
Perturbative zero-point energy for a cylinder of elliptical section

Adrian R. Kitson1 and August Romeo2

1Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
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We examine the Casimir effect for a perfectly conducting cylinder of elliptical section, taking as
reference the known case of circular section. The zero-point energy of this system is evaluated by the
mode summation method, using the ellipticity as a perturbation parameter. Mathieu function techniques
are applied.
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I. INTRODUCTION

Vacuum fluctuations of quantum fields caused by the
presence of boundaries produce changes in the zero-point
energy, which give rise to the Casimir effect. Interest in
quantum vacuum manifestations, including this phenome-
non, has been propelled by new theoretical and experimen-
tal advances [1–3]. Hypothetical prospects of
technological applications make even more desirable the
knowledge of fundamental aspects of the theory, such as
the value of the vacuum energy or its dependence on any of
the problem conditions (even the sign of the effect is hard
to predict, although for interactions between dielectric
bodies some progress has been made in Ref. [4]).

Particularly striking is the modification of the zero-point
energy caused by a change in boundary shape, even at an
infinitesimal level. As Casimir energies prove to be very
sensitive to purely geometrical modifications, the subject
deserves further consideration. This question has already
been addressed for a boundary departing from spherical,
which has implications for QCD flux tube models [5].

On the other hand, cylindrical boundaries of circular
section have been object of attention under a variety of
settings: the perfectly conducting case [6–8], dielectric
media with or without light-velocity conservation [9–17],
dispersion [18–20], semitransparent boundary [21], vary-
ing Robin conditions [22], finite temperature1 [24], coaxial
surfaces [25], cosmic strings [26], etc. However, deviations
from circular section constitute a largely uncharted land. In
the present work, we make an incursion into this territory
by considering a perfectly conducting and infinitely long
cylindrical surface of elliptical section, which slightly
deviates from circular shape.2

In Sec. II the solutions to the Maxwell equations in terms
of Mathieu functions are considered, and the boundary
conditions which determine the eigenmode set are estab-

lished. The summation of these eigenmodes is studied in
Sec. III, thereby obtaining the zero-point energy of the
electromagnetic field as a perturbative expansion in the
ellipticity. Section IV offers, as an alternative view, the
spectrum modification on the basis of a conformal trans-
formation relating elliptical and circular cases. The con-
clusions follow in Sec. V. Relevant properties and results
about Mathieu functions have been included in an appen-
dix. Natural units (@ � c � 1) are used throughout.

II. SOLUTIONS TO MAXWELL’S EQUATIONS
WITH PERFECT CONDUCTOR BOUNDARY

CONDITIONS

We will consider the classic problem: find the zero-point
energy of an electromagnetic field due to a perfectly con-
ducting, neutral surface S. In the absence of any charge or
current density and with time dependence given by
exp��i!t�, Maxwell’s equations in Heaviside-Lorentz
units are

 r � E�x� � 0; (1)

 r � B�x� � 0; (2)

 r � E�x� � i!B�x�; (3)

 r � B�x� � �i!E�x�; (4)

where E�x� is the spatial part of the electric field and B�x�
is the spatial part of the magnetic field. Both vector fields
satisfy the vector Helmholtz equation, that is,

 �r2 �!2�A�x� � 0; (5)

where A�x� can be E�x� or B�x�. The vector Laplacian is

 r 2A�x� � rr �A�x� � r� r�A�x�: (6)

The boundary conditions are

 n̂�E�x�jx2S � 0; (7)

 n̂ �B�x�jx2S � 0; (8)

1For a general discussion about the classical limit in
temperature-dependent systems see Ref. [23].

