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We compute the bulk viscosity � of high-temperature QCD to leading order in powers of the running
coupling �s�T�. We find that it is negligible compared to shear viscosity � for any �s that might
reasonably be considered small. The physics of bulk viscosity in QCD is a bit different than in scalar �4

theory. In particular, unlike in scalar theory, we find that an old, crude estimate of � ’ 15�13� v
2
s �

2� gives
the correct order of magnitude, where vs is the speed of sound. We also find that leading-log expansions of
our result for � are not accurate except at very small coupling.
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I. INTRODUCTION AND RESULTS

Studies of collective flow at RHIC [1], particularly of
elliptic flow, seem to be well described by nearly ideal
hydrodynamics [2]. In fact, it has recently been claimed
that these experiments prove that the quark-gluon plasma is
the most nearly ideal fluid known, with a viscosity close to
the conjectured lower bound on viscosities in any system
[3,4]. Such startling claims should be tested in any way we
have available. This requires studying flow in heavy ion
collisions using nonideal hydrodynamics, that is, hydro-
dynamics including viscous effects [5]. It also would be
valuable to know as much as possible about the theoretical
expectations for viscosity in the quark-gluon plasma.

In an ideal hydrodynamical treatment, the evolution of
the plasma is determined by stress-energy conservation,
@�T�� � 0, together with an equilibrium equation of state
which relates the pressure to the energy density, P �
Peq���. This should work whenever the system is locally
in equilibrium, which is the case in the limit of arbitrarily
slowly varying flow velocity ui�x�. When ui�x� varies
somewhat in space, the fluid will not be precisely in local
equilibrium, which will modify the stress tensor. For
slowly varying ui�x�, the corrections to the stress tensor
Tij can be expanded in gradients of ui. The leading order
corrections are parametrized by two quantities, the shear
viscosity � and the bulk viscosity � :
 

Tij � Peq����ij � ��@iuj � @jui �
2
3�ij@kuk� � ��ijr � u;

(1.1)

where the expression is implicitly written in the instanta-
neous local rest frame (where T0i � 0).

While we are really interested in the viscosities � and �
of the quark-gluon plasma at temperatures T � 200 MeV,
where the theory is far from weakly coupled, we only
possess reliable tools for computing dynamical properties

such as viscosities at weak coupling.1 Hopefully, extrap-
olating these results to strong coupling should give the
right ballpark for the same quantities at moderately strong
coupling, with uncertainties of perhaps a factor of a few.
This motivates investigating � and � at weak coupling.

In a relativistic system, on dimensional grounds, both �
and � must scale as �, � / T3. A great deal of study has
gone into the shear viscosity in QCD. It has been known
for 20 years that the parametric behavior is ��
T3=��2

s log�1=�s	� [9,10]; the leading coefficient was
closely estimated in 1990 [11], and complete results now
exist both at leading logarithmic order [12] and full leading
order [13] in the QCD coupling �s. On the other hand, the
calculation of the bulk viscosity has been completely ne-
glected. To our knowledge, no paper in the literature even
correctly states what power of �s it is proportional to. The
purpose of this paper is to fill this gap, by computing the
bulk viscosity in weakly coupled QCD at leading order in
�s, using kinetic theory. We will only consider the case of
vanishing (or negligible) chemical potential, � � 0.

In the next section, we will review the relevant physics
of bulk viscosity, explaining why the parametric behavior
is

 � �
�2

sT3

log�1=�s	
�m0 
 �sT�;

� �
m4

0

T�2
s log�1=�s	

��sT 
 m0 
 T�:

(1.2)

Here m0 refers to the heaviest zero-temperature (current)
quark mass which is smaller than or of order the tempera-
ture T. We use the subscript zero to emphasize that m0

1The lattice is a rigorous nonperturbative tool for studying
thermodynamic properties of the quark-gluon plasma at strong
coupling, but dynamical properties such as viscosities are hard to
study on the lattice; see for instance, Refs. [6–8].
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represents a zero-temperature mass and not a finite-
temperature effective quasiparticle mass. We will see that
the physics of bulk viscosity is much richer than that of
shear viscosity. In particular, the conformal anomaly (i.e.
scaling violations) and the corrections to quasiparticle
dispersion relations due to interactions, both irrelevant
for shear viscosity, are both essential pieces of physics
for bulk viscosity. Particle number changing interactions
also play a much larger role in bulk than in shear viscosity.
These qualitative points have been anticipated by the pio-
neering work of Jeon and Yaffe [14,15] on bulk viscosity in
relativistic�4 theory. However, we shall see later that there
are some significant qualitative differences between bulk
viscosity in �4 theory and in QCD.

Section III will present the details of the calculation of
bulk viscosity. Our discussion will at times be abbreviated,
referring back to previous papers [12,13], where much of
the technology has already been presented. We will end
with a discussion in section IV. However, for the impatient
reader, we now present our main results. The coefficients,

missing in Eq. (1.2), are presented in Figs. 1 and 2. Here,
Nf is the number of flavors of quarks. In Fig. 1, all quark
flavors are assumed to be massless (m0 
 �sT); in Fig. 2,
all but one flavor is assumed to be massless, with that one
flavor’s mass in the range �sT 
 m0 
 �1=2

s T. A com-
parison of bulk viscosity and shear viscosity for three
massless flavors is given in Fig. 3 as a function of �s.
The figure makes clear that neglecting bulk viscosity in
favor of shear viscosity is actually quite a good approxi-
mation, not only at weak coupling but probably also at
moderately strong, physically interesting couplings.
Figure 4 shows the ratio �=�4

s�, which at very small �s

approaches a constant with corrections given by powers of
�log�1=�s��

�1. The dashed line shows an old, crude esti-
mate of the ratio of bulk to shear viscosity which will be
discussed in Sec. IV.

FIG. 1. Bulk viscosity for massless QCD at several values of
Nf , as a function of the coupling �s.

FIG. 2. Bulk viscosity when it is dominated by a single quark
flavor’s mass, as a function of �s, for several values of Nf .

FIG. 3. Shear versus bulk viscosity: �=s and �=s (s the entropy
density) as a function of �s, for Nf � 3 QCD, neglecting quark
masses. Bulk viscosity � has been rescaled by a factor of 1000.

