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If there is a family-independent extra U�1� gauge symmetry broken at low energies, then it may be
possible from the charges of the known quarks and leptons under this U�1� to make inferences about how
much gauge unification occurs at high scales and about the unification group. (For instance, there are
certain observed properties of an extra U�1�0 that would be inconsistent with unification in four
dimensions at high scales.) A general analysis is presented. Two criteria used in this analysis are
(1) the degree to which the generator of the extra U�1� mixes with hypercharge, and (2) the ratio of
the extra U�1� charge of the ‘‘10’’ and the ‘‘�5’’ of quarks and leptons.
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I. INTRODUCTION

It will never be possible to build an accelerator that
reaches energies of 1015 or 1016 GeV, so grand unified
theories must be tested in more indirect ways. One way is
to look for very rare processes such as proton decay [1] or
n� �n oscillations [2] or for cosmic relic superheavy par-
ticles such as magnetic monopoles [3]. Another is to look
for unification of parameters by using the renormalization
group to extrapolate to high scales, as has been done for
gauge couplings [4] and may someday be possible for
sparticle masses [5]. A third way is find consequences of
gauge symmetry at low energy. An obvious example is the
fact that the hypercharge values of the standard model are
those that would come from simple SU�5� or SO�10�
unification. Here we explore the possibility that the charges
of the known quarks and leptons under a family-
independent ‘‘extra’’ U�1� group broken somewhat above
the weak scale may enable us to infer something about
gauge unification at high scales.

An obvious barrier to inferring anything about unifica-
tion from gauge-charge values, is that the same assign-
ments predicted by unification would in some instances
also be required by anomaly cancellation even without
unification. For instance, if one assumes that only the
fermions of the standard model exist (without right-handed
neutrinos) and that hypercharge is family-independent, the
anomaly conditions fix the hypercharges of the quarks and
leptons uniquely to be the same values as would be pre-
dicted by SU�5�. (There are four anomaly conditions [6]:
321Y , 221Y , 13

Y , 1Y , in an obvious notation, the last being the
mixed gravity-hypercharge anomaly.) Similarly, it might
not always be possible in the case of extra U�1� charges to
distinguish the consequences of unification from those of
anomaly cancellation. (For discussions of anomaly con-
straints on extra U�1� gauge groups see [7].) That is one
question we shall study in this paper. We shall argue that
one can distinguish in some circumstances, at least in
principle.

To see that there can be an ambiguity, consider the case
of the extra U�1� contained in SO�10�. Let us call this

U�1�X10
and its generator X10. On the fermions of the

standard model one has X10�e�L ;QL; ucL; LL; d
c
L; N

c
L� �

�1; 1; 1;�3;�3; 5�. On the other hand, with the same set
of fermions and assuming that charge assignments are
family-independent, the six anomaly conditions 3212

X,
221X, 12

Y1X, 1Y12
X, 13

X, and 1X yield the same solution
without unification. However, the anomaly conditions do
not yield this solution uniquely, but only up to an arbitrary
mixing with hypercharge. That is, the general solution of
the anomaly conditions is X � �X10 � ��Y=2�. In fact, it
is easy to see that it is always the case that the six anomaly
conditions which have to satisfied by an extra U�1� will
allow the generator of thatU�1� to have an arbitrary mixing
with hypercharge. We shall exploit this fact: we shall see
that under certain assumptions the generator of an extra
U�1� cannot mix strongly with hypercharge if there is
gauge unification at high scales, whereas it can and ‘‘natu-
rally’’ ought to mix strongly if there is no unification. The
degree of mixing of the generator of the extra U�1� with
hypercharge will be one of the tools we shall use in our
analysis.

We can also learn something about the degree of gauge
unification at high scales by comparing the extra-U�1�
charges of the ‘‘10’’ ( � e�L , QL, ucL) and the ‘‘�5’’ ( �
LL, dcL). For example, in the simplest SO�10� models one
has r � X�10�=X��5� � �1=3. Other schemes of unifica-
tion give other characteristic values;, for example, if
SU�3� � SU�2� �U�1�Y �U�1�X � SU�6�, then r �
�2. On the other hand, partially unified or nonunified
models can have values of this ratio that are not achievable
in any unified scheme. This will be the other tool of our
analysis.

In our analysis, we do not use all the information about
the extra U�1� that may be obtained in principle from
experiments. We are using only the charges of the known
quarks and leptons under the extra U�1�. However, if the Z0

boson is actually produced in experiments, then almost
certainly some of the extra fermions that must exist (to
cancel the anomalies of the extra U�1�) will also be pro-
duced, since they are probably lighter than the Z0. That
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would give additional information that would be helpful in
making inferences about the degree of unification. This
fact, of course, only strengthens our main point, which is
that from information about extra U�1� groups near the
weak scale it is in principle possible to infer something
definite about physics, and, in particular, about unification,
at very high scales. We also do not make use of conditions
on the charges of Higgs that arise from the requirement that
the light quarks and leptons be able to get realistic masses.
Again, such considerations might allow even stronger in-
ferences to be made.

It should also be emphasized that we are making ‘‘in
principle’’ arguments in this paper. We are not considering
how to go about measuring the charges of the known
fermions under the extra U�1�, or concerned about the
practical feasibility of it. We are considering what can be
measured ‘‘in principle’’ at low energies, and what can be
inferred from it about very high energies.

We make use of assumptions of ‘‘naturalness’’ in several
ways: (1) If no group-theoretical consideration or
anomaly-cancellation condition forces it to do so, it is an
unnatural fine-tuning for ratios of fermion charges under
the extra U�1� to be exactly equal to simple rational
numbers like �2 or 1=2. (2) It is difficult to make matter
multiplets in unified theories have extreme mass ‘‘split-
tings’’ (which is the basis of the well-known ‘‘doublet-
triplet splitting problem’’ in unified theories). We assume
that it is unnatural to have a large number of such split
multiplets besides the usual SM or MSSM Higgs doublets.
(3) It is assumed that if no symmetry or other principle
makes the mixing of the extra U�1� generator with hyper-
charge small, it will not be small.

The paper is organized as follows. In Sec. II, we shall
explain our assumptions, definitions, and notation and out-
line our results. In Secs. III, IV, and V we shall explain the
analyses that lead to those results.

II. ASSUMPTIONS, DEFINITIONS, NOTATION,
AND RESULTS

We assume that the effective low-energy theory below
some scale M	 has an SU�3�c � SU�2�L �U�1�Y �U�1�0

gauge symmetry, which we will call 32110 for short. The
U�1�0 is what we mean by the extra U�1�, and it is assumed
to be family-independent and to be broken at a scale M0

that is above the weak scale, but close enough to it that it
can eventually be studied at accelerators. The generator of
U�1�0 we call X0 and the corresponding gauge boson Z0.

We will say that the theory is ‘‘fully unified’’ if there is at
some higher scale an effective four-dimensional theory
with a simple gauge group G such that SU�3�c �
SU�2�L �U�1�Y �U�1�

0 � G. We will say that it is ‘‘par-
tially unified’’ there is an effective four-dimensional theory
with group G�H 
 G�U�1�X, such that G contains
SU�3�c � SU�2�L but does not contain both low-energy
Abelian groups U�1�Y �U�1�0. Finally, we will say that it

is ‘‘nonunified’’ if there is no four-dimensional unification
of even the SU�3�c � SU�2�L.