2Yet, there are works [27,28] where the elliptical coordinates
from scattering theory play a role in the study of General
Relativity (averaged) null energy conditions for a Casimir
system.
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where n̂ is the outward-pointing, unit normal vector to the
surface S. In particular, we take S to be an infinitely long
cylinder, along the z-axis, with an elliptical section given
(in Cartesian coordinates) by the equation

 

x2

a2 �
y2

b2 � 1; (9)

where a is the semimajor axis and b is the semiminor axis.
We introduce elliptic cylindrical coordinates, ��; �; z�, a
left-handed coordinate system related to Cartesian coordi-
nates by

 x � f cosh��� cos���; (10)

 y � f sinh��� sin���; (11)

where 0 � � <1, 0 � �< 2� and f is the focal length
given by

 f �
�����������������
a2 � b2

p
: (12)

The ellipticity is defined to be

 e �
f
a
: (13)

To avoid confusion with the exponential function, its full
form, exp, will be used. In the elliptic cylindrical coordi-
nate system the ellipse (9) adopts the form

 �0 � cosh�1�1=e�: (14)

The boundary conditions become

 E��� � �0� � 0; (15)

 Ez�� � �0� � 0; (16)

 B��� � �0� � 0: (17)

The vector Helmholtz equation can be solved by separation
of variables in the elliptic cylindrical coordinate system
[29]. Furthermore, since the media inside and outside S are
the same, and thus the speed of light is equal on both sides;
we may split the solutions into transverse electric (TE) and
transverse magnetic (TM) modes [13–16]. Each vector
component can be written in terms of Mathieu and modi-
fied Mathieu functions.

A. Interior field

1. TM modes (Bz � 0)

It is enough to start considering the solution for one of
the nonvanishing field components, which we choose to be
Ez. The general form will be [30,31]:

 Ez��; �; z� �

8>><>>:
P1
n�0

R
dk
2�Cn�k�Mc�1�n ��; q�cen��; q� exp�ikz�;

P1
n�1

R dk
2� Sn�k�Ms�1�n ��; q�sen��; q� exp�ikz�;

(18)

where (Mc�1�n and Ms�1�n ) cen and sen are the even and odd
(modified) Mathieu functions of the first kind, respectively.
Notice that there is no zeroth order odd Mathieu function.
The coefficients Cn�k� and Sn�k� have no spatial depen-
dence. Equation (16) implies that

 M c�1�n ��0; q
I;TM
n;p � � 0; (19)

 M s�1�n ��0; ~qI;TM
n;p � � 0; (20)

where the superscripts refer to the interior region and TM
mode, respectively. The second subscript indexes the pth
zero. The tilde distinguishes the odd eigenmodes from the
even ones. The dependence of the eigenmodes on the
ellipticity has been suppressed. The eigenfrequencies are
obtained through the relation

 ! �

�����������������
4q

f2 � k
2

s
: (21)

The other two boundary conditions are automatically sat-
isfied because E� and B� involve the same vanishing
factors as in Ez [30].

2. TE modes (Ez � 0)

The TE mode is obtained by the principle of duality; Bz
will have the same form as Eq. (18). Since

 E� /
@
@�
Bz; (22)

Equation (15) implies that

 

@
@�
Bzj���0

� 0: (23)

Therefore,

 M c�1�0n ��0; q
I;TE
n;p � � 0; (24)

 M s�1�0n ��0; ~qI;TE
n;p � � 0; (25)

where the prime means differentiation with respect to �.
The other boundary conditions are also satisfied; it follows
that B� vanishes on the boundary because B� / E� and
Ez � 0 by definition of a TE mode.

B. Exterior field

This part of the solution can be worked out in terms of
functions akin to Hankel functions. The reason for doing so
is the physical demand that, at large distances, the field
components should behave like cylindrical waves. This is
easily met by choosing the linear combinations

 M c�3�n ��; q� � Mc�1�n ��; q� � iMc�2�n ��; q�; (26)

 M c�4�n ��; q� � Mc�1�n ��; q� � iMc�2�n ��; q�; (27)
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with corresponding relations for the odd modified Mathieu
functions.

There are many parallels between modified Mathieu and
Bessel functions. As with Bessel functions of the second
kind, the modified Mathieu functions of the second kind
are not regular in the interior region. This is why they were
not included in the solution for the field inside the cylinder,
but shall now be used for the field outside. As we want the
waves to be outgoing, the modified Mathieu functions of
the third kind are selected.

1. TM modes (Bz � 0)

The z component of the electric field will have the same
form as Eq. (18) but with modified Mathieu functions of
the third kind. The boundary conditions imply that

 M c�3�n ��0; q
II;TM
n;p � � 0; (28)

 M s�3�n ��0; ~qII;TM
n;p � � 0; (29)

where the first superscript refers to the exterior region.