FIG. 4. The ratio �=�4
s� for Nf � 3 QCD, neglecting quark

masses. The dashed line shows the crude estimate of (4.1) with
(3.32). As �s ! 0 (and leading-log approximations to the
leading-order result become applicable), the ratio approaches
the limit �=�4

s�! 0:973.
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Throughout this paper, we will not attempt to project our
leading-order results to coupling higher than �s ’ 0:3. In
previous studies of diffusion constants [13], it was found
that this is where different formulations of the effective
kinetic theory, which were equivalent at leading-order in
coupling, no longer agreed within a factor of 2, suggesting
a complete breakdown of the perturbative treatment.2

II. PHYSICS OF BULK VISCOSITY

A. Basic picture

When a fluid is uniformly compressed, it leaves equi-
librium. The energy density rises, but the pressure tempo-
rarily rises by more than what is predicted by the equation
of state.3 Under uniform rarefaction, the pressure tempo-
rarily falls further than is predicted by the fall in the density
and the equation of state. The bulk viscosity quantifies the
time integral of this extra shift in the pressure (per
e-folding of expansion).

The change in pressure occurs because the fluid leaves
equilibrium. The time scale for weakly coupled QCD
to relax towards equilibrium is set by the rate ��
�2

sT log�1=�	 for a typical particle (p� T) to randomize
its momentum p. The faster the fluid equilibrates, the
nearer to equilibrium it remains, so the smaller the shift
in the pressure; therefore the viscosity should be propor-
tional to �=�� T3=�2

s log�1=�	. This naive estimate turns
out to be parametrically correct for shear viscosity.

However, it is wrong for bulk viscosity. The reason is
that QCD (at high temperatures and away from mass
thresholds) is a nearly conformal theory, and the bulk
viscosity vanishes in a conformal theory, for two reasons.
First, uniform compression or rarefaction is the same as a
dilatation transformation. In a conformal theory, a dilata-
tion transformation is a symmetry, and so the fluid will not
leave equilibrium. Therefore, � must be proportional to the
breaking of conformal invariance.

Furthermore, in a conformal theory, even if the fluid is
out of equilibrium, the pressure still does not deviate from
the value given by the equation of state, which for a
conformal theory is exactly P � �=3. This is just the trace-
lessness of the stress-energy tensor in a conformal theory.
For instance, consider massless 	�4 theory,

 L �
1

2
@��@���

	
24
�4; (2.1)

at finite 	 [with (����) metric convention]. The
Euler-Lagrange equation is,

 @2��
	
6
�3 � 0; (2.2)

and the stress tensor and its trace are

 T�� � @��@��� ���L; T�� � ��@��2 �
	
6
�4:

(2.3)

Multiplying the Euler-Lagrange equation by � shows that
T�� vanishes up to a total derivative, which averages to
zero. This argument is only flawed because of the confor-
mal anomaly, which arises because of the running of 	with
scale. The bulk viscosity coefficient will therefore contain
another power of the smallness of conformal invariance
breaking

Thus, in a nearly conformal theory, the bulk viscosity
coefficient � vanishes as the second power of the departure
from conformality: one power because the departure from
equilibrium is small, and another power because any de-
parture from equilibrium has a small impact on the pres-
sure. For massless QCD, conformal symmetry is broken by
the running of the coupling, 
��s� � �

2
s , and so the bulk

viscosity is

 � �
T3

�2
s log�1=�s	

� ��2
s �

2 �
�2

sT3

log�1=�s	
; (2.4)

as claimed before. The presence of quark masses also
constitutes a breaking of conformal invariance provided
m0 & T (otherwise there are no quarks in the thermal bath
and the influence of the quark can be neglected). In this
case the pressure deviates from the massless value by a
relative amount �m2

0=T
2, and

 � �
T3

�2
s log�1=�s	

�

�
m2

0

T2

�
2
�

m4
0

T�2
s log�1=�s	

: (2.5)

For future reference, note that if one formally defines the
pressure as P � Tii=3 and linearizes the hydrodynamic
formula (1.1) about global equilibrium P � Peq���, then
the bulk viscosity parametrizes

 �P� v2
s �� � �r � u; (2.6)

where vs is the velocity of sound, given by v2
s � @Peq=@�,

and �P and �� are the local deviations of pressure and
energy density.

B. Number changing processes: Comparison with �4

theory

There is one detail which this brief discussion has
brushed over. Viscosities are typically determined by the
slowest process which is required for relaxation to equilib-

2See, in particular, Fig. 4 of Ref. [13] at mD=T � 2:4 for 3-
flavor QCD, which corresponds to �s � 0:3.

3That the pressure is higher during compression and lower
during rarefaction is dictated by the second law of thermody-
namics; if the pressure during compression were lower than in
equilibrium, one could construct a perpetual motion machine of
the second kind, which rapidly compressed a fluid (encountering
a lower than thermodynamic pressure) and then slowly expanded
a fluid (encountering the full thermodynamic pressure). This
constraint, that � is positive, is another way of seeing that �
must be proportional to the second power of the beta function (or
other source of conformal invariance breaking), since the beta
function can be of either sign.
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rium. Certain departures from equilibrium can be very slow
to equilibrate, due to the presence of almost-conserved
quantities.

For instance, when considering bulk viscosity in scalar
	�4 theory, Jeon found [15] that the total particle number
equilibrates very slowly. The dominant process which
randomizes momenta and determines the shear viscosity
is shown in Fig. 5(a), with rate �� 	2T. In contrast, an
example process which changes particle number, required
for bulk viscosity, is shown in Fig. 5(b). One might naively
expect that the particle number changing rate from such
processes is �� 	4T, but this misses a soft enhancement.
Number change primarily occurs between low energy ex-
citations, where Bose stimulation increases the rate. The
correct estimate is that the number of excitations relaxes at
a rate �� 	3T, but this is still parametrically small com-
pared to the 2! 2 scattering processes of Fig. 5(a). This
leads to the result � / 	T3 in �4 theory, up to logarithms
[15]. In scalar theory, number-changing processes are the
bottleneck for the relaxation to equilibrium characterized
by bulk viscosity.

The same does not occur in QCD (at vanishing chemical
potential4), however, because number changing processes
are much more efficient in gauge theory.5 The analog of
Fig. 5 is Fig. 6. Number change is relatively fast even
among hard particles and occurs by 1$ 2 splitting of a
hard particle into two other hard particles during a small-
angle collision, such as depicted by Fig. 6(b). The small-
angle collision rate is of order �sT, and the nearly collinear
emission from such scatterings costs one extra factor of �s,
giving a hard splitting rate �� �2

sT. For comparison, the

rate for a hard particle to randomize its momentum through
2$ 2 collisions is of order �2

sT log�1=�s	, which is larger
by a logarithm. One might then suppose that number
change is still the bottleneck process for bulk viscosity
(by a logarithm), that the relevant rate is therefore �2

sT
rather than �2

sT log�1=�s	, and that therefore there should
be no logarithm in the parametric formula Eq. (1.2) for � .
This turns out not to be the case, though, because 2$ 2
scattering processes exchange gluons between hard and
soft momenta efficiently, and soft gluon number changing
processes are efficient enough to prevent a particle number
chemical potential from developing. In Sec. III E, we will
show that, because of Bose stimulation enhancements for
soft gluon emission from hard particles, the total rate of
number-changing processes per particle is O��3=2

s T�,
which is parametrically faster than the O��2

sT log� rates
discussed above. It is the latter, O��2

sT log� rates that will
therefore be the bottleneck for equilibration and which will
determine the QCD bulk viscosity.