In both fully unified models and partially unified models
we may write the low-energy group between the scales M	
and M0 as SU�3�c � SU�2�L �U�1�Y5

�U�1�X, where
SU�3�c � SU�2�L �U�1�Y5

� SU�5� � G, and U�1�X
commutes with SU�5�. At M0 the breaking down to the
standard model group can happen in two ways: (a) The
generator X is broken and Y5 is left unbroken, in which
case obviously Y � Y5 and X0 � X. This we call ‘‘ordi-
nary’’ or ‘‘nonflipped’’ breaking. Or (b) both X and Y5 are
broken at M0, leaving unbroken a hypercharge that is a
linear combination of Y5 and X. Then we have Y=2 �
aY5=2� bX and X0 is the orthogonal linear combination
of Y5=2 and X. This we call ‘‘flipped breaking,’’ as it
happens in ‘‘flipped SU�5�’’ models (among others) [8].

For convenience we will denote the set of multiplets
�e�L ;QL; ucL� by 10 and �LL; dcL� by ‘‘�5’’ (with quotation
marks) whether or not there is actually any SU�5� unifica-
tion. By the notation �X we mean any generator that has
equal values for all the multiplets in ‘‘10’’ and equal values
for the multiplets in ‘‘�5.’’ We will call the ratio of these
values r. That is, r � �X�“10”�= �X�“�5”�.

Both unification (full or partial) and anomaly cancella-
tion without unification can lead to the result that X0 has the
form X0 � � �X� �Y=2. If �=� � 0 and is not small, we
will say that X0 ‘‘mixes strongly with hypercharge.’’ If
�=�� 1, we will say that there is small mixing. The
degree of mixing with hypercharge is crucial to our
analysis.

We will generally not assume anything about whether
there is supersymmetry (SUSY). SUSY will not affect
most of our analysis if we make certain reasonable as-
sumptions. SUSY would, of course, mean that there would
be Higgsinos that could be charged under the extra U�1�
and contribute to anomalies. However, these contributions
would typically cancel for the following reasons. Consider
the case of unification. The Higgs fields that get vacuum
expectation values (VEVs) at the weak scale, namely Hu
and Hd, must then have color-triplet partners. These part-
ners must have masses much larger thanM0 to avoid proton
decay, and that would require them to ‘‘mate’’ with other
triplets of opposite X0. On the other hand, those Higgs
fields that get VEVs of order M0 or larger must come
paired with Higgs fields that have opposite X0, generally,
in order to avoid D-term breaking of SUSY at large scales.

A. Why mixing with hypercharge is significant

In a model with no unification, there is no symmetry or
other principle that prevents X0, the generator of the extra
U�1�, from mixing with hypercharge. Anomaly-
cancellation constraints never prevent this, and neither
can the form of the Yukawa terms, since those terms
must be invariant under U�1�Y anyway. Therefore, one
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expects X0 to be of the form X0 � � �X� �Y=2, with �=�
of order one.

However, the situation is quite different in fully or
partially unified models. As noted above, in such models
one can write the low-energy group between the scales M	
and M0 as SU�3�c � SU�2�L �U�1�Y5

�U�1�X, where
there is an SU�5� that contains SU�3�c � SU�2�L �
U�1�Y5

and U�1�X commutes with that SU�5�. If there is
ordinary breaking of the extraU�1� atM0, i.e. if onlyU�1�X
breaks, then as noted before X0 � X and Y � Y5, and so
U�1�0 commutes with SU�5� 
 SU�3�c � SU�2�L �
U�1�Y . That would mean that X0 does not mix with Y.

In other words, the unified group protects X0 from mix-
ing with Y. However, because the unified group is broken at
MGUT, radiative effects induce a slight mixing below
MGUT. In particular, a small effective mixing will in gen-
eral be produced by renormalization of the gauge kinetic
terms [9]: one-loop diagrams produce a term of the form
�F��
�Y5�
F�X���, which upon bringing the gauge kinetic terms

to canonical form shifts the gauge fields to produces an
effective mixing of X0 and Y with �=�� �. If the particles
going around the loop form complete, degenerate SU�5�
multiplets, then these diagrams vanish by the tracelessness
of Y5. However, split SU�5�matter or Higgs multiplets that
contain both Weak-scale and superheavy components (like
the Higgs multiplets that break the Weak interactions) will
give a contribution to � that is of order g1gX

16�2 �

ln�M2
GUT=M

2
W� �

�
4� ln�M2

GUT=M
2
W�. For a Higgs doublet

in a typical grand unified model, like SO�10�, this will be
about 0.02. Thus, typically, in fully unified or partially
unified models there is small mixing with hypercharge
(of order a few percent). Of course, in principle, large
numbers of split multiplets all contributing to � with the
same sign could exist and produce strong mixing of X0 with
hypercharge. However, it is notoriously difficult to produce
split multiplets naturally in unified models (hence the
‘‘doublet-triplet splitting problem’’). The naturalness prob-
lem is compounded the more such split multiplets there
are. It therefore seems quite unlikely that there would be
large numbers of such multiplets. Even if there were, one
might expect that their light components would have mass
near or below M0, where they could be observed and their
effect on mixing could be calculated and thus taken into
account. Nevertheless, one cannot rule out the possibility
that many split multiplets exist whose lighter components
are at some inaccessible intermediate scale. However, this
seems a highly artificial possibility.

The basic pattern, then, is simple: in nonunified models
X0 is expected to mix strongly with Y, whereas in partially
unified or fully unified models with ordinary breaking of
the extra U�1� the mixing should be small (of order a few
percent).

Matters are made slightly more complicated by the
possibility in certain cases of breaking at M0 that is not
ordinary, as we shall now see. Suppose that the groups

U�1�Y5
and U�1�X both break at M0 leaving unbroken

U�1�Y , with Y=2 � aY5=2� bX, where a, b � 0. This
implies that the broken generator X0 also is a linear combi-
nation of Y5=2 and X, and therefore of Y=2 and X, i.e. just
what we mean by ‘‘mixing with hypercharge.’’ Now
consider what follows from the requirement that the quark
doublet QL and the lepton doublet LL come out with
the correct hypercharges. Since QL has to be in the 10
of SU�5�, it has Y5=2 � 1=6. Call its X value x. Then
one has 1=6 � a�1=6� � bx. The lepton doublet must be
in the �5 of SU�5� and thus have Y5=2 � �1=2. Call its X
value x=r. Then one has �1=2 � a��1=2� � bx=r.
Combining these two equations gives 0 � b�3� 1=r�x.
Since b � 0 there are only two possibilities. The first
possibility is that r � �1=3, which corresponds to the X
charges of 10 and �5 being in the ratio 1 to�3, as in SO�10�
models (but, as we shall see, not only in SO�10� models).
This leads to the well-known ‘‘flipped’’ breaking. This r �
�1=3 case is very special and has to be treated separately.
We shall see that it still only produces ‘‘small mixing with
hypercharge’’ in fully unified models, but can produce
‘‘strong mixing with hypercharge’’ in partially unified
models.

