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In this paper it will be shown that the standard model in 3 + 1 dimensions is a gauge fixed version of a
2T physics field theory in 4 + 2 dimensions, thus establishing that 2T physics provides a correct
description of nature from the point of view of 4 + 2 dimensions. The 2T formulation leads to
phenomenological consequences of considerable significance. In particular, the higher structure in 4 +
2 dimensions prevents the problematic F * F term in QCD. This resolves the strong CP problem without a
need for the Peccei-Quinn symmetry or the corresponding elusive axion. Mass generation with the Higgs
mechanism is less straightforward in the new formulation of the standard model, but its resolution leads to
an appealing deeper physical basis for mass, coupled with phenomena that could be measurable. In
addition, there are some brand new mechanisms of mass generation related to the higher dimensions that
deserve further study. The technical progress is based on the construction of a new field theoretic version
of 2T physics including interactions in an action formalism in d + 2 dimensions. The action is invariant
under a new type of gauge symmetry which we call 2T-gauge symmetry in field theory. This opens the
way for investigations of the standard model directly in 4 + 2 dimensions, or from the point of view of
various embeddings of 3 + 1 dimensions, by using the duality, holography, symmetry, and unifying

features of 2T physics.
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I. THE SP(2, R) GAUGE SYMMETRY

The essential ingredient in two-time physics (2T phys-
ics) is the basic gauge symmetry Sp(2, R) acting on phase
space XY, P,, [1], or its extensions with spin [2,3] and/or
supersymmetry [4—6]. Under this gauge symmetry, mo-
mentum and position are locally indistinguishable at any
instant. This principle inevitably leads to deep consequen-
ces, one of which is the two-time structure of spacetime in
which ordinary one-time (1T) spacetime is embedded.
Some of the 1T physics phenomena that emerge from 2T
physics include certain types of dualities, holography,
emergent spacetimes, and a unification of certain 1T phys-
ics systems into a single parent theory in 2T physics.

In the present paper a field theoretic formulation of 2T
physics is given in d + 2 dimensions. To construct the 2T
field theory, first the free field equations are determined
from the covariant quantization of the 2T particle on the
worldline, subject to the Sp(2, R) gauge symmetry and its
extensions with spin. Next, an action is constructed from
which the 2T free field equations are derived, and then
interactions are included consistently with certain new
symmetries of the action. The resulting action principle
for 2T physics in d + 2 dimensions is then applied to
construct the 2T standard model in 4 + 2 dimensions. It
is shown that the usual standard model in 3 + 1 dimensions
is a holographic image of this 4 + 2-dimensional theory.
The underlying 4 + 2 structure provides some additional
restrictions on the standard model, with significant phe-
nomenological consequences, as outlined in the abstract.
The 4 + 2-dimensional theory suggests new nonperturba-
tive approaches for investigating 3 + 1-dimensional field
theories, including QCD.
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Prior to this development, 2T physics had been best
understood for particles in the worldline formalism inter-
acting with all background fields [3], including gauge
fields, gravitational field and all high spin fields, and sub-
ject to the Sp(2, R) gauge symmetry, or its extensions with
spin. For the spinless particle, the three Sp(2, R) gauge
symmetry generators Q;;(X, P), i, j = 1,2, are functions
of phase space and depend on background fields
MMMy (X) of any integer spin s. The simplest case of
2T physics corresponds to a spinless particle moving in the
trivial constant background field »™" that corresponds to
the metric in a flat spacetime. In this case the Sp(2, R)
gauge symmetry is generated by the operators

Qi =3X-X, Oy =3P P,

(1.1)
Q=05 =35X-P+P-X),

where the dot product involves the flat metric 7,y.
Similarly, for spinning particles of spin s, phase space
(M, XM, PM)  includes the fermions ¢, i=1,2,
-+ -, 2s, so the gauge symmetry is enlarged to the worldline
supersymmetry OSp(2s]|2) which includes Sp(2, R). In flat
spacetime, the generators of the gauge symmetry corre-
spond to all the spacetime dot products among the M, XM,
PM_ These generators are first class constraints that vanish,
thus restricting the phase space (M, XM, PM) to a
OSp(2s|2) gauge invariant subspace.

To have nontrivial solutions for the constraints Q;; = 0,
etc., the flat metric 7,,y, which is used to form the dot
products in the constraints, must have a two-time signature.
So, in the absence of backgrounds, the 2T particle action is
automatically invariant under a global SO(d, 2) symmetry
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in d + 2 dimensions, where the 2T signature emerges from
the requirement of the local gauge invariance of the physi-
cal sector. In the presence of backgrounds, the 2T signature
in d + 2 dimensions is still required by the gauge symme-
try. However, the nature of the spacetime global symmetry,
if any, is determined by the Killing vectors of the back-
ground in d + 2 dimensions, and it may be smaller or
larger than SO(d, 2).