III. DETAILS OF THE CALCULATION

A. Overview

We now proceed with the details of the calculation of
bulk viscosity. Our general approach and notation will
follow [12]. To begin, note that, at weak coupling, there
are long lived quasiparticles, and a kinetic theory treatment
should be valid. The plasma is well described by a phase
space density for each particle type, f�x;p�, which can be
expanded about a local equilibrium distribution feq�x;p� as
 

f�x;p; t� � feq�x;p; t� � f1�x;p; t�;

feq�x;p; t� � �exp�
�t��u�Ep � p � u�x��	 � 1��1;
(3.1)

with 
 
 T�1 and �u 
 �1� u2��1=2. The departure from
equilibrium is determined by the Boltzmann equation,

 

@f
@t
� vp � r xf � �C�f	; (3.2)

with C�f	 the collision integral. Above, Ep and

 v p 
 rpEp (3.3)

FIG. 5. Examples of (a) number conserving and (b) number
changing processes in �4 theory.

FIG. 6. Examples of (a) number conserving and (b) number
changing processes in QCD.

4For the Standard Model at finite baryon number chemical
potential � and finite quark massm0, the bulk viscosity would be
very large. Compressing the system changes the temperature,
which shifts how much of the baryon number is stored in each
quark type, in equilibrium. The actual distribution of baryons
between quark types approaches this equilibrium value only by
weak interactions, leading to a bulk viscosity � ��2m4

0=G
2
FT

7

for � & T in cases where this is the rate-limiting process. Note
however that in the early universe �=T � 10�9 is negligible,
while in a heavy ion collision weak interactions can be neglected
entirely and one should take the numbers for each quark type to
be separately conserved.

5See, for example, Ref. [16] and the related discussion of
photon Bremsstrahlung in Ref. [17].
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are the energy and velocity of a particle with momentum
p.6 To study transport coefficients such as viscosity, we are
interested in small departures from equilibrium in the
hydrodynamic limit of slow variation in x and t. The left-
hand side of (3.2) is explicitly small because of the deriva-
tives, and so we may replace f by feq there. The collision
term must be expanded to first order,C�f	 / f1, noting that
C�feq	 � 0 by local detailed balance.

It is convenient to analyze the problem in a local region,
choosing an approximate rest frame where u�x� and the
variation of 
�t� can be taken to be small. To first order in
these small quantities, the derivatives appearing on the left-
hand side of the Boltzmann equation are
 

@�feq�x;p; t� � �f0�Ep��1� f0�Ep�	@�

� �
�t��Ep � p � u�x��	j
�t��
;u�0; (3.4)

where f0 is the Bose or Fermi distribution

 f0�E� � �e
E � 1��1: (3.5)

The departure from equilibrium, in the case of bulk vis-
cosity, arises because

 r � u 
 X � 0: (3.6)

In Sec. III B below, we will use the derivatives (3.4) and
thermodynamic relations (in a treatment slightly general-
izing that of Jeon and Yaffe [14]) to rewrite the left-hand
side of the Boltzmann equation (3.2) in the form

 

@faeq

@t
� vp � rxf

a
eq � 
f0�1� f0�X�x�q

a�p� (3.7)

for the case of isotropic compression or expansion, relevant
to bulk viscosity. Here, a is a species label, and qa�p�
represents how much a particle of type a and momentum
p contributes to the �P� v2

s �� of (2.6).
The departure f1 from local equilibrium, at linearized

order, must also be proportional to X�x�, and it is conve-
nient to parametrize it as

 fa1 �x;p� � 
2f0�1� f0�X�x��
a�jpj�: (3.8)

The function ��jpj� will be a nontrivial function of the
magnitude of momentum p 
 jpj, but (in the local rest
frame) it is direction independent, because X is a scalar
quantity. Defining

 S a�p� � �Tqa�p�f0�1� f0�; (3.9)

the Boltzmann equation can be written as

 S a�p� � �C�	a�p�; (3.10)

with C the linearization of the collision integral, which we
will give in Sec. III D.

The bulk viscosity is then determined as the shift in the
pressure induced by the departure from equilibrium �. As
we shall discuss, this is an integral over p of �a times the
same source Sa already introduced,

 � � 
3
X
a

�a
Z d3p

�2
�3
Sa�p��a�p� 
 �S; ��; (3.11)

where �a is the multiplicity of species type a. The collision
operator C is Hermitian under this inner product, and we
may formally write,

 � � �S; C�1S�: (3.12)

This can then be treated variationally, by the techniques
presented in Refs. [12,13].

B. General formula for qa�p�

It remains to determine qa, to establish the form of C,
and to explain how the integral equations will be solved.
We will treat qa first, since it is the most different from the
problems already addressed in Refs. [12,13]. The second
term on the left-hand side of Eq. (3.2) is

 v p � rxf � 
f0�1� f0�pivp;jrjui (3.13)

at linearized order. Specializing to isotropic compression
or expansion, riuj � ��ij=3�r � u, this becomes

 v p � rxf � 
f0�1� f0�r � u
vp � p

3
: (3.14)

Unlike the case of shear viscosity, the term @tf is also
nonzero; the compression or rarefaction of the fluid causes
its density, and therefore its temperature, to change with
time. By the chain rule,

 

@f0

@t
�
d

dt

@f0

@

� �

d

dt
f0�1� f0�

@�
Ep�

@

: (3.15)

Now, stress-energy conservation implies

 @�T�� � 0 ) @t� � ���� P�r � u: (3.16)

By standard thermodynamic relations,

 �� P � T
dP
dT

(3.17)

(recall that P � �F for a theory without chemical poten-
tials), and by the chain rule,

 

d�
dt
�
dP
dt

d�
dP
� v�2

s @tP: (3.18)

Combining (3.16) through (3.18),

 

dP
dt
� �v2

sr � uT
dP
dT
� v2

sr � u

dP
d


; (3.19)

and since the dependence of P on t is through its 


6We use the general formula (3.3) [which can be understood as
the group velocity of a wave packet] because we would like to
make a general treatment of quasiparticles with some dispersion
relation Ep, and there is no need at this point to specialize, for
example, to E2

p � p2 �m2.
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dependence, it follows that

 

d

dt
� 
v2

sr � u: (3.20)

Therefore, combining (3.14), (3.15), and (3.20), the full
left-hand side of the Boltzmann equation is
 