The second possibility is that x � 0, i.e. the X charge
vanishes on both the quark doublet and lepton doublet. In a
fully unified or partially unified model this means that X
vanishes on all the known quarks and leptons. This also is a
special case, which turns out to be possible in partially
unified models but not fully unified ones. It leads to mixing
(i.e. X0 � �X� �Y=2), but since X � 0 on the known
fermions, X0 � �Y=2 on those fermions.

We will now simply state the results of our analysis and
give that analysis later.

B. Results of the analysis

We classify models with family-independent extra U�1�
groups into seven types, based on whether the generator X0

(corresponding to the massive Z0 boson) has the form X0 �
� �X� �Y=2, and the values of the parameters �=� and
r � �X�“10”�= �X�“�5”�. The classes are listed in an order that
moves generally from more unification to less.
Class 1 X0 � � �X� �Y=2, with �=�� 1 (‘‘small mix-

ing with hypercharge’’), and r � �2, 1=2, 4=3 or
(perhaps) certain other simple rational values.
Such models are fully unified. If r � �2, then the
full-unification group is SU�6� or some group
containing it, either a larger unitary group or E6.
If r � 1=2 or 4=3, then the full-unification group
is either SO�10� or E6. (In partially unified mod-
els, these values of r would only result from
tuning.)

Class 2 X0 � � �X� �Y=2, with �=�� 1 (‘‘small mix-
ing with hypercharge’’), and r � �1 or �1=2.
Such models are either fully unified in E6 or
partially unified inG�U�1�, whereG 
 SO�10�.
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Class 3 X0 � � �X� �Y=2, with �=�� 1 (‘‘small mix-
ing with hypercharge’’), and r is not equal to �2,
1=2, 4=3, 1, �1=2, �1=3 (i.e. the values charac-
teristic of Classes 1, 2, and 4).
Such models are partially unified.

Class 4 X0 � � �X� �Y=2, with �=�� 1 (‘‘small mix-
ing with hypercharge’’), and r � �1=3.
Such models are either fully unified (with gauge
group SO�10� or E6) or partially unified with
ordinary (i.e. nonflipped) breaking. (The partial
unification groups do not have to contain SO�10�
or E6: they may also be unitary groups.)

Class 5 X0 � � �X� �Y=2, �=�� 1 (‘‘strong mixing
with hypercharge’’), and r � �1=3.
Such models are either partially unified with
flipped breaking of 32110 to the standard model
at M0, or else they are nonunified, with specific
extra fermions (i.e. fermions that do not exist in
the standard model).

Class 6 X0 � �Y=2.
Such models are either partially unified or non-
unified, but cannot be fully unified.

Class 7 X0 � � �X� �Y=2.
Such models are nonunified.

III. FULLY UNIFIED MODELS

As was shown in the previous section, in unified models
there will only be radiatively-induced (and typically small)
mixing of X0 with hypercharge except in two special cases:
the case where r � �1=3 and the case whereX vanishes on
all the known quarks and leptons. If r � �1=3 in a fully
unified model, then the gauge group must be SO�10� or E6.
This very special case will be treated at length in the next
subsection. In the subsection after that it will be shown that
the case where X vanishes on all the known quarks and
leptons (leading to X0 / Y=2) cannot be realized in fully
unified models. In the present subsection the general case
where r � �1=3 will be treated.

First, let us consider the simplest example of a fully
unified group: SU�6�. The simplest anomaly-free set of
SU�6� fermion representations that gives one family con-
sists of 15� 2� ��6�. (We shall also denote a p-index
totally antisymmetric tensor representation as [p]. So we
could also write the anomaly-free set as �2� � 2� ��1�.)
The generator ofU�1�X (in the fundamental representation)
is X � diag�1; 1; 1; 1; 1;�5�. Under the subgroup SU�5� �
U�1�X the fermions of a family decompose into 102 �
5�4 � 2� ��5�1 � 15�. The effective theory below M	
would have group SU�3�c � SU�2�L �U�1�Y5

�U�1�X.
Since X does not vanish on the known quarks and

leptons, and r � �1=3, the analysis in the previous section
tells us that there is only the (typically small) radiatively-
induced mixing of X0 with hypercharge, and therefore
X0 � �X� �Y=2 with �=�� 1, and Y=2 � Y5=2.
Thus, the standard model group is contained in the

SU�5�; the “10” � �e�L ;QL; u
c
L� is the 10 of SU�5�; and

the “�5” � �LL; dcL� is the �5 of SU�5�. Consequently, the
generator X has equal values for all the multiplets in the 10
and similarly for ‘‘�5,’’ and so we may put a bar over it and
write X0 � � �X� �Y=2. Moreover, from the X values of
the SU�5� multiplets we see that r � �X�“10”�= �X�“�5”� �
X�10�=X��5� � 2=��1� � �2. This model falls into
Class 1.

It seems to be the case, as discussed in the appendix, that
r � �2 is the only value obtainable in realistic fully
unified models based on the unitary groups, i.e. SU�N�.
Thus SU�N� full unification, as far as we can tell, leads
always to models of Class 1. The value r � �2 can also
arise in fully unified models based on E6, since E6 

SU�6�. However, r � �2 does not seem to arise in fully
unified models based on SO�10�. Also, as we shall see in
Sec. IV, the value r � �2 does not seem to arise (except by
artificial tuning of charge assignments) in partially unified
models.

There are some values of r, such as 1=2 and 4=3 that
seem to arise only in fully unified models based on SO�10�.
Consider SO�10� 
 SU�5� �U�1�X, with each family
containing a 16� 10 � �101 � �5�3 � 15� � ��52 � 5�2�.
If the known quarks and leptons are in the 101 � �52, then
r � 1=2 results. (It should be noted that in this case flipped
breaking is not possible, and so there is not strong mixing
with hypercharge as there can be in the r � �1=3 case.) If
each family consists of a 16� 45 of SO�10�, then the
known quarks and leptons could be in a 10�4 � �5�3 of
SU�5� �U�1�X, yielding r � 4=3. (This model has so
many light multiplets that it can only narrowly escape a
Landau pole at scales below the unification scale.) Models
with r � 1=2 and r � 4=3 also fall into Class 1.

There are values of r, such as 1 and�1=2 that can result
from either full unification or partial unification. These
values arise from full unification in E6 if E6 
 SO�10� �
U�1�X 
 SU�3�c � SU�2�L �U�1�Y �U�1�X. Then, if a
family is a 27, it decomposes under SU�5� �U�1�X as
101 � �51 � 11 � �5�2 � 5�2 � 14 (where we use SU�5�
multiplets as shorthand for the standard model multiplets).
If the known quarks and leptons are in 101 � �51 then r �
�1, and if they are in 101 � �5�2 then r � �1=2. However,
these same values of r can also arise in partial unification
based on SO�10� �U�1�X 
 SU�3�c � SU�2�L �
U�1�Y �U�1�X, since anomaly cancellation and family-
independence alone are enough to fix the U�1�X charges
to be the ‘‘E6 values’’ if there are only 16� 10� 1 in each
family. On the other hand, the values r � �1 and�1=2 do
not arise in nonunified models (without artificial tuning of
charge assignments). Models with r � �1 or r � �1=2
fall into Class 2.