It is well understood [1-7] that the gauge symmetry
compensates for extra dimensions in phase space (X¥, PM,
M) and effectively reduces the d + 2-dimensional space
by one-time and one-space dimensions, thus establishing
causality and guaranteeing a ghost free 2T physics theory.
The subtlety is that there are many ways of embedding the
remaining ‘“‘time”” and ‘“‘Hamiltonian” in the higher space-
time. Therefore, there are many 1T systems that emerge in
(d — 1)+ 1 dimensions as solutions of the constraints
with various gauge choices. Some examples are given in
Fig. 1.

In these emergent spacetimes the Hamiltonian for each
IT system is different, hence the dynamics appears differ-
ent from the point of view of 1T physics. However, each 1T
system holographically represents the original 2T system
in d + 2 dimensions. Of course, due to the original gauge
symmetry, the various 1T systems are in some sense
equivalent. This equivalence corresponds to dualities
among the various 1T systems [7-11].
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Hence 2T physics may be recognized as a unifying
structure for many 1T systems. The unification occurs
through the presence of the higher dimensions, but in a
way that is very different than the Kaluza-Klein mecha-
nism since there are no Kaluza-Klein excitations but in-
stead there are hidden symmetries that reflect d + 2
dimensions, and also a web of dualities among 1T systems
that are holographic images of the 2T parent theory in d +
2 dimensions.

As shown in Fig. 1, simple examples of such 1T systems
in (d — 1) + 1 dimensions, that are known to be unified by
the free 2T particle in flat d + 2 dimensions, and have
nonlinear realizations of SO(d,2) symmetry with the
same Casimir eigenvalues, include the following systems
for spinless particles: free massless relativistic particle [1],
free massive relativistic particle [7], free massive nonrela-
tivistic particle [7], hydrogen atom (particle in 1/r poten-
tial in d — 1 space dimensions) [7], harmonic oscillator in
d — 2 space dimensions [7], particle on a sphere S¢~! X R
[11], particle on AdS,_; X S* for k=0,1,---,(d — 2)
[71, particle on maximally symmetric curved spaces in d
dimensions [8], particle on Bafnados-Teitelboim-Zanelli
black hole (special for d = 3 only) [9], and twistor equiv-
alents [10,11] of all of these in d dimensions. There are
also generalizations of these for particles with spin [2],
with supersymmetry [4], with various background fields
[3], and the twistor superstring [5], although details and

2T-physics: unified emergent space-times & dynamics,
hidden symmetries, holography and duality in 1T-physics
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FIG. 1 (color online).

Some 1T physics systems that emerge from the solutions of Q;; = 0.
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interpretation of the 1T physics for gauges other than the
massless particle gauge remain to be developed for most of
the generalizations.

The established existence of the hidden symmetries and
the duality relationships among such well-known simple
systems at the classical and quantum levels provide part of
the evidence for the existence of the higher dimensions.
This already validates 2T physics as the theory that pre-
dicted them and provided the description of the underlying
deeper structure that explain these phenomena.

Next comes the question of how to express these prop-
erties of 2T physics in the language of field theory, and how
to include interactions. This was partially understood [12]
in the form of field equations, including interactions, as
reviewed in Sec. II. But this treatment missed an action
principle from which all the equations of motion should be
derived. The field equations were classified as those that
determine ‘‘kinematics’” and those that determine ‘‘dy-
namics.” The dynamical equations including interactions
could be obtained from an action as usual, but the kine-
matical equations, which determine how 3+
I-dimensional  spacetime is embedded in 4+
2-dimensional spacetime, needed to be imposed from out-
side as additional constraints. This was considered incom-
plete in [12], because a full action principle that yields all
the equations is needed to be able to study consistently the
quantum theory and other properties of the theory.

The new principles for constructing the 2T physics
action in d + 2 dimensions are developed in Sec. IIL
These emerge from basic properties of Sp(2, R) and its
extensions as discussed in [12], supplemented with a hint
on the overall structure of the action that followed from a
recent construction of Becch- Rouet-Stora-Tyutin (BRST)
field theory for 2T physics [13]. The new action principle
does not use the BRST formalism but has a new type of
gauge symmetry which we name as the “2T gauge sym-
metry’’ in field theory. From this action we derive both the
kinematic and the dynamical equations through the usual
variational principle.

The standard model in 4 + 2 dimensions is constructed
in Sec. III by introducing the matter and gauge field content
analogous to the usual standard model but now derivatives
and vector bosons are SO(4,2) vectors, fermions are
SO(4,2) = SU(2,2) quartet spinors, while all fields are
functions in 4 + 2 dimensions. The 2T gauge symmetry
dictates the overall structure and the form of the terms that
can be included.

