constant a of the original gauge theory ap-
pears in the dual picture as a global factor a�1. A priori,
one can even conjecture that ~� is the fundamental parame-
ter of the scalar picture, while � is inferred by duality.
Nevertheless, unless the slowly varying fields limit is
employed, this is just an illusion of a nonexact symmetry.

Starting from the third order expansion in �, terms with
more derivatives than potentials appear in the Seiberg-
Witten map of F̂ and are present in L�3 , as we will show
(any L�n can only depend on A through F, but it can have
more derivatives than A’s). These factors spoil the last
suggested symmetry. To infer these terms, we will use
the following Seiberg-Witten differential equation [1]:

4This is just an additional observation; in this work we do not
aim to directly deal with quantization issues of NC theories.

5Note that Ref. [3] uses a different convention in the differ-
ential form constant factors.
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	F̂����� �
1
4	�

���2F̂�� � F̂�� � 2F̂�� � F̂��

� Â� � �D̂�F̂�� � @�F̂���

� �D̂�F̂�� � @�F̂��� � Â��: (36)

Expanding F̂ and Â in powers of �, to third order it reads
 

	F̂�3������ � �
1
4	�

����
0�0��

00�00 �@�0@�00F��@�0@�00F��

� @�0@�00A�@�0@�00@�F��� � . . . (37)

where F�� � F̂�0��� and A� � A�0�� . Only the terms with
more derivatives than fields were written in the above
expression. Inserting this result into Eq. (11), the only
terms of L�3 which have more derivatives than fields are
in the following expression6:

 �����
0�0 tr�@�@�0F�@�@�0FF�

� 1
4�
����

0�0 tr�F�� tr�@�@�0F@�@�0F�: (38)

The contribution of these terms to the equations of
motion is given by
 

�����
0�0@�

�
F���0�F



��0 �

1
2 tr�F��0��F


�
��0 � F

��
��0F��0�


�

� 1
4 tr�F��0F��0 ��


��: (39)

In the above, we introduced a compact notation: nonex-
plicit indices are contracted like in matrices, extra indices
in F are derivatives, and F����0F��0�


� � F���0F��0�

 �

F
��0F��0�
�. For instance, the first term in (39) reads

@�@�0F
�
� ���@�@�0F



�.

A careful analysis of the symmetries and antisymmetries
of each term of (39) and their linear independence for
arbitrary � and D � 4 shows that (39) is not null. To
directly assure unambiguously in any dimension (D � 2)
that (39) is not the trivial identity [or that (38) is not a
surface term or null], one may evaluate a particular case of
(39); for instance, for D � 3, let 
 � 2 and � be equal to
zero except for the components �01 and �10, namely,
 

��10�3�@�� �F��0F001�2 � F00��0 �F1�2 � 2 _F0��0 _F01�2 � �F10F002�

��F0010 �F2� � 2 _F010 _F02�� � @�0� �F2�F001�� � F
002� �F1��

� 2 _F02� _F01����; (40)

where each dot and each prime means, respectively, @0 and
@1. The above expression is not identically null in any
dimension (greater than 2). This result is in conflict with
a certain proposition of Ref. [19]; see our Conclusions for
more details.

The expressions (36)–(39) are valid for arbitrary space-
time dimensions. Once again, in 3D space-time a consid-

erable simplification is possible. Although the property
(32), in that form, cannot be used in (38), a straightforward
computation shows that an analogous result is valid. In 3D
space-time, the expression (38) is equal to

 

1
4 �

����
0�0 tr�F��0F��0 � tr�F��: (41)

Adhering to the third order expansion, the contribution
of the above expression to S��

(35) is obtained by the
replacement F ! ?d�=�2a�. Consequently, to third order
in �, S��

cannot be expressed only through ~�; � is also
necessary.7 This violates the symmetry between � and ~�
present in electromagnetic duality up to the second order in
�. Consequently, in the scalar picture, the constant a does
not appear as a global a�1 and S-duality is broken (at least
in regard to its usual form).

In the slowly varying fields limit, the terms in the
Seiberg-Witten mapped action which depend on the de-
rivatives of F are neglected; therefore, S��

to third order in
� can be solely expressed in terms of ~�. In this limit, since
the Seiberg-Witten mapped Lagrangian is a function of F
alone (without derivatives) [1], the Lagrangian is expressed
as a function of tr�FF� and tr�F�� only [due to Eq. (32)];
therefore, the dual scalar action S��

to all orders in � can be
expressed by ~�, without reference to � (or ? ~�). Although
the property (32) is, in general, false in the 4D space-time,
the dual action can also be expressed by ~� alone in the 4D
space-time, to all orders in �, if the slowly varying fields
limit is used [4]. The relation (32) considerably simplifies
the work in the 3D analysis.