The value r � �1=3, as noted before, is very special. It
arises in full unification based on SO�10�, but also, as we
shall see in later sections, it can arise naturally in both
partially unified models and nonunified models.

S. M. BARR AND ALMAS KHAN PHYSICAL REVIEW D 74, 085023 (2006)

085023-4



Depending on how much mixing there is of the extra U�1�
charge X0 with hypercharge these models fall into Class 4
or 5.

A general conclusion about fully unified models is that
there is not strong mixing of the extra U�1� charge with
hypercharge (except in the somewhat artificial case that
there are many highly split multiplets that induce it
radiatively).

A. An important special case: r � �1=3

In fully unified models, the case r � �1=3 arises only in
SO�10� or E6. Let us look at this special case more closely.
(The present analysis will carry over almost completely
also to the case r � �1=3 in partially unified models.)

Suppose one has SU�3�c � SU�2�L �U�1�Y5
�

U�1�X � SU�5� �U�1�X � SO�10�. A family consists of
the SU�5� �U�1�X representations 101 � �5�3 � 15. Let
the covariant derivative contain the following combination
of U�1� gauge fields

 iD� � i@� �
�
g1
Ŷ5

2
B1� � gXX̂BX�

�
� . . . ; (1)

where the subscripts 1 and X refer, respectively, to U�1�Y5

and U�1�X, and we denote by hats generators normalized

consistently in SO�10�, so that tr16�̂
2 � 2. Then Ŷ5

2 �
��
3
5

q
Y5

2

and X̂ � 1����
40
p X The flipped breaking at M0 can be achieved

by the VEV of an SU�3�c � SU�2�L-singlet field having
Y5=2 � X � 1 (such as exists in the spinor of SO�10�).
This leaves unbroken Y=2 � 1

5 ��Y5=2� X�. Therefore, in
terms of the normalized generators, we may write

 

Ŷ
2 � �

1
5
Ŷ5

2 �
����
24
p

5 X̂: (2)

The U�1� charge that is orthogonal to this in SO�10� is
given by

 

�̂X �
����
24
p

5
Ŷ5

2 �
1
5 X̂: (3)

Inspection of Eq. (1) shows that the massive gauge boson is

 Z0� �

������
24
p

g1B1� � gXBX�����������������������
24g2

1 � g
2
X

q ; (4)

and the gauge field B� of U�1�Y is the orthogonal combi-
nation

 B� �
�gXB1� �

������
24
p

g1BX�����������������������
24g2

1 � g
2
X

q ; (5)

Inverting Eqs. (4) and (5), Eq. (1) can be rewritten as

 iD� � i@� �
g1gX����������������������

24g2
1 � g

2
X

q �
�
Ŷ5

2
�

������
24
p

X̂
�
B�

�

� ������
24
p

g2
1����������������������

24g2
1 � g

2
X

q Ŷ5

2
�

g2
X����������������������

24g2
1 � g

2
X

q X̂
�
Z0� � . . . :

(6)

Then inverting Eqs. (2) and (3), this can be reexpressed as
 

iD� � i@� �
�

5g1gX����������������������
24g2

1 � g
2
X

q �
Ŷ
2
B� �

�
1

5

����������������������
24g2

1 � g
2
X

q
�̂X

�

������
24
p

5

g2
X � g

2
1����������������������

24g2
1 � g

2
X

q Ŷ
2

�
Z0� . . . : (7)

Note that B couples to hypercharge, as it should, and Z0

couples to a combination of �X and hypercharge. Let us see
what �X is. It is convenient to normalize it as �X �

������
40
p

�̂X �
1
5 �24 Y5

2 � X�. The charges of the known quarks and leptons
under Y5, X, Y=2, and �X are given in Table I.

One sees that the “10” � �e�; Q; uc� does not coincide
with the 101 of SU�5� �U�1�X, and the “�5” � �L; dc� does
not coincide with the �5�3 of SU�5� �U�1�X (though there
is another SU�5� �U�1� subgroup of SO�10� of which
they are multiplets). This is just the well-known phenome-
non of flipping. However, note that the generator �X does
have equal values for all the multiplets in the ‘‘10’’ and
equal values for all the multiplets in the ‘‘�5.’’ which is why
we have denoted it with a bar, consistent with the notation
we explained in the previous section. Thus, the generator
X0 to which Z0 couples can be written

 X0 � � �̂X� �
Ŷ
2
�

1������
40
p � �X�

���
3

5

s
�
Y
2
; (8)

where from Eq. (7) one has

 �=� �
����
24
p
�g2
X�g

2
1�

24g2
1�g

2
X
: (9)

In other words, there is ‘‘mixing with hypercharge.’’ If the
couplings g1 and gX were equal at M0, the expression in
Eq. (9) would vanish. Of course, these couplings are equal

TABLE I. The charges are related by Y=2 � 1
5 ���Y5=2� � X�

and �X � 1
5 �24�Y5=2� � X�.

field SU�5� Y5=2 X Y=2 �X

Nc 10 1 1 0 5 ‘‘1’’
Q 10 1

6 1 1
6 1 10

dc 10 � 2
3 1 1

3 �3 ‘‘5’’

L �5 � 1
2 �3 � 1

2 �3 5

uc �5 1
3 �3 � 2

3 1 10
e� 1 0 5 1 1 10
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at the scale where SO�10� breaks; however, they will in
general run slightly differently between MSO�10� and M0

due primarily to the Higgs contributions to the beta func-
tions. The known quarks and leptons do not make g1 and
gX run differently at one loop, because they form complete
SO�10� multiplets. (Remember that the Nc have masses of
order M0 since they are protected by U�1�X. It is possible
for some other, SO�10�-singlet fields to play the role of
superheavy right-handed neutrinos for the seesaw mecha-
nism.) The Higgs-boson multiplets’ contribution being
relatively small, one expects that the contribution to �=�
from Eq. (9) will be rather small. Indeed, in typical cases it
turns out to be a few percent. Of course, there is also the
contribution to �=� coming from the radiatively-induced
gauge kinetic mixing discussed earlier, which is also a few
percent typically. So in fully unified models, the mixing
with hypercharge is small whether the breaking is flipped
or ordinary. We shall see in the next section that this is not
the case in partially unified models.

B. Another special case: X0 / Y=2 and why it is
impossible

As noted in section II, mixing of X0 with hypercharge is
possible in unified models if X vanishes on the known
quarks and leptons. Then Y=2 � �Y5=2� �X / Y5=2,
which, of course, would give the right hypercharge assign-
ments. This would be interesting as it would mean that X0

(which is also a linear combination of Y5=2 and X) would
have values for the known quarks and leptons proportional
to their hypercharges—the defining characteristic of mod-
els in Class 6. However, we will now show that in a fully
unified model this possibility cannot be realized (though it
can be realized in partially unified models). The reason is
that in a fully unified model there are in general extra
nonsinglet fermions in each family whose existence is
compelled by the fact that the multiplets of the full-
unification groups are large. It turns out that if X vanishes
on the known fermions then the extra fermions end up
being chiral under hypercharge and electric charge and
thus cannot obtain mass. We will illustrate this with some
examples, and it will be obvious that it generalizes.