Next, in Sec. IV, the action for the standard model in 3 +
1 dimensions is derived from the action in 4 + 2 dimen-
sions by solving the subset of equations of motion that
determine the kinematics. This step is equivalent to choos-
ing a gauge for the underlying Sp(2, R) gauge symmetry in
the worldline formalism, as illustrated in Fig. 1. In particu-
lar, solving the kinematics in a particular parametrization
given in Eq. (4.1) corresponds to the ‘““massless relativistic
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particle” gauge denoted in Fig. 1. The solution of the
kinematic equations in this way provides a holographic
image of the 4 + 2-dimensional theory in the 3+
1-dimensional spacetime. The degrees of freedom in all
the fields are thinned out from 4 + 2 dimensions to 3 + 1
dimensions. Both the 2T gauge symmetry and solving the
kinematical equations play a role in reducing the degrees of
freedom from 4 + 2 dimensions to the proper onesin 3 + 1
dimensions. The remaining dynamics in 3 + 1 dimensions
is determined by the emergent 3 + 1-dimensional action.
In the chosen gauge, the emergent theory is the usual
standard model action, however the emergent standard
model comes with some interesting restrictions on certain
terms. The additional restrictions are effects of the overall
4 + 2 structure and are not dictated by working directly in
3 + 1 dimensions.

Having obtained the standard model in 3 + 1 dimen-
sions, one may ask what is new in 3 + 1 dimensions? Part
of the answer includes the constraints inherited from 4 + 2
dimensions that get reflected on the overall structure of the
emergent standard model in 3 + 1 dimensions. It is fasci-
nating that this has phenomenological consequences. First
we emphasize that all the basic interactions that are known
to work in nature among the quarks, leptons, gauge bosons,
and Yukawa couplings are permitted. The forbidden terms
seem to coincide with unobserved interactions in nature. In
particular, a forbidden term in the 3 + 1-dimensional
emergent action is the problematic F,, F Ao €127 term in
QCD, or similar anomalous terms in the weak interactions
that cause unobserved small violations of B + L. This is
because there are no corresponding terms in the 4 +
2-dimensional action that would filter down to 3 + 1 di-
mensions. As discussed in Sec. V, this provides a nice
resolution of the strong CP problem in QCD without the
need for the Peccei-Quinn symmetry or the corresponding
elusive axion. This had remained as one of the unresolved
issues of the usual standard model (for a recent review see
[14]). So, the 4 + 2-dimensional theory seems to explain
more as compared to the usual 3 + 1-dimensional theory.

Mass generation is less straightforward in the emergent
model than the usual standard model, because a quadratic
mass term for the Higgs boson is not permitted by the
underlying 4 + 2 structure. This is discussed in Sec. VI. To
obtain a nontrivial vacuum, one may either introduce in-
teractions of the Higgs with a dilaton or invoke dynamical
breakdown of the SU(2) X U(1) gauge symmetry through
mechanisms such as extended technicolor. The dilaton
scenario offers an appealing deeper physical basis for
mass and generates new phenomena that could be measur-
able. There are also new possibilities for mass in the
emergent theory that involve the higher dimensions. For
this we only need to recall that a massive relativistic
particle also can come out from the 4 + 2 theory as illus-
trated in Fig. 1. The mass in this case is analogous to a
modulus that comes from the higher dimensions in a non-
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trivial embedding of 3 + 1 in 4 + 2 dimensions. Since
mass generation is the obscure part of the standard model,
and there are new mechanisms in the 2T action, the mass
generation deserves further study of what the 2T approach
has to offer.

Since our proposal is that the fundamental theory is
formulated in 4 + 2 dimensions, one wonders if one can
test the effect of the extra dimensions. This can be explored
by studying other gauges of Sp(2, R) (equivalent to differ-
ent forms of solutions of the kinematic equations) that lead
to 3 + 1-dimensional dual versions that are also holo-
graphic images of the same 4 + 2-dimensional standard
model in the sense of Fig. 1. The exploration of these dual
theories corresponds to exploring the 4 + 2-dimensional
space and is left to future work. Other remaining issues and
future directions will be discussed in Sec. VII.

I1. PRINCIPLES FOR INTERACTING 2T FIELD
THEORY ACTION

The construction of the proper action principle for 2T
physics has remained an open problem for some time.
Equations of motion for each spin, including interactions
were available, and even the standard model in 4 + 2
dimensions in equation of motion form was outlined
[12]. The main stumbling block has been the fact that there
are more equations to be satisfied by each field than the
number of equations which can be derived from a standard
action. The solution given in this paper will involve some
subtle properties of the delta function 8(X?) that imposes
the Qy; ~ X? = 0 constraint and already could have been
attained in [12], but it was missed. A crucial hint came
from a recent BRST field theory formulation of the prob-
lem, akin to string field theory, as discussed in [13]. In the
present paper we bypass the BRST construction and use
only the tip as a springboard to construct a simpler action
for only the relevant fields of any spin, although the full
BRST field theory also may be useful to consider for more
general purposes. The 2T action principle given in this
section provides the proper minimal framework to consis-
tently discuss new symmetries, include interactions, and
perform quantization in 2T field theory. This principle is
applied to construct the standard model in 4 + 2 dimen-
sions in Sec. III.

In this section we first review the derivation [12] of the
2T free field equations in d + 2 dimensions for scalars,
fermions, vectors, and the graviton from the worldline
properties of the Sp(2, R), OSp(1|2), OSp(2|2), and
OSp(4]2) gauge symmetry, respectively. Then we intro-
duce an action principle in d + 2-dimensional field theory
from which these field equations are derived through the
variational principle. The action has a new kind of gauge
symmetry that we call the 2T gauge symmetry.