�@t�vp �rx�f0 �
f0�1� f0�r �u

�
p �vp

3
�v2

s

@�
Ep�

@


�
:

(3.21)

Comparing to the definition (3.7) of qa�p�, we determine

 qa�p� �
p � vp

3
� v2

s

@�
Ep�

@

: (3.22)

A nice property of this formula is that one can easily
verify that the source vanishes in a conformal theory. In a
conformal theory, the only dimensionful scale would be T,
and so, by dimensional analysis, Ep must have the form
Ep � pF�p=T� for some function F. Using (3.3) and
(3.22), and the conformal result v2

s �
1
3 , one would then

find qa�p� � 0.
Before finding explicit expressions for Ep and v2

s in
QCD, let us briefly discuss the result for qa�p�. The
p � vp term represents the change vp � rxfeq in the quasi-
particle distribution function due to free propagation. For
all other transport coefficients we have computed [12,13],
this type of change was the appropriate ‘‘source’’ in the
Boltzmann equation, and the collision integral was to be
equated with it. But here the source has nonvanishing
energy, and energy is conserved. The collision integral
has an exact zero mode associated with energy conserva-
tion; therefore collisions will not erase the change in f, but
will redistribute it until it looks like a shift in the tempera-
ture. The size of the temperature shift is fixed by energy
conservation—that is, by the amount of energy the p � vp
term introduces. Therefore, the true departure from equi-
librium is the difference between this p � vp source term,
and the temperature shift which carries the same total
energy. This is the role of the second v2

s@�
Ep�=@

term. In other words, considering the linearized collision
operator C as an operator on the space of departures from
equilibrium �f, we must project the source p � vp into the
subspace orthogonal to the zero mode of C (since the
eigenvector of the zero mode is not actually a departure
from equilibrium).

As a check, we give a general demonstration in the
appendix that the source term determined by (3.22) indeed
carries no energy in the quasiparticle approximation we
have used throughout. (One may also eschew generality
and instead directly check with the explicit formulas for
qa�p� given in the next section.) In the appendix, we also
discuss in more detail why the quasiparticle approximation
is justified for a leading-order calculation of the bulk
viscosity.

With this in mind, we can see why it is this same qa�p�
which is relevant in determining the pressure shift due to
the departure from equilibrium / �a�p�. Naively, the extra
pressure due to a departure from equilibrium f1�p� should
be 1

3

R
p f

a
1 �p�p � vp. However, a general shift in the equi-

librium distribution function by f1 leads to a shift in the
energy. Bulk viscosity involves the difference between the
actual pressure, and the pressure determined by � and
thermodynamics, P���. Therefore, we must subtract off
�dP=d���� � v2

s��, the shift in the pressure due to the
extra energy density contributed by f1. That is precisely
what the second term in Eq. (3.22) does.7

C. Specific formula for qa�p�

Now we will determine in detail the form qa�p� takes in
QCD at weak coupling �s 
 1. For simplicity we will also
take quark masses m0 
 T, though nothing in principle
stops us from considering the case of quark masses m0 �
T. We will assume that there is at most one quark species
with non-negligible quark mass, which we denote M0. In
this case, the energy of a quasiparticle excitation of mo-
mentum p� gT, to first order in g2, is given by

 

E2
p � p2 �m2

1;

m2
1;a�quark	 � m2

0;a �
CFg2T2

4
� m2

0;a �
g2T2

3
;

m2
1�gluon	 � �CA � NftF�

g2T2

6
�

6� Nf

12
g2T2;

(3.23)

where m0;a is the mass of quark species a. The masses m1
here are the corrections to the large p dispersion relations.8

We have written these expressions in terms of group
Casimirs so that they can be evaluated for a general group,
and have also given the specialization to QCD, where the
adjoint Casimir CA � 3, and the fermions are in a repre-
sentation with Casimir CF � 4=3 and trace normalization
tF � 1=2. HereNf is the number of light Dirac fermions, or
half the number of Weyl fermions.

Using these expressions, qa becomes

 qa �
1

Ep

�
p2

3
� v2

s �p
2 � ~m2

a�

�
; (3.24)

7This subtraction is technically unnecessary if one has already
projected the source to be orthogonal to the zero mode, since
then no shift in the energy would be produced. However, it is
convenient, because it allows a symmetric treatment of the
source and the pressure shift, as is manifested by the symmetric
appearance of S in (3.12).

8Their relation to frequently-used zero-momentum masses are
m2
1 � m2

D=2 � 3m2
pl=2 for gluons and m2

1 � 2m2
F for massless

quarks, where mD is the Debye mass, mF is the analogous
screening mass for quark exchange, and mpl is the plasma
frequency. For further details, see, for example, Refs. [18,19].
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 ~m 2
a 
 m2

1;a �
d�m2

1;a�

d�lnT2�
; (3.25)

which coincides with the results of Jeon and Yaffe [14].
The speed of sound can be determined by writing out the

temperature dependence of the pressure. At order g2 and
M2

0, the pressure of the QCD plasma is [20]
 

P � �a� bg2��2 � T2	�T4 � cM2
0T

2;

a �

2

180
�4dA � 7NfdF� �


2

180
�32� 21Nf�;

b �
�1

288
�2dACA � 5NfdFCF� �

�1

288
�48� 20Nf�;

c �
�1

12
dF �

�1

4
;

(3.26)

where dA � 8 and dF � 3 are the dimensions of the adjoint
and fermion color representations. Using � � TdP=dT �
P, one finds

 v2
s �

dP
d�
�
dP=dT
d�=dT

�
1

3
�

2b
9a

�g2� �

cM2
0

9aT2 ; (3.27)

up to O�g5�, O�m2
0g

2=T2�, and O�m4
0=T

4� corrections.
Here,

 
�g2� 

�2dg2

d��2	
�

g4

16
2

�
4NftF � 11CA

3

�

�
g4

16
2

�
2Nf � 33

3

�
(3.28)

is the beta function of QCD, which enters on taking the
temperature dependence of g2 into account.9 Similarly, the
quantities ~m2 introduced earlier involve m2

0 and 
�g2�, and
are
 

~m2�quark	 � m2
0;a �

CFT
2

4

�g2�;

~m2�gluon	 � �
�CA � NftF�T2

6

�g2�:

(3.29)

Collecting these results, and making the approximation

 qa �
1

Ep

�
p2

3
� v2

s �p
2 � ~m2

a�

�
’

1

p

��
1

3
� v2

s

�
p2 �

1

3
~m2
a

�
;

(3.30)

valid for m2
0=T

2 
 1 and 
�g2� 
 1, we find

 

qq;a � j�v2
s jp�

�
CF

12

�g2�T2 �

m2
0;a

3

�
p�1; (3.31a)

qg � j�v2
s jp�

�
CAdA � NfdFCF

18dA

�g2�T2

�
p�1;

(3.31b)

where10

 j�v2
s j �

�5�2dACA � 5dFCFNf�
�g
2� � 60dFM

2
0=T

2

36
2�4dA � 7dFNf�
:

(3.32)

Here, the M2
0 in (3.32) appears in the q for every species,

but the m2
0;a in the second term of (3.31a) only contributes

to the possibly massive quark, for which m0;a � M0. Note
that, as promised, qa is proportional to the source of
conformal invariance violation, either the beta function
or the current quark mass. Because S / q enters quadrati-
cally in Eq. (3.12), we see that � will depend quadratically
on the size of conformal invariance breaking, as claimed.