V. CONCLUSIONS

In this paper we establish, to second order in �, the scalar
description of 3D NC electromagnetic theory, which is
usually described by the gauge model in Eq. (11). We
show that the rule �! ~� � ?�g2, found in Ref. [3] in
the context of 4D NC electromagnetic duality, can be
extended to the 3D case up to second order in �
[Eqs. (30) and (35)]. With this rescaling of �, the coupling
constant of one model becomes the inverse of the other.
This is indeed a curious relation between these dual mod-
els, but this relation is only approximately valid: starting
from the third order � expansion, in general it becomes
false in both 3D and 4D cases. The coupling constant does
not appear proportionally to �, but to � instead; so, to any
order, it is possible to do the replacement �! �g2 and the
final answer is a noninversion of the coupling constant. In
the 4D case, a priori it is possible to think that somehow

6This solution can also be inferred by the results of Ref. [18],
Sec. 3.2, in which the Seiberg-Witten map is expanded in powers
of A.

7One may artificially insert �’s in order to change ���@�@� to
/ ~���

���@�@�. This procedure is innocuous since ? ~� / �, but
we are adopting the rule to always write �, or ~�, never ? ~�.
Moreover, this procedure does not avoid the difficulties with
S-duality, since ~� will not occur proportionally to � in the dual
picture.
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the coupling constant appears proportionally to �; in the
3D case no such doubt occurs, for g2 is dimensionful in this
space and � appears proportionally to @@ in some terms,
like those in Eq. (38). Since, up to the subleading order in �
or in the slowly varying fields limit, the 4D duality con-
nects two U�1� theories, one with � and the other with ~�
[3–5], it might appear that � and ~� could be used indis-
tinguishably; however, a simple analysis of the 3D case
shows this does not proceed. The 3D case clearly states
that, if a theory has � as its parameter, there is another
equivalent one with a different definition of the fields which
has the parameter ~� [this is a direct interpretation of the
duality map, e.g., Eq. (34)]. As a final remark of this
duality to second order in �, it is easy to see from the
equations of motion and the interchange between � and ~�
that the 3D NC duality preserves spacial isotropy (i.e., if
one of the dual models is isotropic, the other is also) and, if
a spacial anisotropy is present, duality rotates the prefer-
ential direction by �=2.

Currents can be easily inserted in this duality, along the
lines of Sec. II, if we assume a � nondependent coupling
like A ^ ?J in the mapped action. Nevertheless, this vio-
lates correspondence with the U��1� theory, which asserts
the coupling Â ^�

?Ĵ, whose map was found in Ref. [20].
In Sec. IV, we proved, by means of a straightforward

calculation valid in any dimension greater than 2, that the
Seiberg-Witten mapped Lagrangian of the NC electromag-
netic theory (LA�) depends on F and its derivatives.8 Up to
the second order in �, the derivatives onF can be combined
with the fields A to produce another F (eliminating all the
explicit dependence on the A’s). Nevertheless, the Seiberg-
Witten differential equation (36) leads to the appearance of
terms with more derivatives than fields in the third order
expansion. These terms were applied to the NC electro-

magnetic Lagrangian (LÂ�) and the resulting terms were
stated in (38). Perhaps surprisingly, these terms are not null
nor are they surface terms, as we have shown subse-
quently.9 This result is not in agreement with the first
part of a proposition in Ref. [19]. We think our result
should be considered as a counter-example to it. Indeed,
the first part of Proposition 3.1 does not seem to be correct
in general [22]. However, it should be stressed that it
clearly holds in the slowly varying fields limit and, in
this limit, it is compatible with our results; moreover, any
results which depend on that proposition are perfectly valid
in that limit. There are some other interesting consequen-
ces which we are now evaluating [23].

As previously stated, this work does not aim to resolve
string S-duality issues in the presence of a magnetic back-
ground, like Ref. [8] does. However, a certain exchange of
�with ?�g2, among other similarities, occurs in both cases.
According to our result, this exchange only occurs to all
orders in � in the slowly varying fields limit. At the mo-
ment, it is not clear to us if our result has consequences to
the string S-duality of NC theories since, among other
possibilities, we may have come across a pathological
feature of the Seiberg-Witten map [23].

We think further developments of the NC electromag-
netic duality can prove useful to construct effective models
and to understand NC theories in general.
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