The free field equations are obtained as follows. The
OSp(2s|2) are the gauge symmetry groups in the worldline
formulation of the 2T particles of spin s in flat d + 2
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dimensions. In SO(d, 2) covariant first quantization, physi-
cal states are identified as those that are gauge invariant by
satisfying the first class constraints which form the
OSp(2s|2) Lie superalgebra. In position space the con-
straint equations turn into field equations in d + 2 dimen-
sions. So, in principle the number of field equations for
each spinning particle of spin s is equal to the number of
generators of the gauge groups OSp(2s|2), since all gen-
erators must vanish on the physical gauge invariant field.
By some manipulation the number of equations in d + 2
dimensions can be brought down to a smaller set but still
there are more field equations as compared to the familiar
field equation for corresponding spinning fields in d di-
mensions. This must be so, because only with the addi-
tional equations it is possible to have an equivalence
between the d + 2-dimensional field equations and their
corresponding ones in d dimensions. The familiar looking
d + 2 field equation, that is similar to the d-dimensional
equation, is interpreted as the dynamical equation, while
the additional equations can be interpreted as subsidiary
kinematical conditions on the field in d + 2 dimensions.

The same subsidiary kinematic equations for fields of
any integer spin s also were obtained by considering only
the spinless particle propagating in background fields
MM Ms(X) of any integer spin s. In this case the
Sp(2, R) generators Q; j(X, P), i, j = 1,2 are functions of
the background fields ¢ M2>"M:(X) [3]. Requiring closure
of the Q;;(X, P) under Poisson brackets into Sp(2, R) de-
mands conditions on the background fields. These condi-
tions are identical to the kinematic equations. In this case
the background fields are off shell and are not required to
satisfy the dynamical equation. The kinematic equations
by themselves are sufficient to reduce the degrees of free-
dom in the fields ¢ 1™2"Ms(X) from d + 2 dimensions to
d dimensions both in the spacetime X dependence of the
field and in the components of spinning fields labeled by
Ml’MZ’ i .’Ms'

The 2T physics equations that emerge from OSp(2s]2)
constraints in d + 2 dimensions, or from the backgrounds
with Sp(2, R) gauge symmetry, coincide with Dirac’s equa-
tions [15] in the case of s =0,1/2,1 in d = 4 and their
generalizations to spin 2 and higher [3,12,16] in any di-
mension. While there were attempts in the past to write
down a field theory action, the subsidiary kinematic con-
ditions have been treated as external conditions not derived
from the same action. The proper action principle will be
given in this paper.

In any case, it has been known [12,15,17-23] at the level
of equations of motion, that the ensemble of the d +
2-dimensional equations correctly reproduce the massless
Klein-Gordon, Dirac, Maxwell, Einstein, and higher spin
field equations of motion in d dimensions. In 2T physics
this is interpreted as an example of a more general holog-
raphy from d + 2 dimensions to (d — 1) + 1 dimensions
that emerges from gauge fixing Sp(2, R).
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A particular parametrization given in Eq. (4.1) that
corresponds to the Sp(2, R) gauge indicated as the “mass-
less particle gauge” in Fig. 1 will be used to derive the
standard model in 3+ 1 dimensions from the 4 +
2-dimensional theory. The massless Klein-Gordon, Dirac,
Maxwell, Einstein field equations in d dimensions emerge
in the parametrization of Eq. (4.1). The novelty in 2T
physics is its more general property that all the other 1T
interpretations (massless, massive, curved spaces, etc.),
outlined in Fig. 1 also emerge from the same 2T field
equations as different holographic images in different
Sp(2, R) gauges, as explained before both in particle theory
[7] and field theory [12]. In this paper we will use only the
massless particle interpretation related to the parametriza-
tion of Eq. (4.1) in order to connect to the usual form of the
standard model. However, it should be evident that dual
versions of the standard model, including interactions, will
emerge by taking advantage of the more general properties
of these equations.

A. Scalar field
1. Free field equations for scalars

For the spinless 2T particle, the vanishing of the Sp(2, R)
generators implies that the physical phase space must be
gauge invariant. In covariant first quantization, physical
states |D) are identified as those on which the generators
Q;; vanish X?|®) =0, P?[®) =0, (X - P + P - X)|®) =
0. This means that the physical states form the subset of
states that are gauge invariant under Sp(2, R). The field
®(X) is defined as the probability amplitude of a physical