Example 1—Suppose that SU�3�c � SU�2�L �
U�1�Y5

�U�1�X � SU�5� �U�1�X � SU�7�, with the
generator X being X � diag�0; 0; 0; 0; 0;
1
2 ;�

1
2�. An anomaly-free set that gives one family is �2� �

3� ��1� � 21� 3� ��7�. Under SU�5� �U�1� this decom-
poses to 100 � 51=2 � 5�1=2 � 10 � 3� ��50 � 11=2 �

1�1=2�. By assumption, X vanishes on the known quarks
and leptons, which therefore consist of �100 � �50�, and the
remaining fermions 51=2 � 5�1=2 � �50 � �50 etc. must mate
to obtain masses large enough that they have not been
observed. However, the hypercharge of the standard model
is, by assumption, a nontrivial linear combination of Y5=2
and X. Therefore it is clear that the fields in 51=2 � 5�1=2 do
not have hypercharges that are opposite to the hyper-

charges of the fields in �50 � �50, and consequently they
do not have opposite electric charges either. They are
prevented from acquiring mass unless electric charge
breaks. Moreover, the residual light fermions in 51=2 �

5�1=2 will have exotic hypercharges.
Example 2—The previous example can easily be gen-

eralized to SU�N�. Consider SU�3�c � SU�2�L �U�1�Y �
U�1�X � SU�5� �U�1�X � SU�N�. Let X (in the funda-
mental representation) be given by
diag�0; 0; 0; 0; 0; 1

2 ;�
1
2 ; 0; . . . ; 0�, where the first five en-

tries correspond to the SU�5� that contains SU�3�c �
SU�2�L. Let the fermions be in totally antisymmetric tensor
representations: n1 � �1� � n2 � �2� � n3 � �3� � . . . .
An antisymmetric tensor representation decomposes under
the SU�5� �U�1� subgroup as follows.
 

�p� !
� N � 7

p� 4

 !
�

N � 7

p� 6

 !�
� �50

�
N � 7

p� 5

 !
� ��51=2 � �5�1=2�

�

� N � 7

p� 3

 !
�

N � 7

p� 5

 !�
� 100

�
N � 7

p� 4

 !
� �101=2 � 10�1=2�

�

� N � 7

p� 2

 !
�

N � 7

p� 4

 !�
� 100

�
N � 7

p� 3

 !
� �101=2 � 10�1=2�

�

� N � 7

p� 1

 !
�

N � 7

p� 3

 !�
� 50

�
N � 7

p� 2

 !
� �51=2 � 5�1=2�

� singlets: (10)

The known standard model families must consist, by as-
sumption, of 3� �100 � �50�. The remaining fermions, if
they are to get mass, must be vectorlike under U�1�Y5

�

U�1�X. (Otherwise, their masses would break electric
charge, as we have seen.) That means that there must be
equal numbers of �101=2 � 10�1=2� and of �101=2 �

10�1=2�, and similarly of �51=2 � 5�1=2� and of ��51=2 �
�5�1=2�. These two conditions give, respectively,

 

X
p

np
N � 7
p� 3

� �
�
X
p

np
N � 7
p� 4

� �
;

X
p

np
N � 7
p� 2

� �
�
X
p

np
N � 7
p� 5

� �
:

(11)

However, these imply that the number of 100 minus the

S. M. BARR AND ALMAS KHAN PHYSICAL REVIEW D 74, 085023 (2006)

085023-6



number of 100, i.e. the number of families, must vanish:

 nfam �
X
p

np

�
N � 7
p� 2

� �
�

N � 7
p� 4

� �
�

N � 7
p� 3

� �

�
N � 7
p� 5

� ��

� 0: (12)

We believe that this generalizes to all other types of
representations, other full-unification groups, and other
U�1�X subgroups.

IV. PARTIALLY UNIFIED MODELS

We have defined a partially unified model to be one
where the group 32110 describing physics below M0 is
embedded as follows: SU�3�c � SU�2�L �U�1�Y �
U�1�X � SU�5� �U�1�X � G�U�1�X � G�H, where
G is a simple group. The same reasoning as for fully
unified groups shows that X does mix strongly with hyper-
charge except in two special cases: (a) r � �1=3 and the
breaking at M0 happens in a flipped way, or (b) X vanishes
on the known quarks and leptons. The reason, again, is that
except for these two special cases strong mixing of X0 with
hypercharge will cause the hypercharges of the known
quarks and leptons to come out wrong. The value r �
�1=3 arises in the simplest SO�10� models, and so we
will call models with r � �1=3 ‘‘SO�10�-like,’’ even
though, as we shall see, they may be based on other groups
(including unitary ones), both partially unified and
nonunified.

A. The ‘‘SO�10�-like’’ and flipped special case

Consider a model with group SU�5� �U�1�X and fer-
mion multiplets (per family) of 10a � �5b � 1c. Then there
are three anomalies that must be satisfied by the X charges:
521X, 13

X and 1X. These give the unique solution (up to
overall normalization) �a; b; c� � �1;�3; 5�. (As always,
we assume that X is family-independent.) These are the
same charges that would be obtained if SU�5� �U�1�X
were embedded in SO�10�. We will therefore call such
models ‘‘SO�10�-like.’’ The analysis given in Eqs. (1)–
(9) of what happens if the U�1�X is broken in a flipped
manner applies here as well, except that the gauge coupling
of U�1�Y5

is not unified with that of U�1�X. Consequently,
what we called g1 and gX are not related, and there is no
reason for the parameter �=� given in Eq. (9) to be small.
Rather, one expects it to be of order one, typically. This
gives models of Class 5, then, rather than Class 4.

It is worth noting that one can get SO�10�-like models
with other choices of fermion content and other partial
unification groups. For example, in SU�5� �U�1�X, if
there are (per family) 10a � �5b � 1c � 1d, the unique
solution (up to overall normalization) is �a; b; c; d� �
�1;�3; 5; 0�. Note that the 10 could play the role of right-

handed neutrino with superheavy mass, giving realistic
seesaw masses for the light neutrinos. later we shall see
an SO�10�-like model resulting from unitary groups like
SU�6� �U�1�.

B. The X0 / Y=2 special case

This special case can be realized in partial unification
without producing massless fermions with exotic
charges—in fact quite, trivially. For example, let the
only quarks and leptons be in 3� �100 � �50 � 10� of
SU�5� �U�1�X, and let some Higgs field (for example
10qH) break both Y5 andX atM0, leaving unbroken SU�3� �
SU�2� �U�1�. There is no problem here with extra quark
and lepton multiplets that have chiral values of hyper-
charge and electric charge which prevent them from ob-
taining mass, since unlike the fully unified case there is
here no larger simple group containing SU�5� �U�1� that
implies their existence. Thus models of Class 6 can arise
from partial unification.

C. The general case of no mixing

Turning now to the more generic cases where X0 does
not mix strongly with hypercharge, we will show that the
partially unified models can be distinguished from the fully
unified ones by the fact that they generally give different
values of r. It is simplest to consider a few examples.