D. Variational method and the collision integral

It remains to specify the form of the collision integral,
and to explain how it will be inverted to establish � using
Eq. (3.12). Since the details here are rather similar to the
previous literature [12,13], we will be somewhat brief in
our discussion. First, define an inner product as in
Eq. (3.11) (summation over species label and integration
over momenta). Then the Boltzmann equation and bulk
viscosity can be formulated variationally; define

 Q��� 
 ��;S� � 1
2��; C��; (3.33)

and observe that �Q=�� � 0 when � satisfies the
Boltzmann equation (3.10). Furthermore, the value (3.12)
of � is 2Q evaluated at this extremum:

 � � 2Qmax: (3.34)

A variational Ansatz for � will give a lower bound on the
value of the extremum which will improve rapidly as the
variational basis is increased. Therefore, we write a multi-
parameter, linear Ansatz for ��p�, in terms of a set of basis
functions. As we will discuss momentarily, ��p� / p at
small momenta, and � grows no faster than�p2=T at large
p. Therefore, we use a slight modification of the basis
functions considered in [12],

 �m�p� �
pmTK�m�1

�T � p�K�2 ; m � 1 . . .K: (3.35)

The function �a�p� is then assumed to be of form,
9We are implicitly taking Td=dT holding �=T fixed. But we

would get the same answer if we performed the derivative
holding � fixed; in writing g2��2 � T2	 in Eq. (3.26), what
we really mean is that there is explicit � dependence in the g4

term, of form B
�g2� log�T2=�2�T4. Holding � fixed, 
�g2�
arises from the T derivative of this logarithm.

10Our notation j�v2
s j is simply short-hand notation for 1

3� v
2
s .

It is positive for normal, asymptotically free QCD, but it can be
negative in other theories, such as massless QED.
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 �a�p� �
X
m

~�am�m�p�: (3.36)

Within this variational Ansatz, the required inner products
for Q are

 ��;S� �
X
a;m

~�am ~Sam; ��; C�� �
X
abmn

~�am ~Cabmn ~�bn; (3.37)

where

 

~Sam 
 �a
Z
p
�m�p�S

a�p�;

~Cabmn 
 �a
Z
p
�m�p��Cab�n	�p�;

(3.38)

where Cab means the collision integral for species a when
species b is out of equilibrium by the amount indicated by
�b. Considering ~Sam to be a rank NK column vector ~S and
~Cabmn to be a NK � NK matrix, where N is the number of
possibilities for the species index a, the bulk viscosity
(3.12) is

 � � ~S ~C�1 ~S: (3.39)

In practice, N � 2 (quarks vs gluons) if all quarks are
massless, and N � 3 (massive quark vs massless quarks
vs gluons) if one quark species is massive.

The detailed form of ~C is given in Ref. [13],11 which we
summarize here for completeness:

 

~Cabmn 


3

8

X
cdef

Z
pkp0k0

jMcd
ef�p;k;p0; k0�j2�2
�4��4��P� K � P0 � K0�fc0�p�f

d
0 �k��1� f

e
0�p

0�	�1� ff0 �k
0�	

� ��m�p��ac ��m�k��ad ��m�p0��ae ��m�k0��af	��n�p��bc ��n�k��bd ��n�p0��be ��n�k0��bf	

�

3

2

X
cde

4

Z 1

0
dp0dpdk�cde�p

0;p; k���p0 � p� k�fc0�p
0��1� fd0 �p�	�1� f

e
0�k�	

� ��m�p
0��ac ��m�p��

ad ��m�k��
ae	��n�p

0��bc ��n�p��
bd ��n�k��

be	: (3.40)

All factors of the number of degrees of freedom of each
species are implicitly included in these sums.12 The de-
tailed expressions for the 2$ 2 amplitude M and the
effective 1$ 2 splitting function � fill two appendices
of Ref. [13] and will not be reproduced here. In treating
the kinematics of these processes, we have neglected the
masses of all external states, which is consistent with our
approximation, m0 
 T. In principle there is no obstacle
to treating the case m0 � T, but we have not done so,
primarily out of laziness.

Besides the difference in the source, which we have
already stressed, the other difference between bulk and
shear viscosity calculations is in the angular dependence
of � in the collision integral. For shear viscosity, it was not
�m�p� which appeared above, but �m�p�p̂ip̂j. (See, for
example, Ref. [13] for a discussion in the conventions of
this paper.) When suitably averaged over the indices ij, this
led to angular factors of P2�cos�pk� in the cross-term
between �m�p� and �n�k�, for instance, where P2�x� �

�3x2 � 1�=2 is the second Legendre polynomial. Since
bulk viscosity arises due to X � r � u, a scalar quantity,
this angular dependence is absent. This makes the calcu-
lation of the collision integral somewhat simpler, but it
does add two complications involving zero modes of the
collision operator, to which we now turn.

E. Zero modes of C

The first term in the collision integral (3.40), correspond-
ing to 2$ 2 processes, has two exact zero modes, corre-
sponding to all �a�p� / 1 and all �a�p� / p, corre-
sponding to particle number conservation and energy con-
servation, respectively. The second term, corresponding to
collinear 1$ 2 processes, breaks particle number but still
has the zero mode corresponding to energy conservation.
Therefore, the collision matrix ~C will have a zero mode,
and can potentially have a second approximate zero mode
to the extent that the 2$ 2 term is larger than the 1$ 2
term. Since the collision integral must be inverted in eval-
uating Eq. (3.39), we must address the exact zero mode. We
will see that making a leading-log expansion of bulk
viscosity (if such is desired) requires treating the 2$ 2
term as larger, by a logarithm, than the 1$ 2 term for p�
T. In order to understand why number-changing processes
are not a bottleneck for equilibration, and to understand
expansions in �log�1=�s�	

�1, we will need to address the
approximate zero mode as well. Both of these zero modes

11See specifically Eqs. (2.22) and (2.23) of Ref. [13] with �ai...j
replaced by �a�p� to specialize to the isotropic (l � 0) angular
dependence relevant to bulk viscosity, and then define ~Cabmn as in
(3.38) of this paper.