'Dirac and followers regarded the equations of motion in 4 +
2 dimensions as a formulation of the hidden conformal symme-
try SO(4,2) of massless field equations in d = 4. The 4 +
2-dimensional spacetime was not emphasized as being anything
other than a trick. 2T physics developed independently from the
opposite end without awareness of Dirac’s approach to confor-
mal symmetry, and deliberately focusing on signature (d, 2) with
2 times. The (d, 2) signature specifically started with a hunch
[24] developed from M theory that there are higher dimensions
with signature (10,2) (see also [25] for an independent idea).
This path developed through various papers [26,27], gathering
hints on how to correctly formulate a theory with signature (d, 2)
consistent with M theory, causality, and dynamics without ghosts
in d + 2 dimensions. The multiparticle symmetries in [27]
provided the dynamical setup that eventually led to the intro-
duction of the Sp(2, R) gauge symmetry [1] for a single particle.
The new features that emerged in 2T physics include the under-
lying fundamental role of the Sp(2, R) gauge symmetry, the
existence of the other 1T interpretations as holographic images
in (d — 1) + 1 dimensions of the same 2T system, with the same
original SO(d, 2) symmetry that is not interpreted as conformal
symmetry in the various holographic images, the duality among
the multiple 1T solutions, and the corresponding interpretation
of the hidden symmetries and dualities as evidence for the higher
dimensions. Only after these properties were discovered, it was
recognized in [12] that Dirac’s approach to conformal symmetry,
that had been forgotten, could be seen as part of 2T physics in a
particular gauge.
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state in position space ®(X) = (X|®). Since momentum is
represented as a derivative in position space (X|P, =
—id,(X|, the gauge invariance conditions applied on
physical states |®) give the free field equations for the
field ®(X) as

X2d(x) =0, Ay M d(X) =0, on
XM, d(X) + 9, (XMD(X)) = 0.
The general solution of the first equation is
d(X) = 5(X2)D(X), 2.2)

where ®(X) (without the hat")? is any function of X™ which
is not singular at X> = 0. We have used the property
X28(X?) = 0 of the delta function. We also note the fol-
lowing additional properties of the delta function that we
use repeatedly below:

9 sx2y = >
57 8(0%) = 2X,8'(x%), 03
. i 2) — 2S/(Y2) — 2
X2 8(0%) = 2X°5'(X%) = ~26(x%),
928(X2) = 2(d + 2)8'(X2) + 4X25"(X?)
= 2(d — 2)8'(X). 2.4)

Here 6’(u), 8"(u) are the derivatives of the delta function
with respect to its argument u = X?. So we have used
ud'(u) = —6(u) and ud"(u) = —26'(u) as the properties
of the delta function of a single variable u to arrive at the
above expressions. These are to be understood in the sense
of distributions under integration with smooth functions.
Inserting the solution ®(X) = 8(X2)®(X) into the other
two equations in (2.1), and using Eqgs. (2.3) and (2.4), gives

d—12

2 . —
S(X )<X 0+ )cp 0, 2.5)

P[6(X)D] = 5(X2) 02D + 46’(X2)<X o+ %)cp —o.

(2.6)

Here the derivatives must first be taken in the full space XM
before the condition X*> = 0 is imposed. It is easy to see
that these equations are invariant under the following
gauge transformations

5, P = X2A(X) (2.7)

for any function A(X). The 48’(X?) part of the second
equation in Eq. (2.6) with the given coefficient 4 is crucial

2We distinguish between the symbols @, ¥, A yand &, ¥,
Ay to emphasize that ®, V,, A, include the delta function
factor. In comparing notes with Ref. [12] one should compare the
®, ¥,, Ay in that paper to the ®, ¥,, A), in this paper, not to
the CI), ’\I’a, AM'
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for this invariance. If we define
D(X) = Dy(X) + X2D(X), (2.8)

where ®, = [®(X)]y2_,, and X2® is the remainder, the
gauge symmetry implies that @ is gauge invariant while
D is pure gauge freedom and completely drops out. Hence,
the nonsingular gauge invariant function ®y(X) satisfies
the following equations in d + 2 dimensions

(v 3], e
2.9

where we have substituted the gauge invariant part @
instead of the full ®. This is verified directly by substitut-
ing Eq. (2.8) in Eq. (2.5) and (2.6) and noting that ® drops
out.

The first equation in Eq. (2.9), together with the X> = 0
condition, are the kinematic equations, and the second one
is the dynamical equation. The kinematic equation is
solved by any homogeneous function of degree —(d —
2)/2. Namely, its general solution must satisfy the scaling
property ®(1X) = 1~ @=2/2d,(X). Note that this homo-
geneity condition is much more than assigning a scaling
dimension to a field in usual field theory because it is a
restriction on the spacetime dependence of the field.> With
a particular parametrization of XM that satisfies the other
kinematic constraint X> = 0, as given in Eq. (4.1), plus the
homogeneity condition, one can show [12,15] that the
dynamical equation for ®y(X) in d + 2 dimensions re-

[azq)o]xz:() = 0,

. . 2
duces to the massless Klein-Gordon equation aéx;b a(j) =0
"

in d dimensions, with a definite relationship between
®((X) and ¢ (x). We will return to this detail of holography
in the following section.

2. Action for scalars with interactions

We now propose the following interacting field theory
action that reproduces both the kinematical and dynamical
equations of motion Egs. (2.9). The construction of a
proper action principle in 2T physics field theory has
eluded all efforts before, even though one could write
equations of motion as shown above and [15] [12], includ-
ing interactions. We will argue that we obtain the inter-
actions uniquely through a gauge principle directly
connected to the underlying Sp(2, R) symmetry.