Consider, first, a model with group SU�5� �U�1�X and
fermions content (per family) consisting of 10a � �5b �
�5c � 5d � 1e. There is a unique solution of the anomaly
conditions (up to interchange of the two �5’s and overall
normalization): �a; b; c; d; e� � �1;�3; x;�x; 5�, with x
undetermined. If one takes a family to consist of 101 �
�5�3 � 15, one has an SO�10�-like model. However, it is
possible that a family consists of 101 � �5x � 15. In this
case, one has r � �X�10�= �X��5� � X�10�=X��5� � 1=x. This
can be any number; anomaly cancellation leaves it com-
pletely undetermined. It therefore has no reason to be equal
to one of the characteristic values (like �2 and�1=3) that
occur in fully unified models. Therefore, such a model
would be in Class 3.

If one requires in this latter model (where a family is in
101 � �5x � 15) that the light Higgs doublets Hd and Hu
have opposite X, and further that the quark and lepton
masses all come from dimension-four Yukawa terms,
then it would force X�Hu� � �2, X�Hd� � �2, and x �
�3, giving an SO�10�-like model. However, it is also
possible that Hu, Hd have X � �2, �2, but that the
Yukawa terms have the form: �101101�5�2

H and
�101 �5x��52

H1�3�x
H =M0. Note that there must, in any event,

be a Higgs field 13�x
H with VEV of order M0 if the extra

fermions �5�3 � 5�x are to get large mass together. In fact,
by integrating out these extra fermions, it is possible to get
just the dimension-five Yukawa term that we have written.
Thus, the Yukawa terms do not impose any a priori con-
straint on x or r. (This integrating out of the extra fermions
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to produce effective dimension-five Yukawa terms for the
known quarks and leptons will produce some mixing be-
tween the �5�3 and the �5x. This mixing can be small, in
which case r would be given very nearly by 1=x for all
families. If, however, this mixing is large, one would get a
complicated pattern of couplings to Z0 that would not in
general be family-independent.)

The next example is one where anomalies actually force
a unique solution for r, but it does not come out to be one of
the characteristic values that arise from full unification.
Consider a model with gauge group SU�5� �U�1� and
fermion content (per family) of 10a � �5b � 15c � 15d.
This gives the solutions �a; b; c; d� � �4;�5;�1; 0� or
�4;�5; 0;�1�. In either case, r � �4=5. This model is
also in Class 3.

These examples show that one can get values of r in
partially unified models that do not arise in fully unified
models. Turning the question around, one can ask whether
partially unified models can give all the values of r that do
arise in fully unified models. Of course, one can get them in
some models by simply choosing the charges arbitrarily to
have the right values, which is a kind of fine-tuning. The
question is whether anomaly cancellation without full
unification can force r to have one of those values charac-
teristic of full unification. We have already seen that the
answer is yes for the special cases r � �1 and r � �1=2
(which can come from SO�10� �U�1�X as well as E6) and
r � �1=3 (which can arise in many ways). However, these
E6-like and SO�10�-like values are special in this regard.
The value r � �2 characteristic of full-unification based
on SU�N� does not seem ever to be forced by anomaly
cancellation in partially unified models.

We will now see why this the case by looking at a simple
example. We saw that the value r � �2 can arise in fully
unified models based on SU�6�. Can the value r � �2 be
forced by anomaly cancellation (plus the assumption of
family-independence) in a partially unified model? In the
simplest SU�6� model, a family consists of 21� 2� �7,
which decomposes under the SU�5� �U�1�X subgroup
into 102 � 5�4 � 2� ��5�1 � 15�, as noted before. One
might take this set of SU�5� representations and ask
whether anomaly cancellation alone would force the
same solution for the U�1�X charges. The answer is no.
For the set 10a � 5b � �5c � �5d � 1e � 1f, the most gen-
eral solution to the anomaly-cancellation conditions has
two parameters (not counting overall normalization). A
simple one-parameter subset of this solution is
�a; b; c; d; e; f� � �2;�4;�1� x;�1� x; 5� x; 5� x�,
with x arbitrary; so that r � 2=��1� x� and can be any-
thing. (Note that x � �5 would give SO�10�-like charges,
and x � 0 gives SU�6�-like charges.) Anomaly cancella-
tion does not force a particular value of x. The reason for
this ambiguity lies in E6. E6 has the chain of subgroups
E6 
 SU�6� � SU�2� 
 SU�5� �U�1�6 � SU�2� 

SU�5� �U�1�6 �U�1�2. The 27 of E6 decomposes into

these 51612 multiplets: 10�2;0� � 5��4;0� � ��5��1;�1� �
�1��1;�1�� � �1�5;�1� � 1�5;�1��. Clearly, any U�1� generator
that is a linear combination of the generators of U�1�6 and
U�1�2 will satisfy the anomaly-cancellation conditions
since E6 is an anomaly-free group. The undetermined
parameter x that we found in the SU�5� �U�1� solution
just reflects this ambiguity.

If one reduces the number of multiplets per family, one
reduces the number of unknowns and may get a unique
solution to the anomaly-cancellation conditions; however,
the unique solution will not be r � �2. In fact, if we
remove one of the singlets one has the first example in
this subsection, for which anomaly cancellation gives
101 � �5�x � �5�3 � 5x � 15, so that either r � �1=3 or
r � 1=x (i.e. undetermined). If we remove a pair of fun-
damental plus antifundamental, we have already seen that
one gets uniquely the SO�10�-like solution 101 � �5�3 �
15 � 10.

On the other hand, if one adds more SU�5�multiplets per
family, it just increases the number of undetermined pa-
rameters, so that again r is not forced to be �2. Nor does
going to larger partial unification groups allow situations
where anomalies force r � �2. Consider, for instance,
SU�6� �U�1�1 with fermions 15a � �6b � �6c � 1d. The
three anomaly conditions �621; 13; 1� force the values
�a; b; c; d� � �1; 1;�5; 9� (up to an overall normalization).
Under the subgroup SU�5� �U�1�6 �U�1�1 the fermions
of a family decompose into 10�2;1� � 5��4;1� � �5��1;1� �

1�5;1� � �5��1;�5� � 1�5;�5� � 1�0;9�. The extra U�1�X is
some linear combination of U�1�6 and U�1�1. Which linear
combination it is depends on how the groups break at the
scale M	, and that in turn depends on what kinds of
standard model-singlet Higgs fields exist in the model.

Generally, the U�1�1 charges of the Higgs fields are not
constrained by anomaly cancellation. (Even in supersym-
metric models where the Higgs fields have fermionic part-
ners, these generally come in conjugate pairs, for reasons
explained above, and so their anomalies cancel.) There is at
least one standard model-singlet Higgs fields that must
appear in such a model, namely, the one required to give
mass to the extra �5� 5 of quarks and leptons. There are
two possibilities: the 5��4;1� can either get mass with the
�5��1;1� or with the �5��1;5�. In the former case, the required
singlet Higgs is 1�5;�2�

H , in the latter it is 1�5;4�H . In neither
case does the singlet Higgs have to be the one responsible
for breaking down to 32110 atM	. (These singlets could get
VEVs much smaller than the scale M	, with some other
singlet doing the breaking at M	.) However, if either of
them is the one responsible for the breaking to 32110 atM	,
one easily sees that an SO�10�-like extra U�1� is left
unbroken. For example, if h1�5;�2�

H i �M	, then the unbro-
ken generator is X � �2X6 � 5X1�=9, where we have used
a convenient normalization. This leads to the known quarks
and leptons having X�10�2;1�� � 1 and X��5��1;�5�� � �3,
giving r � �1=3. The other case is similar. The reason that
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an SO�10�-like model results is simple: the theory below
M	 has the fermion content per family 10� �5� 1� 1,
which we have already seen to be forced by anomaly
cancellation to give a U�1�X that is SO�10�-like.