2. TE modes (Ez � 0)

Analogous to the interior TE modes, we find

 M c�3�0n ��0; q
II;TE
n;p � � 0; (30)

 M s�3�0n ��0; ~qII;TE
n;p � � 0: (31)

III. REGULARIZED ZERO-POINT ENERGY

In natural units, the zero-point energy per lateral unit
length amounts to half the sum (including integration for k)
of all the eigenfrequencies given by Eq. (21). Since such a
quantity is divergent, some form of regularization is called
for; we use zeta-function regularization.

The even zeta-functions are

 �A;B
n �s� �

X1
p�1

Z 1
�1

dk
2�
	!A;B

n;p 
�s; (32)

where A 2 fI; IIg and B 2 fTE;TMg. Let

 

4q

f2 � �2; (33)

then Eq. (21) becomes

 ! �
�����������������
�2 � k2

q
: (34)

Integrating over k leaves

 �A;B
n �s� �

1

2�
B
�
1

2
;
s� 1

2

� X1
p�1

	�A;B
n;p 
1�s; (35)

where B is the beta function. Following similar analysis,
the odd zeta-functions are

 

~�A;B
n �s� �

1

2�

�
1

2
;
s� 1

2

� X1
p�1

	~�A;B
n;p 
1�s: (36)

There is no odd zeta-function for n � 0. The regularized
zero-point energy per lateral unit length as a function of
ellipticity is

 E C�e� � lim
s!�1

1

2

X
A;B

�X1
n�0

�A;B
n �s� �

X1
n�1

~�A;B
n �s�

�
; (37)

where the limit means analytical continuation to s � �1.
As we are summing over the interior and exterior regions
we expect the analytical continuation to be finite (see
[7,32] and references therein). For this reason, neither
arbitrary scales nor additional prescriptions have been
introduced.

In terms of the dimensionless variable z � a�, the even
zeta-functions with A � I and B � TM are

 � I;TM
n �s� � as�1 1

2�
B
�

1

2
;
s� 1

2

� X1
p�1

	zI;TM
n;p 
1�s: (38)

The summation over p can be written as a contour integral
with the help of the argument principle (see e.g. [32–36])
as follows

 

X1
p�1

	zI;TM
n;p 
1�s �

s� 1

2�i

Z
@�
dzz�s ln	Mc�1���0; q�
; (39)

where, using Eqs. (13) and (33),

 q �
z2e2

4
: (40)

The integration circuit is the boundary of a region � of the
complex z-plane which contains all the wanted zeros and
avoids the origin. Other A and B and the odd counterparts
follow in a similar fashion.

Ellipticity expansion

The modified Mathieu functions appearing in the con-
tour integrals can be expanded for small ellipticity in a
formal series (see Appendix). Equation (39) becomes
 X1
p�1

	zI;TM
n;p 
1�s �

s� 1

2�i

Z
@�
dzz�s

�
ln�Jn�z�� �

z
4Jn�z�

�

�
J0n�z� �

�n1

2
J0�z�

�
e2 � � � �

�
: (41)

The corresponding odd sum is
 X1
p�1

	~zI;TM
n;p 
1�s �

s� 1

2�i

Z
@�
dzz�s

�
ln�Jn�z�� �

z
4Jn�z�

�

�
J0n�z� �

�n1

2
J0�z�

�
e2 � � � �

�
; (42)

which is identical (up to O�e4�) except for the sign in front
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of the Kronecker delta. If the even and odd sums are added,
then

 

X1
p�1

	zI;TM
n;p 
1�s �

X1
p�1

	~zI;TM
n;p 
1�s

� d�n�
s� 1

2�i

Z
@�
dzz�s

�
ln�Jn�z�� �

zJ0n�z�
4Jn�z�

e2 � � � �

�
;

(43)

where to take into account that there is no odd sum for n �
0,

 d�n� �
�

1; n � 0;
2; n � 1:

(44)

Integrating termwise (formally), the second term is pro-
portional to the first since

 

Z
@�
dzz�s

zJ0n�z�
Jn�z�

� �s� 1�
Z
@�
dzz�s ln�Jn�z��: (45)

Thus, Eq. (43) simplifies to

 