12In the convention of Ref. [13], the sums (no averages) over all
initial and final colors are included in jMj2 and �, and each of
the indices cdef in the explicit sums above denote gluons vs
different flavors of quarks vs different flavors of antiquarks.
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are specific to the case of isotropic ��p�, and neither is
relevant to the analysis of other standard transport coeffi-
cients such as shear viscosity and flavor diffusion
constants.

The presence of an exact zero mode in the collision
integral is not problematic, precisely because the source
S carries precisely zero energy, and so is orthogonal to the
zero eigenvector. Therefore, our previous expressions
should be understood as valid in the subspace orthogonal
to the zero mode of C. In practice our basis of functions�a

m
are not restricted to this orthogonal subspace. But the
collision integral can be rendered invertible without chang-
ing its behavior in the orthogonal subspace by adding a
constant times the projection operator for the pure tem-
perature fluctuation (the zero mode);

 

~Cabmn ! ~Cabmn � 	
�
�a
Z d3p

�2
�3
Ep�m�p�f

a
0 �1� f

a
0 �

�

�

�
�b
Z d3k

�2
�3
Ek�n�k�fb0 �1� f

b
0 �

�
; (3.41)

for any positive 	. This renders ~C invertible; and while ~C�1

is 	 dependent, ~C�1 ~S is not, since ~S has zero projection
onto the modified direction. In our numerical evaluations
we have checked explicitly that the determined value of �
has no sensitivity to the added value of 	.

Next, consider the possible approximate zero mode,
�a�p� a constant, corresponding to a chemical potential
for particle number.13 First note that the constant value
must be the same for fermionic and bosonic species, be-
cause the set of 2$ 2 processes includes fermionic pair
annihilation to gluons, which contributes at leading loga-
rithmic order. However, no elastic 2$ 2 scattering pro-
cesses will drive a common chemical potential for both
quark and gluon number to zero. For the case of bulk
viscosity in 	�4 theory it was found that this played a
major role in setting the bulk viscosity [14]. In that theory,
� / 1 is an approximate zero mode of the full collision
operator: ��jC�� for � � 1 is parametrically small com-
pared to typical hard collision rates.14

However, for the bulk viscosity of QCD, this would-be
zero mode actually plays no role: the expectation (�jC�)
for � � 1 is parametrically large rather than small com-
pared to typical hard scattering rates. The reason is that,
while number changing collinear processes [the second
term in Eq. (3.40)] are subdominant to 2$ 2 processes
at generic momenta, they are very fast at producing and

destroying soft gluons. To see this, let us estimate the total
rate for a hard particle to produce a soft gluon of momen-
tum k by Bremsstrahlung. Combine (i) the O�g2T� rate for
small-angle scattering, as in Fig. 6(a), times (ii) a factor of
g2 for absorbing or emitting the additional gluon in
Fig. 6(b), times (iii) an initial or final state factor of f�k�
or 1� f�k� for that gluon, and (iv) a momentum integral
dk=k (responsible for the logarithmically large rate of soft
bremsstrahlung emission in vacuum15). f�k� � T=k for
small k, and the result for the number changing rate �total

1!2
is then16

 �total
1$2 � g

4T
Z dk

k
f�k� � g4T2

Z dk

k2 : (3.42)

The infrared divergence of the integral will be cut off by
the effective thermal massm� gT of the emitted gluon, so
that

 �total
1$2 �

g4T2

m
� g3T: (3.43)

As discussed earlier, this is parametrically faster than the
O�g4T log� rate to redistribute momenta between soft and
hard particles, which is the bottleneck which determines
bulk viscosity. The total rate �total

1$2 for creating or absorbing
soft particles can therefore be taken as formally infinite for
the purpose of a leading-order calculation of bulk viscosity.

The same result can also be obtained, with some diffi-
culty, from Eq. (3.40) of this paper together with eqs. (B1–
B6) of Ref. [13], which determine the splitting functions
�. In particular, the k
 p behavior of �g

gg�p0;pk� and
�q

qg�p0;pk� is �� �g4T�p2=k. If we substitute �m �
�n � � � 1 into the 1$ 2 term in Eq. (3.40), the k
integration for p� T then gives the linear divergenceR
dk=k2 of (3.42).
This means that a chemical potential is actually very

rapidly thermalized by number changing processes. Any

13By ‘‘particle number,’’ we mean the sum of quark, antiquark,
and gluon numbers, not a difference like quark minus antiquark
number.

14This permits a simplification in �4 theory whereby one can
avoid solving an integral equation and instead determine the
leading-order bulk viscosity from a simple expectation value
��jC�� for � / 1 [14].

15In vacuum, there is an additional logarithmic factor for
bremsstrahlung from an ultrarelativistic particle—a collinear
logarithm

R
d2k?=k

2
? � ln�q=m�, where q is the momentum-

transfer in the underlying 2! 2 collision. In our case, the most
frequent collisions are the small-angle ones, whose impact
parameter is limited by Debye screening, and q�m� gT so
that there is no collinear log enhancement.

16For k
 T, the Landau-Pomeranchuk-Migdal (LPM) effect
plays no role in gluon emission, as discussed qualitatively in
Sec. 5.2 of Ref. [19]. This is different than the case of soft photon
emission due to the O�gT� thermal mass and scattering of the
emitted gluon, either of which, for k
 T, causes loss of the
multiple-collision coherence that produces the LPM effect. Here
is a quick argument: For small k, the internal hard particle line in
Fig. 6(b) is off-shell in energy by an amount of order �E �
Ep�k � Ep � Ek � �m2

g � k2
?�=�2k�. The formation time of the

gluon is therefore of order ��E��1 & k=m2
g � k=�g

2T2�, which
is small compared to the time 1=�g2T� between collisions when
k
 T.
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��k� which falls more weakly than ��k� / k at small k will
lead to a divergent collision rate, meaning that such depar-
tures from equilibrium are so efficiently equilibrated that
we need not consider them. Therefore we should restrict
our Ansatz for � to only functions which are linear or
higher powers of k in the soft region. This justifies our
choice in Eq. (3.35). Within this subspace of functions �,
the 2$ 2 part of the collision integral has only one zero
mode, that associated with energy conservation, which we
have already discussed. Therefore the small �s behavior
will indeed be � / �2

sT
3= log�1=�s	, and one can perform

an expansion in logarithms of the coupling if desired.