One sees that partial unification can lead to SO�10�-like
models with r � �1=3, in which case the models are
Class 4 or Class 5, depending on whether the breaking of
32110 at M0 happens in the ordinary or flipped manner. It
can also lead to E6-like models r � �1 or �1=2, which
fall into Class 2. Finally, it can lead to models with arbi-
trary values of r not equal to any of the special values
characteristic of full unification; such models fall into
Class 3.

V. NON-UNIFIED MODELS

In nonunified models, there is no unification of the
groups SU�3�c � SU�2�L �U�1�Y �U�1�0 above the scale
M	, and therefore no group-theory constraints on the
charge assignments of either U�1� group. If the only con-
straints on these charges come from anomaly cancellation,
there is no guarantee in general that the hypercharge
assignments will come out correct or even that a U�1�
group will be left unbroken when the extra fermions ac-
quire mass at M0. However, if after the breaking at M0 only
the standard model quark and lepton multiplets remain
light and a U�1� is indeed left unbroken, then anomaly
cancellation and family-independence guarantee that the
charge assignments of the light quarks and leptons under
the unbroken U�1� will correspond to the known hyper-
charges [10].

A. Obtaining the hypercharge group

Let us illustrate some of these points with a simple
example. Consider first a model in which there are two
extra singlets per family, so that each family consists of
�Q; uc; dc; L; ec; N; N0�. Let the gauge group be SU�3�c �
SU�2�L �U�1�1 �U�1�2, where we label the Abelian fac-
tors as we do because we do not yet know whether hyper-
charge will emerge from the anomaly conditions. (Of
course, we assume as always that the gauge groups couple
in a family-independent way.)

There are ten anomaly conditions that constrain the
Abelian charge assignments: 3211, 2211, 13

1, 11, 3212,
2212, 13

2, 12, 12
112, and 1112

2. The first four anomaly con-
ditions, which constrain only the U�1�1 charge assign-
ments, force them to be of the form
X1 � �1;�4� x1; 2� x1;�3; 6� e1 � f1; e1; f1�, where
we list them in the same order as we listed the multiplets
above. The cubic anomaly condition gives the relation 0 �
6x1�x1 � 6� � �e1 � f1��e1 � 6��f1 � 6�. We have chosen
to normalize these charges so that X1�Q� � 1. The next
four anomaly conditions, which constrain only the U�1�2
charge assignments, force them to be X2 � �1;�4�
x2; 2� x2;�3; 6� e2 � f2; e2; f2�, where 0 �
6x2�x2 � 6� � �e2 � f2��e2 � 6��f2 � 6�. Again, we have

normalized these to make X2�Q� � 1. Finally, the remain-
ing two anomaly conditions (12

112 and 1112
2) give a pair of

cubic equations that must be satisfied by the parameters x1,
e1, f1, x2, e2, and f2. Altogether, then, there are six
parameters that must satisfy four nonlinear equations.
That means that there are two-parameter families of solu-
tions. We may take those parameters to be e1 and f1, which
are the charges under U�1�1 of the extra singlets N and N0,
and these may take values in a finite range.

At first glance, it is not obvious that in the general case
any linear comination of X1 and X2 will give the standard
model hypercharges for the known quarks and leptons.
However, it is not difficult to see that one linear combina-
tion does and that it is easy to breakU�1�1 �U�1�2 down to
it. For suppose that there is a singlet Higgs field S that has
Dirac couplings to the extra singlet fermions: hij�NiN0j�S,
where i, j are family indices. If S obtains a VEV of order
M0 it leaves one linear combination of X1 and X2 unbroken.
Since it also leaves only the quarks and leptons of the
standard model light, we know from anomaly cancellation
that the unbroken U�1� must act on the known quarks and
leptons as the standard model hypercharge (up to an overall
nomalization, of course, that can be absorbed into the
gauge coupling.)

On the other hand, suppose that the extra fermions got
mass at the scale M0 from Majorana terms like �NN��
hSi � �N0N0�hS0i. Then, unless the charge assignments
were tuned to special values, no U�1� group would be
left unbroken below M0, so that the standard model would
not be reproduced.

B. Models that reproduce the standard model

If one is dealing with a model that reproduces the
standard model, then we can write U�1�1 �U�1�2 �
U�1�Y0 �U�1�0, where Y0 equals the standard hypercharges
on the known quarks and leptons. (However, Y0 need not
have the ‘‘standard’’ values on extra fermions: on them it
can have any values consistent with their mass terms. The
extra fermions, whose masses are of order M0 are obvi-
ously vectorlike under Y0.) Thus, Y0 satisfies several anom-
aly conditions automatically (namely 321Y0 , 221Y0 , 13

Y0 and
1Y0), and we need only consider six anomaly-cancellation
conditions for the extra U�1�: 321X0 , 221X0 , 12

Y01X0 , 1Y01
2
X0 ,

13
X0 , 1X0 .
If the only fermions are those of the standard model, and

their charges are assumed to be family-independent, then
there are only four unknowns, namely, the ratios of the X0

charges of Q, uc, dc, L, e�. The only solution is hyper-
charge itself, i.e. X0 � �Y=2. Of course, the Higgs fields or
other scalars that might exist in the low-energy theory can
have arbitrary X0. Such models would fall into Class 6.

If there are additional fermion multiplets per family,
then several possibilities exist, depending on what those
fermions are. In some cases, the solutions still give X0 �
�Y=2 on the known fermions and fall into Class 6. In other
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cases, the solutions are SO�10�-like, in that case X0 �
�X10 � �Y=2, on the known fermions, where
X10�e�; Q; uc; L; dc� � �1; 1; 1;�3;�3�. Such models fall
into Class 5, since the parameter � has no reason to be
small. (The mixing with hypercharge in this case does not
have to arise from a simultaneous breaking of Y5 and X at
M0, as in partially unified or fully unified models, where X
is a generator that commutes with an SU�5� and is unmixed
with hypercharge to begin with. In nonunified models, the
anomaly conditions permit arbitrary mixing with hyper-
charge, and there is nothing to make that mixing small—
not even assumptions about which Yukawa couplings and
Higgs multiplets exist, since all Yukawa couplings must
conserve hypercharge.) Finally, there are cases, where the
solutions are messy and not of the form X0 � � �X� �.
These fall into Class 7.

Let us look at some simple examples. (A) If there exists
in addition to the known light fermions just one standard
model singlet per family (call it N), then the most general
solution is SO�10�-like: X0 � �X10 � �Y=2, and falls into
Class 5. (In this case there are five unknowns satisfying six
equations, since the overall normalization of the charges
does not matter. The fact that a nontrivial solution exists is
explained, of course, by the fact that the fermions in this
case are able to fit into the spinor of SO�10�, even though
no SO�10� actually exists in the model.)