The inspiration for the following form came from a
BRST formulation for 2T physics field theory including

3The scaling dimension alone does not require homogeneity.
For example, a Klein-Gordon field in four-dimensional usual
field theory has scaling dimension —1, but it is not homoge-
neous. This is because the dimension operator is not only the part
X - 9 that acts on coordinates but also includes a part that acts on
canonical field degrees of freedom. In particular, note that the
usual plane wave solutions with definite momentum exp(ik - X)
are not homogeneous.
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interactions [13]. Here we do not use the BRST version but
only extract from it a partially gauged fixed version which
has just sufficient leftover gauge symmetry for our pur-
poses here. Thus, the key ingredients that go into the
proposed action below are first that it should possess the
gauge symmetry in Eq. (2.7), and second that it should
have additional gauge symmetry to reduce the theory to
only the @, degree of freedom, including interaction. The
action is

wm:fﬂﬂmmmy@avn

- 8(XH[BX)V'(®) + aV(P)]}. (2.10)

Notice the delta function that imposes the vanishing
Sp(2, R) generator X?> = 0 condition. The function V(®)
will be the potential energy for the field’s self interactions;
its derivative is V/(®) = 9V /9d®P. The role of the constant
coefficient a will become evident in the discussion below.
We will see that V(P) will be uniquely determined by the
gauge symmetries of the field B(X). The field B(X)
emerged from the BRST point of view as a combination
of auxiliary fields associated with the kinematical and
dynamical Sp(2, R) generators X - P and P.

Let us first discuss the gauge symmetries of this action.
The 8(X?) structure makes it evident that we have the
gauge symmetry of Eq. (2.7) §,® = X?>A(X), hence if ®
is written in the form of Eq. (2.8) ® = ®, + X2, the
remainder ® automatically drops out. Therefore, this ac-
tion really depends only on ®, automatically. We will
continue to write ® everywhere, but it should be under-
stood that any mode of @ proportional to X? is decoupled,
and this fact will be used below.

Next we show that there is nontrivial gauge symmetry
associated with the field B(X) under the following trans-
formation with gauge parameter b(X)*

5,B = (X -9+ %)b - %)@(a% — bV"(D)),
any b(X). (2.11)

The transformation of the action under this b symmetry
gives

5,5(®) = fd"+2X<{<X~ 9+ %)b
—iX%%b—bW%@%%%@&Xﬁ

—8@%W@%) 2.12)

“This transformation was extracted from the BRST formalism
in [13].
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-2
— f dd+2X<8(X2)[(X~ 5+ %)b[a%p VI(@)]
2 1 d—2
@b = bvr@)(x-a+ 1)

4 45/(X2)<x o+ %)b(x o+ %)Cb) 2.13)

= /dd+2X<aM{XM[48’(X2)<D<X - 9b + %b)

- 5(x2)w<q>)b“

- 8(X2)¥b[<l)v”(d)) - %W(@)D. (2.14)

In going from Eq. (2.12) and (2.13) we have used Eq. (2.6)
to evaluate 0*[®S5(X?)] and then set X?8(X?) =0 and
X?268'(X?) = —8(X?). To reach Eq. (2.14) we do integra-
tions by parts taking into account the delta functions and
noting the identity

az[a()@)(x o+ %)b} (2.15)
= 6(X2)<X’ g +9F2 ;r 2)3219
+ 46’(X2)<X o+ %)219. (2.16)

The total derivative in Eq. (2.14) can be dropped, and then
we see there is a gauge symmetry 8,S(®P) = 0 provided
the potential energy V(®) satisfies

+
A iv'(cp) — V(@) = ADU+2/d2),

d —_
(2.17)

Thus, except for the overall constant A, the V/(®) is
uniquely determined as the given monomial, as a conse-
quence of imposing the b-gauge symmetry. This gauge
symmetry is required to reduce the ®, B degrees of free-
dom to only ®. But interestingly, it also fixes the interac-
tion uniquely.

Now let us verify that this action gives the equations of
motion that we require. The general variation of the action
is obtained from Eq. (2.10)

PHYSICAL REVIEW D 74, 085019 (2006)

5S(D) = — f dd+2x[5(xz)53{a2q> + V(@)
, o d-2
+ 48 (X2)53<x 9+ ><D
+ 5(X?)5P[°B + V!(®)B + aV’(CI))]}

The 46'(X?) comes from evaluating 9?[®S(X?)] as in
Eq. (2.6). Since the distributions 8(X?), §'(X?) are linearly
independent, the coefficients of §(X?)6B and 8'(X?)6B
should vanish independently”

<X-8<I>+ECI)> =0,
2 X=0

[2D — V!(D)]yey = O.