X1
p�1

	zI;TM
n;p 
1�s �

X1
p�1

	~zI;TM
n;p 
1�s

� d�n�
s� 1

2�i

Z
@�
dzz�s ln�Jn�z��

�
1�

s� 1

4
e2 � � � �

�
:

(46)

Using Eq. (38) and its odd counterpart,
 X1
n�0

� I;TM
n �s� �

X1
n�1

~� I;TM
n �s�

� as�1 1

2�

�
1

2
;
s� 1

2

� X1
n�0

d�n�
s� 1

2�i

Z
@�
dzz�s

� ln�Jn�z��
�

1�
s� 1

4
e2 � � � �

�
: (47)

The prefactor is exactly what one gets in the circular
cylindrical situation. The other combinations of A and
B all have the same form as Eq. (47), but with their
corresponding circular cylindrical prefactors. Thus,
Eq. (37) gives

 E C�e� � EC�0�
�

1�
1

2
e2 �O�e4�

�
; (48)

where EC�0� is the regularized zero-point energy per lateral
unit length of a circular cylinder of radius a. While it is
doubtful that Eq. (48) converges for 0 � e < 1, at worst it
is an asymptotic series as e! 0. In either case we may
write the next term as O�e4�.

The numerical value of EC�0� is [6–8]

 E C�0� � �
0:01356

a2 ; (49)

which, together with Eq. (48) gives

 E C�e� � �
0:01356

a2

�
1�

1

2
e2 �O�e4�

�
; (50)

where a is the semimajor axis. Let

 R �
a� b

2
; (51)

then

 a �
2R

1�
��������������
1� e2
p ; (52)

and

 E C�e� � �
0:01356

R2 	1�O�e4�
: (53)

That is, the zero-point energy per lateral unit length in
terms of R is the same as that for a circular cylinder with
radius R, up to quartic corrections in the ellipticity.3

Eq. (53) can be related to the existence of a conformal
mapping in the complex plane which transforms the ellipse
into a circle. This subject is discussed in the next section.

IV. CONFORMAL TRANSFORMATION

A. Formulation

Some of the ideas in Refs. [37–39] suggest the use of an
adequate conformal map. We shall employ a transforma-
tion taking the interior of the ellipse (9) to the interior of
the circle w � R exp�i’�, with R given by definition (51).
The required map w: C! C is [40]

 w�z� � R
���
k
p

sn
�

2K�k�
�

sin�1

�
z�����������������

a2 � b2
p

�
; k
�
; (54)

where sn is a Jacobi elliptic function, K is the complete
elliptic integral of the first kind and k depends on the
semiaxes through theta functions as follows:

 k �
�
#2�0; q�
#3�0; q�

�
2
; (55)

where

 q �
�
a� b
a� b

�
2
: (56)

The k and q variables used here should not be confused
with those in other sections. The theta functions are given
by

 #2�z; q� � 2q1=4
X1
n�0

qn�n�1� cos��2n� 1�z�; (57)

 #3�z; q� � 1� 2
X1
n�1

qn
2

cos�2nz�: (58)

In terms of e and R,

 q �
�
ae
2R

�
4
: (59)

3This is not unique. For instance, R �
�������������������������
�a2 � b2�=2

p
would

cause the same effect as R � �a� b�=2, since they only differ at
O�e4�.
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Using the definitions of the theta functions, for small
ellipticity,4

 k �
a2

R2 e
2 �O�e6�: (60)

With the help of

 K �k� �
�
2
�
�
8
k2 �O�k4�; (61)

 sn �u; k� � sin�u� �
	u� sin�u� cos�u�
 cos�u�

4
k2

�O�k4�; (62)

the small ellipticity expansion of Eq. (54) is

 w�z� � z�
z3

4R2 e
2 �O�e4�: (63)

Therefore,

 w0�z� � 1�
3z2

4R2 e
2 �O�e4�; (64)

where the prime denotes differentiation with respect to z.
For our purposes, we also need the leading term of the
inverse of w, given by z�w� � w�O�e2�. With w �
r exp�i’�, z � r exp�i’� �O�e2�. Using Eq. (64),

 jw0j2 � 1�
3r2 cos�2’�

2R2 e2 �O�e4�: (65)

Under any conformal mapping, the 2-D Laplacian operator
transforms as

 r2
z � jw0j2r2

w: (66)

We start from the 2-D Hemlholtz equation in the w-plane

 �r2
w � �

2
n�Un � 0; (67)

where the chosen eigenvalue symbol comes from Eq. (33).
The boundary conditions are set on the image of the ellipse,
which is w � R exp�i’�, 0 � ’< 2�. Since the boundary
is circular, the eigenfunctions are of the form

 U n � fn�r� exp�in’�; (68)

where fn�r� is the suitably normalized radial function
which satisfies the boundary conditions.