F. Expansion in log�1=�s	

In Ref. [13] it was shown that an expansion in inverse
powers of ln�1=�s	 works surprisingly well at small values
of �s, if it is carried to next-to-leading order. As we have
just seen, there is no obstacle to making a similar expan-
sion here. We have done so, by following the procedure
described in detail in Ref. [13], but we find that the
expansion works much less well than in the case of shear
viscosity and number diffusion. The reason is that the
dominant physics in shear viscosity and number diffusion
is angle change. The charge qa in that case is 1 or jpj times
a nontrivial function of angle. The departure from equilib-
rium, ��p�, has nontrivial angular dependence, but turns
out to have very simple jpj dependence, so a one parameter
Ansatz works very well. In a next-to-leading log treatment,
one fixes the jpj dependence of ��p� using the leading-log
part of the 2$ 2 processes and evaluates the collision
integral using this fixed form of ��p�. This works because
this functional form of ��p� is essentially correct, whatever
collision processes are involved.

For bulk viscosity, on the other hand, the charge qa

changes sign as a function of the particle’s momentum,
as the 1=p and p terms in Eq. (3.31) change relative
importance. The 1=p term is also larger for gluons than
for quarks, due to their larger thermal masses; therefore,
over most of the momentum range the quarks and gluons
display opposite departures from equilibrium. In QCD, the
physics of bulk viscosity is primarily the physics of rear-
ranging the jpj dependence of particle distributions. This is
what the number changing 1$ 2 processes do best; so
they play a much larger role in bulk viscosity than in shear.
Indeed, unlike the case of shear, dropping the 2$ 2 pro-
cesses and retaining only the number changing ones would
still give a finite answer for �—which in fact turns out to
be within a factor of 2 of the leading-order answer over
most of the range of �s we have considered. However, the
detail of how they rearrange the momentum distributions is
different than for the elastic processes. Therefore the de-
tailed p dependence of ��p� is quite different if only the
leading-log 2$ 2 processes are considered, than if the full
collision integral is used. We illustrate this difference in
Fig. 7. This limits the range of validity of the expansion in

logs to the regime where the 2$ 2 processes are much
faster. But as we just said, the 1$ 2 processes are more
important to bulk viscosity than to shear, so this requires
the logarithm actually to be large. Therefore the expansion
in logs works poorly and should not be used in treating bulk
viscosity.

Another consequence of the quite nontrivial form of
��p� is that several basis functions must be used to get
accurate numerical values of � . For instance, we need at
least 5 basis functions to get 0.1% accuracy, something
accomplished with two basis functions for shear viscosity.
For this reason, the results presented in Figs. 1 and 2 are
‘‘only’’ good to about 0.1%.

For completeness, Table I lists the first two coefficients
in an expansion in leading logs for massless QCD:

 

� �
A�2

sT3

ln���=mD	
;

m2
D � 2m2

1�gluon	 � �1� 1
6Nf�g

2T2:
(3.44)

FIG. 7 (color online). Functional form of ��p� as a function of
p, shown for quarks and gluons in massless Nf � 3 QCD at
�s � :053 (or mD=T � 1). The three curves are the functional
form using the leading-log 2$ 2 processes only, using the
number changing processes only, and using all processes.

TABLE I. Next-to-leading log bulk viscosity, � �
A�2

sT
3= ln���=mD	, and � calculated using only number chang-

ing collinear processes, �1$2. All Nf quarks are taken to be
massless.

QCD, Nf � Leading-log A NLL ��=T �1$2=�2
sT3

0 0.443 7.14 .151
2 0.638 7.57 .282
3 0.657 7.77 .286
4 0.650 7.93 .279
5 0.622 8.06 .263
6 0.577 8.17 .242
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The table also contains the coefficient � � C�2
sT

3 we
would obtain if we ignored all 2$ 2 processes and con-
sidered only the number changing processes. To display
the futility of using the next-to-leading log results, we
compare them with the leading order results in Fig. 8.
The failure of the next-to-leading log approximation by a
factor of at least 1.5 for Nf � 3 or 6 at mD � 1:1T corre-
sponds to �s � 0:05.

IV. DISCUSSION

The physics of bulk viscosity in QCD is very interesting.
The QCD plasma leaves equilibrium under uniform com-
pression or rarefaction only due to conformal symmetry
breaking, and the bulk viscosity depends quadratically on
the size of conformal symmetry violation (either through
quark masses or the beta function). To find the departure
from equilibrium one must include the forward-scattering
corrections to dispersion relations, and must account care-
fully for the shift in the plasma temperature. The departure
from equilibrium due to compression is of opposite sign for
high and low momentum excitations, and of opposite sign
at intermediate momenta p� 
T for quarks versus gluons.
Collinear splitting processes actually dominate the equili-
bration of the plasma except at very small coupling,
although in the formal weak coupling limit, equilibration
should be logarithmically dominated by 2$ 2 scattering,
annihilation, and Compton processes—with the proviso
that soft gluon bremsstrahlung is also included, since it
prevents the development of a chemical potential for par-
ticle number. Putting this physics all together, one finds
that the bulk viscosity at leading-log order (i.e. for excep-
tionally small coupling) is � � �2

sT
3= log�1=�s	, with a

leading coefficient of about 1. More practically, however,
one can see from Fig. 1 that the complete result to leading
order in powers of �s is roughly � ’ 0:2�2

sT3 for any
reasonable perturbative value of �s (0:02 & �s & 0:3).

The practical import of bulk viscosity in QCD is very
limited, however, in the regime where a perturbative treat-
ment has any hope of applicability. We find that even for
�s � 1=3, the bulk viscosity is hundreds of times smaller
than the shear viscosity. In practice, this means that bulk
viscosity can be neglected, whenever shear viscosity plays
a role. For instance, the decay of a sound wave depends on
the combination � � 4�=3; so one may drop the � term to a
very good approximation. The expanding QCD plasma in
an ultrahigh energy heavy ion collision is expected to be
quite anisotropic, so shear viscosity again plays a role and
bulk viscosity can be ignored. Similarly, while the expan-
sion of the QCD plasma in the early universe should have
been nearly isotropic, any flows in the presence of a phase
interface—the only circumstances where nonequilibrium
behavior may leave records in the early universe—are
expected to be quite anisotropic, and again shear viscosity
will be more important than bulk.

Besides the quite elegant physics involved in the bulk
viscosity of QCD, it also provides a nice example of the
dangers of interpreting scalar field theory as a toy model
for gauge theory, with 	 playing the role of g2. In massless
	�4 theory, Jeon and Yaffe showed [14,15] that the shear
viscosity behaves as �� T3=	2, while bulk viscosity be-
haves as � � 	T3log2�1=		. For shear viscosity, the scalar
theory provides a successful toy model, missing only the
logarithmic dependence. For bulk viscosity, although some
of the physics is the same, scalar field theory is a mislead-
ing guide to gauge theory, getting even the power of the
coupling wrong. The difference arises because number-
changing processes in scalar theory are slow compared to
processes which redistribute hard momenta (rate 	3T vs
	2T); in QCD, they are fast (�3=2

s T vs �2
sT).