(B) If the extra fermions per family are just two standard
model singlets, N and N0, then there are two solutions to
the anomaly conditions. One solution has X0 �
�XN � �Y=2, where XN is�1 and�1 on the two singlets
and vanishes on all other fermions. On the known fermions
this gives X0 � �Y=2, and therefore falls into Class 6. The
other solution has X0 � �X10 � �Y=2, where X10 has the
values given above for the known fermions and is�5 and 0
on the two singlets N, N0. This is SO�10�-like and falls into
Class 5.

(C) If the extra fermions per family are just three sin-
glets, N, N0 and N000, then the general solution is X0 �
�X10 � �Y=2� �XN , where X10 has the values given
above for the known fermions and is �5, 0, and 0 on the
three singlets N, N0, N000. The generator XN is �1 and �1
on the two singlets that have X10 � 0 and vanishes on the
other. This solution will fall into Class 5. (We assume that
coefficients such as � are not tuned to zero if group theory
or anomaly cancellation do not require it.) If there are more
than three singlets per family one gets solutions similar to
those above.

(E) If the extra fermions per family are just a conjugate
pair R� �R of nonsinglet irreducible representations, then
the solution is X0 � �XR � �Y=2, where XR is�1 and�1
on the conjugate pair and vanishes on the known fermions.
This falls into Class 6. (If R has the same standard model
charges as a known fermion, then there is a solution
trivially obtained from the previous by interchanging the
two multiplets. This would fall into Class 7.)

(F) If the extra fermions per family are a conjugate pair
and a singlet, R� �R� N, then there are two distinct
solutions. One is SO�10�-like: X0 � �X10 � �Y=2�
�XR, in a notation that is obvious. This falls into Class 5.
The other solution is a messy two-parameter solution that
falls into Class 7.

These simple examples show what kinds of possibilities
exist. Of course, generally speaking, the more extra fermi-
ons that exist, the more undetermined parameters will exist
in the solution. Complicated cases will usually fall into
Class 7.

VI. CONCLUSIONS

We have argued that a discovery of an extra Z boson can
provide information that allows inferences about the de-
gree of gauge unification at high scales. For example, if
there is strong mixing of the generator of the U�1�0 with
hypercharge and r � �1=3 (and if X0 is not proportional to
Y), it would strongly disfavor conventional four-
dimensional unification of the standard model in a simple
group. (However, it would not rigorously disprove it, given
the possibility, which seems artificial and hard to obtain
naturally, that there might be numerous highly split mul-
tiplets that induce O�1� radiative mixing of X0 with Y.). As
another example, if X0 / Y it disproves ‘‘full unification,’’
i.e. the unification of the standard model group and the
U�1�0 in a single simple group.

On the other hand, the discovery of certain patterns of
U�1�0 charge assignments would be strong evidence in
favor of certain specific kinds of gauge unification. For
instance, finding r � �2 and small mixing of the U�1�0

charge with hypercharge would strongly favor full unifica-
tion in a group that contained SU�6�, i.e. either a unitary
group of E6. However, as far as such positive inferences go,
there is always the possibility that certain charges can take
special values purely by accident—by fine-tuning, as it
were.

There remains much more to be done. First, we have not
yet succeeded in rigorously proving some of our conclu-
sions even though we have strong evidence for them, based
on both partial proofs and the working out of examples.
Second, there is the question of how much stronger the
conclusions would be if one also used information about
the spectrum of extra light quarks and leptons and their
charges under both the standard model group and the
U�1�0. Third, it may be that extra U�1�0 charges in the
original gauge basis may be family-independent, but that
family-dependence arises as a result of symmetry breaking
and mixing in the fermion mass matrices. We have not
addressed this case, but only cases where the observed
charge assignments are family-independent.

Of course, it is likely that there is no extra gauge
symmetry at low energies. However, if there is, it would
prove to be a potent tool in unraveling the mystery of what
is happening at superhigh scales.
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APPENDIX

In this appendix we consider values of r that can arise in
fully unified models based on unitary groups. Consider a
model based on SU�7�, with each family consisting of the
multiplets 2� ��3� � �2� � �1� � 2� 35� 21� 7. The
group SU�7� contains the subgroup SU�5� �U�1�1 �
U�1�2, where the generators of the two U�1� groups are
X1 � diag�1; 1; 1; 1; 1;� 5

2 ;�
5
2� and X2 � diag�0; 0; 0; 0;

0; 1
2 ;�

1
2�. Each family thus decomposes into 2��103;0�

10�1=2;1=2 � 10�1=2;�1=2 � 5�4;0� � �10�2;0 � �53=2;�1=2 �
�53=2;1=2�15;0����5�1;0�15=2;�1=2�15=2;1=2�. We assume
that SU�5� is broken to the standard model group at a
very high scale, but we use SU�5� notation to describe
the quark and lepton content for simplicity. We will
consider two breaking schemes in which singlet VEVs
first break the group down to GSM �U�1�0 at a scale
M	, and then at a scale M0 � M	 other singlets break the
U�1�0.
Case A Let Higgs fields in the representations 15=2;1=2 �

1�5=2;�1=2 obtain VEVs of order M	. This breaks
U�1�1 �U�1�2 down to U�1�0, where X0 � X1 �
5X2. The singlet VEVs also give mass to the pairs
of fermions �10�1=2;�1=2 � 10�2;0�, 2�

�10�1=2;1=2 � 103;0�, and ��53=2;�1=2 � 5�4;0�. That
leaves light the following multiplets in each fam-
ily: 10�1=2;�1=2 � �5�1:0 � �53=2;1=2 � 5�4;0. Or in
terms of the U�1�0 charges, these are 102 � �5�1 �
�5�1 � 5�4. This is, in fact, just the same set of
multiplets that arise in SU�6� models, as can be
seen by comparing with the discussion of SU�6� at
the beginning of section II. One sees that r � �2.

Case B Let Higgs fields in the representations 15;0 � 1�5;0

obtain VEVs of order M	. This breaks U�1�1 �
U�1�2 down to U�1�0 � U�1�2. The singlet VEVs
also give mass to the pair of fermions ��5�1;0 �

5�4;0�. At a lower scale, M0 the singlets 15=2;1=2 �

1�5=2;�1=2 obtain VEVs and give mass to the pairs
�10�1=2;�1=2 � 10�2;0�, 2� �10�1=2;1=2 � 103;0�,
and ��53=2;�1=2 � 5�4;0�. That leaves light the fol-
lowing multiplets in each family: 10�1=2;�1=2 �
�53=2;1=2. Or in terms of the U�1�0 charges, these are
10�1=2 � �51=2, implying that r � �1. However, it
is clear that Case B is completely unrealistic as a
model with a low-energy Z0 boson, since so many
multiplets of quarks and leptons have mass of
order M0 that unless M0 is near the unification
scale the gauge couplings will blow up below
the unification scale.

This seems to be a general feature in fully unified
models based on unitary groups: either one breaks to an
SU�6�-like low-energy model, giving r � �2, or there end
up being too many light quarks and leptons for unification
of gauge coupling, i.e. there is a Landau pole below the
unification scale.
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