B. Rayleigh-Schrödinger expansion

Next, Dirac notation shall be temporarily adopted in
order to take advantage of the Rayleigh-Schrödinger
method. Supposing that the eigenvalues �n and eigenstates
jUni for a problem

 LjUni � �njUni � 0 (69)

with given boundary conditions are known, one wonders
which are the new eigenvalues ��n and eigenstates j �Uni for

the ‘‘perturbed problem‘‘

 Lj �Uni � ��nj �Uni � "pertrpertj
�Uni � 0 (70)

under the same type of boundary condition, where "pert is
some small parameter. Including just modifications to first
order in "pert, we make the Ansätze

 j �Uni � jUni � "pertjV ni �O�"2
pert�; (71)

 

�� n � �n � "pert�n �O�"2
pert�; (72)

and replace them into Eq. (70). At O�"0
pert� Eq. (69) is

recovered, while the O�"1
pert� contribution yields

 �L� �nI�jV ni � �rpert ��n�jUni; (73)

where I is the identity operator. After applying hUnj on
both sides, taking into account the adjoint of Eq. (69) (with
Ly � L understood), we obtain

 �n � hUnjrpertjUni; (74)

 �
Z
dgrpertU



nUn; (75)

where dg denotes the integration measure making the
fUng orthonormal.

For our studied case, in the notation of Eq. (69),

 L � r2; (76)

 �n � �2
n; (77)

and the integration in Eq. (75) will be on the type

 

Z
dg �

Z 2�

0
d’

Z
R
drr; (78)

where R is the radial range. Now, application of the
inverse of transformation (54) to Eq. (69), and use of
Eq. (66), give

 r2
z

�Un � ��2
njw

0j2 �Un � 0: (79)

Since the small parameter in the pertubed Eq. (70) is
identified as

 "pert � e2; (80)

comparison of Eqs. (70) and (79) leads to ��2
njw

0j2 � ��n �
"pertrpert, which, taking into account Eqs. (65), (76), (77),
and (80), yields

 rpert � ��2
n

3r2 cos�2’�

2R2 : (81)

With this rpert, we calculate the O�"2
pert� contribution to the

nth eigenvalue using Eq. (75)

 �n /
Z 2�

0
d’ cos�2’�; (82)

 � 0: (83)

4In the opposite case one may wish to consider, e.g., a! 1
and fixed b. Using theta function properties, for this limit,
w�z� � R tanh��z=�4b��, which is the transformation taking
the region between the parallel lines y � �ib to the interior of
the circle. Of course, these lines can be viewed as the 2-D
projection of parallel plates.

PERTURBATIVE ZERO-POINT ENERGY FOR A . . . PHYSICAL REVIEW D 74, 085024 (2006)

085024-5



Hence, we conclude that, up to O�e4�, the eigenvalues will
not change, and neither will the zero-point energy.

V. CONCLUSIONS

The main result in this work is (53), which shows that
the Casimir energy per lateral unit length for an elliptical
cylinder has the same value, up to quartic corrections in
ellipticity, as for a circular cylinder with radius equal to the
mean of the two semiaxes. A quadratic correction appears
if the same energy is expressed in terms of one of the
semiaxes.

This can be envisaged from a conformal transformation
(54) which maps the ellipse onto the circle in question and,
perturbatively speaking, yields no quadratic contribution.
Such an infinitesimal symmetry preserves the Casimir
energy if deformations from circular to elliptical sections
(or vice versa) do not go beyond O�e2�.