One consequence of slow particle number changing
rates for scalar theory, observed by Jeon and Yaffe, was
that the bulk viscosity did not match the crude estimate

 � � 15��13� v
2
s �

2 (4.1)

that had previously been made for scalar theory in the
literature [21].17 (This same relation was found earlier by
Weinberg for a photon gas coupled to hot matter [22].)
However, these same estimates turn out to be parametri-
cally correct for QCD, reproducing (1.2). In QCD, the
bottleneck rate is the same for both shear and bulk viscos-
ity,

 v2
s �

1
3 � O�
�g2�� �O�m2

0=T
2� (4.2)

FIG. 8 (color online). Bulk viscosity � , plotted against mD

rather than �s for massless QCD. The dotted curves are the
leading-log results; the dashed line on the right is the result
neglecting everything but number changing collinear processes.

17A similar estimate was made by Ref. [9] but differs by a
factor of 2. The difference is likely due to the incorrect identi-
fication of the shear viscosity �, by a factor of 2, in Eq. (2.39) of
Ref. [9].
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is a measure of the deviation from conformal symmetry,
and this deviation is squared, just as discussed in
section II A. One could reproduce (4.1) from the derivation
of bulk viscosity in this paper and of shear viscosity in
Ref. [13] by (i) keeping only the j�v2

s j term in the source
term (3.31), and (ii) making a relaxation-time approxima-
tion of the collision operator as a rate ��p� that is the same
for bulk viscosity and shear viscosity.18 In Fig. 4, the
estimate (4.1) is shown by the dashed line for the
leading-order result (3.32) for 1

3� v
2
s . It does reasonably

well at estimating the order of magnitude of our result for
bulk viscosity.

It is interesting that there are studies of certain strongly
coupled but nearly conformal theories which find a para-
metrically different dependence on 1

3� v
2
s than (4.1). In

certain theories with gravity duals that make them amena-
ble to calculation,19 Ref. [24] finds � � ��13� v

2
s �. This

result is difficult to understand from the picture of viscosity
developed in weakly-coupled field theories and provides an
interesting conceptual puzzle for understanding bulk vis-
cosity in strongly-coupled but nearly-conformal theories.
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APPENDIX: ORTHOGONALITY OF S TO THE
ENERGY ZERO MODE

In this appendix, we verify that the source derived in this
paper, given by (3.9) and (3.22), is orthogonal to the
energy-changing zero mode ��p� / Ep discussed in
section III E. Specifically, we show that �S; Ep� � 0 at
the order of our calculation. That is,

 

X
a

�a
Z d3p

�2
�3
f0�1� f0�

�
p � vp

3
� v2

s

@�
Ep�

@


�
Ep � 0:

(A1)

This can be checked directly using the QCD-specific for-
mulas of Sec. III C, but it is instructive to give a more
general argument.

Use @f0 � �f0�1� f0�@�
Ep� and vp � rpEp to re-
write the orthogonality condition as

 

X
a

�a
Z d3p

�2
�3
T
3
Epp � rpf0 � v2

s

X
a

�a
Z d3p

�2
�3
Ep@
f0:

(A2)

We then need the following two, slightly subtle equilib-
rium relations, which we will discuss below:

 @
P �
X
a

�a
Z d3p

�2
�3
T
3
Epp � rpf0; (A3)

 @
� �
X
a

�a
Z d3p

�2
�3
Ep@
f0: (A4)

The orthogonality relation is then equivalent to the equi-
librium relation

 @
P� v
2
s@
� � 0; (A5)

which is satisfied because v2
s � dP=d� � �@
P�=�@
��.

For the rest of this appendix, we will use the shorthand
notation

R
to stand for

P
a�a

R
�d3p�=�2
�3.

Deriving general relations for pressure and energy den-
sity and their derivatives in a gas of quasiparticles is
slightly subtle because the effective energies Ep of the
quasiparticles depend on temperature and include the ef-
fects of interactions with other quasiparticles. The energy
density is not simply � �

R
Epf0, for example, because

this expression suffers the usual Hartree problem of
double-counting the interaction energy. [And, if � actually
were

R
Epf0, we would not get (A4) because there would

be an additional term where the @
 hit the Ep.] As dis-
cussed in Refs. [25,26], one simple solution to this problem
is to start with the entropy density S rather than P or �. Up
to higher-order corrections which we shall review in a
moment, the entropy density of a quasiparticle gas is given
by the naive ideal gas formula,
 

S � Sideal � 
�Pideal � �ideal� � 

Z �1

3
p � vp � Ep

�
f0

� �

Z 1

3
Epp � rpf0; (A6)

where the last step follows by integrating the term involv-
ing vp � rpEp by parts. Starting from this formula for the
entropy, we can then use the thermodynamic relation S �
@TP to write @
P � �T2S and obtain (A3).

To get the formula for @
�, it is convenient to first use
vpf0 � �Trp ln�1� f0� and integrate by parts to rewrite
(A6) as

 S �
Z
�� ln�1� f0� � 
Epf0	: (A7)

Then use the the thermodynamic relations � � TS� P
and @
P � �T2S to write

18Specifically, the ratio of the sources in the two cases then
becomes q�=q� � j�v2

s j. The relaxation-time approximation is
�C�	�p� � ��p���p�. Using � � 2Qmaxjl�0;q�q� from (3.34) and
� � 2

15Qmaxjl�2;q�q� from Ref. [13], one then obtains �=� �
15q2

�=q
2
� � 15j�v2

s j
2.

19For other bulk viscosity results in strongly interacting theo-
ries, see Ref. [23].
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 @
� � @
�TS� � @
P � T@
S: (A8)

Use of (A7) for S then produces the desired formula (A4).
It remains only to discuss the approximations that have

been used in this analysis. In evaluating the entropy, the
treatment of the system as an ideal gas of on-shell prop-
agating quasiparticles breaks down at order g3 and above.
(See, for instance, the analysis in Ref. [26].) But it is
adequate to obtain the O�g2� and the O�m2

0� terms in the
entropy. For massless QCD, that might sound inadequate,
because the breaking of conformal invariance is an O�g4�
effect. For example, the effective energy of a hard quark is
given by

 E2
p ’ p

2 � 1
3g

2�T�T2

� p2 � 1
3g

2���T2 � 1
3
0g4���T2 ln�T=�� � � � � ;

(A9)

and it is the last term which breaks conformal invariance.
However, thisO�g4� conformal-breaking log is determined
by knowledge of the O�g2� contribution; any O�g3� or
additional O�g4� contributions to thermodynamic quanti-
ties will be conformal, up to corrections of O�g5�, and so
will not contribute to the leading-order bulk viscosity.
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