(2.18)

In these equations we really have ® = &, with no remain-
der @ due to the gauge symmetry 8,® = X2A as dis-
cussed above. But we may allow any remainder as long as
it is homogeneous since this does not change the equations
of motion. Thus, our action did provide the two desired
equations of motion for ®,, while the remainder d is
gauge freedom and can still be taken as nonzero as long
as it is homogeneous. In addition, the equation of motion
for B is

[0’B — V'(®)B — aV'(®)]y2—y = O. (2.19)
This can be understood in a bit more detail by exhibiting
the remainder of B in the form B = B, + X’B. Then the B
equation really is

[3230 V(DB — aV'(Dy)

d+2\.
+ 4(X~ 9+ —)B} —0. (220)
2 X2=0

We see that this is an equation that determines the remain-
der B in terms of By, @, without fixing the dynamics of B,
at all. So there remains one fully undetermined function
among the B, B. This is of course related to the b sym-
metry given in Eq. (2.11). Using the 4 symmetry we can
choose the function B at will. As in [13], we make the
convenient gauge choice By = y®, where vy is an overall
constant to be determined consistently. In that case the

>In this paper we are very careful when we make such state-
ments. The equation §(X?)F(X) + 8'(X?)G(X) = 0 has the more
general solution (G)y2—¢ = 0 and (F — G)x2—, = 0, rather than
merely (F)y2—y = 0 for the second equation. Here G is the
remainder when one writes G = G, + X>G. So generally F
need not vanish on its own. However, in the present case we
have already argued that @ = @, since the remainder drops out.
Therefore, the two terms do vanish separately.
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remainder B must be determined from Eq. (2.20) after
inputting By = y®, and recalling the dynamical equation
for @, up to the proportionality constant y[d>®, —
V/(®g)]x2—g = 0. After using ®V'(P) = V(D) as
given in Eq. (2.17) we obtain B

Y
)8 = 5 V@) + av!()

y (2.21)

o\, 4
4<X-a+d )

And of course By = y®,. Finally, we can insert the fully
fixed By, B as well as @ = @, into the action and obtain an
action purely in terms of @,

S(dg) = f dd”X[(BO + x2z§){5(x2)(a2q>0 — VI(dy)

+ 46’(X2)<X a+ %)@0} - 6(X2)aV(<1>o)}

(2.22)

- f dd+2x[5(xz){30(32q>0 — VI(®y)) — aV(Dy)

+
4 4c1>0<x 5+ (1122>B}

+ 45’(X2)BO<X d+ %)@0} (2.23)
— [ dd+2X5(x2)[yq>oa2cb0 +( i 2><1>0v'(q>0)
- aV(CIDO):|. (2.24)

Equation (2.22) is the original action Eq. (2.10) rewritten in
terms of the components ®, B,, B. The form in Eq. (2.23)
follows after using X28(X?) = 0 and X?8'(X?) = —8(X?)
and performing an integration by parts in the middle
term to get the structure (X -0 + 932)B. Inserting the
gauge fixed By, B we get Eq. (2.24), where the &'(X?)
term of Eq. (2.23) becomes the total derivative
2y0,/(XM§'(X?)®P3) and drops out in this gauge.

We must require that the equation of motion for @, that
follows from this gauge fixed action be the same as
3*®, — V/(dy) = 0 as given by the original action. For
this to be the case, the coefficient -y that had appeared in the
gauge fixing By = y®, must be determined self-
consistently in terms of the constant a as y = 4;2a, so
that the potential energy terms in Eq. (2.24) sum up to
being —2yV(P) and match the normalization of the ki-
netic terms as follows:

PHYSICAL REVIEW D 74, 085019 (2006)
1
S(@) = 2 f dd+2X5(X2)[§CI)82<I)

d—2

- /\W@(WH)} (2.25)

The potential energy V(®) has now been fixed uniquely as
the monomial

d

V(®)=A—— cI><2d/d 2.

(2.26)

The constant 2y is an overall normalization factor that will
be absorbed later into the normalization of the volume in
(d — 1) + 1 dimensions.

In our derivation the ® in the action of Eq. (2.25) was
strictly @,. But we can add a remainder to ®, + X2®
without changing the physics, as long as the remainder is
homogeneous and satisfies (X - 0 + %)(i) = (0. Then the
full @ satisfies (X - 9 + 452)® = 0 when it is on shell. We
have the freedom to add a homogeneous remainder be-
cause the action in Eq. (2.25), including the homogeneous
remainder but off shell @, has a leftover gauge symmetry
d® = X?>A as long as A is homogeneous (X -9 +
%)A = 0. To demonstrate this symmetry, observe the
general variation of the action in Eq. (2.25):

5S(®) = 2y / dd+2x5(x2){5cp< 22 — V’(<I>)>

4 %CDGZ((S(D)} 2.27)
— 2y f 442X 5@{5(){2)( 52D — v'(cp))
+ %aZ(a(xZ)cp)} (2.28)
— 2y f dd”X(S(I){B(XZ)[az(I) — V()]
+ 26’(X2)[X o + %@H (2.29)

If we substitute the gauge transformation 6® = X?A in
Eq. (2.29) we get the gauge variation §,5(®) which be-
comes

5,S(d) = 2y / dd”XAB(XQ)[X 0D + %@}
(2.30)

— 2y f d472X0,,(XMADS(X2) = 0. (231)

In the first line we have already dropped a term due to
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X?8(X?) = 0 and used X?8'(X?) = —8(X?). The resulting
form is a total divergence as given in the second line as
long as A is homogeneous (X - 8 + <12)A = 0.