Looking back at (51) and recalling the value of the
ellipse length, say l, one sees that (48) or (53) may be
rewritten as

 E C�e� � EC�0�
�

2�a
l

�
2
�O�e4�: (84)

Remarkably, for the spheroids considered in Ref. [5] the
corresponding relation holds, i.e.,

 E�e� � E�0�
�
4�R2

A

�
1=2
�O�e4�; (85)

where E is the scalar zero-point energy, R is the radius of
the sphere and A is the surface area of the spheroid of
ellipticity e.

In a recent discussion offered by Ref. [21], the obtained
result is viewed inside a wider context which includes other
second-order vanishing effects for the cylindrical geome-
try, like those found in Refs. [9–11,13–16].

Furthermore, there is a significant connection with
Kvitsinsky’s work [39]. The 2-D elliptical zeta-function is

 �2�D�	; e� � a	
X
A;B

�X1
p�1

	zA;B
n;p 
�	 �

X1
p�1

	~zA;B
n;p 
�	

�
;

(86)

where 	 � s� 1. Following a similar analysis as in
Sec. III,

 �2�D�	; e� � �2�D�	; 0�
�

1�
	
4
e2 �O�e4�

�
; (87)

where �2�D�	; 0� is the 2-D zeta-function for a circular
boundary of radius a. If a � 1� e2=2 and b � 1, then

 �2�D�	; e� � �2�D�	; 0�
�

1�
	
4
e2 �O�e4�

�
; (88)

where the 2-D circular zeta-function now has unit radius.
Comparison of the different notations leads to e2 , 2
,

	, 2p, �2�D�	; e� , ��p; ellipse� and �2�D�	; 0� ,
��p;D�, where the objects on the right are those in
Ref. [39]. Then, our result coincides with the unnumbered
formula below Eq. (23) of the referred paper, originally
derived for p � 2; 3; . . . and just field modes like in our ‘I,
TM’ subset, suggesting that the expression in question
could be valid beyond its initial settings.

From the viewpoint of Mathieu functions, one may
argue that the obtained relation has been established by
virtue of a variable change (51) in formulas (A7) and (A8).
Unfortunately, the next order in ellipticity is significantly
more complicated.
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APPENDIX: MODIFIED MATHIEU FUNCTIONS

The modified Mathieu differential equation is

 

�
@2

@�2 � a�q� � 2q cosh�2��
�

���� � 0; (A1)

Let � � 2
���
q
p

cosh���, then

 

�
��2 � 4q�

@2

@�2 � �
@
@�
� a�q� � 2q� �2

�
���� � 0:

(A2)

When q � 0, Eq. (A2) reduces to the Bessel differential
equation. The even and odd modified Mathieu functions of
the first kind are, respectively
 

Mc�1�n ��; q� �
X1

k��1

dn;k�q�Jn�2k�2
���
q
p

cosh����;

n � 0; 1; 2; . . . ; (A3)
 

Ms�1�n ��; q� � tanh���
X1

k��1

~dn;k�q�Jn�2k�2
���
q
p

cosh����;

n � 1; 2; 3; . . . : (A4)

They are normalized to have the same asymptotic form as
the Bessel functions

 M c�1�n ��; q� �
�!1

Ms�1�n ��; q� �
�!1

Jn���: (A5)

The expressions in Eq. (A3) and (A4) are absolutely con-
vergent for j cosh���j> 1 [30].

Consider the even modified Mathieu functions of the
first kind. With �0 � cosh�1�1=e� and q � z2e2=4,
Eq. (A3) is

 M c�1�n ��0; q� �
X1

k��1

dn;k�z
2e2=4�Jn�2k�z�: (A6)
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Expanding the coefficients in a formal power series and
using Bessel function recurrence relations, we get

 M c�1�n ��0; q� � Jn�z� �
z
4

�
J0n�z� �

�n1

2
J0�z�

�
e2 �O�e4�:

(A7)

By similar analysis, the ellipticity expansion for the odd
modified Mathieu functions of the first kind is

 M s�1�n ��0; q� � Jn�z� �
z
4

�
J0n�z� �

�n1

2
J0�z�

�
e2 �O�e4�:

(A8)

These formulas may also be derived from the set of ex-
pressions supplied in Ref. [31]. The same procedure is
repeated for the modified Mathieu functions of the third
kind and for the required derivatives.
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