Furthermore, the action in Eq. (2.25), including the
homogeneous remainder, has a leftover b-symmetry §,P
given in Eq. (2.11) as long as the b parameter is homoge-
neous (X - 0 + %)b = 0. In that case, from Eq. (2.29) we
derive

5,5(d) = y(d — 2) f dd+2xa(x2)b[q>v"(cp)

d+2

(2.32)
So, requiring the symmetry §,S(®P) = 0 fixes the potential
uniquely.

In conclusion, in the gauge fixed action in Eq. (2.25) we
can allow any ® whose remainder ® has the homogeneity
property stated. Of course this permits gauge fixing off
shell all the way to @ = @, if so desired, but we will rather
keep the homogeneous gauge freedom as the remainder® of
the A and b symmetries.

Now we show that the action in Eq. (2.25) is adequate to
generate both the kinematic and dynamical equations of
motion. Using Eq. (2.29) we impose the variational prin-
ciple 8S(®) = 0 which gives

SOX[9°D — VI(D)] + 25'(x2)[x oD + %@} —o.

(2.33)

This results in two different equations on ®, not just one
because the coefficients of both 8(X?) and &'(X?) must
vanish separately. By contrast, in an ordinary field theory
the variation of a single field would result in a single
equation. This is one of the crucial observations that was
not appreciated in our previous attempts to construct an
action principle that gave both equations of motion.

Being careful as explained in footnote 5, the coefficients
of 8(X?) and 8’(X?) that vanish are

+ 2N -
[626130 — V(D) + (x 9+ %)@} —0,
XZ
_ (2.34)

The resulting equations are precisely the desired ones,
provided @ is homogeneous, (X -9 + %)q) =0 as is

5Note that the last coefficient in Eq. (2.29) is 28’(X?) and not
468'(X?). If it had been 48'(X?) there would have been a greater
symmetry with arbitrary A and arbitrary b rather than homoge-
neous A and homogeneous b. Of course, the original action in
Eq. (2.10) has the greater symmetry before gauge fixing.

PHYSICAL REVIEW D 74, 085019 (2006)

the case in our gauge fixed action as explained above. In
that case we can write the equations of motion without
splitting @ into components in the form

d—2
<x o+ T)cp —0 and 92D — V(D) =0,
(2.35)

We have made the point that it is crucially important that it
is understood that the action S(®) in Eq. (2.25) is a gauge
fixed version of the original action Eq. (2.10) that contains
only the gauge fixed @ up to an arbitrary homogeneous
remainder, rather than the most general remainder ®. For
the most general remainder ® the action in Eq. (2.25)
would give the wrong dynamical equation.

Therefore, the correct action is either the simplified form
Eq. (2.25) with the gauge fixed ® up to a homogeneous
remainder that corresponds to remaining gauge freedom,
or it is the more general gauge invariant form in Eq. (2.10)
that includes all the degrees of freedom in ® as well as
those of B. Recall that the b-gauge symmetry uniquely
determined the interaction V(d).

The advantage of the gauge fixed version in Eq. (2.25) is
its simplicity in terms of a single field ®, but we must point
out a subtle feature. To arrive at the two equations of
motion from this gauge fixed action, we note that we
have applied a slightly unconventional variational ap-
proach. Specifically, note that two equations follow from
the fact that the general variation 6® = 6P, + X286
contains two general variational parameters 6P, 5P, in
which neither §®, nor ® are homogeneous, although the
remainder @ is required to be homogeneous after the
variation. The unconventional part is the requirement of a
homogeneous ® (as determined in our gauge fixing dis-
cussion), but a general & ® to yield the second equation for
®,, namely, (X - 9 +42)®, = 0. By taking a homoge-
neous ® but a general 5®, we have devised a tool to keep
track of the effects of the 2T gauge symmetry off-shell,
whose utility is demonstrated in Eq. (2.32), and which will
come in handy in later investigations. The alternative to the
above is to take from the beginning a gauge fixed action
with a homogeneous ® as well as homogeneous 6P, and
have no <I~), 5D at all, however, in so doing we completely
lose track of the 2T gauge symmetry.

There is another physically equivalent gauge fixed form
of the action that makes the underlying Sp(2, R) symmetry
more evident. This is given in the appendix.

We have now shown that the field ®(X) described by our
action satisfies precisely the same free field equations of
motion in Egs. (2.9) that follow from the Sp(2, R) con-
straints, plus consistent interactions. So the physical de-
grees of freedom and gauge symmetries of the 2T spinless
free particle are correctly described by our action principle.
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In addition, we have introduced a gauge principle that
leads to unique self interactions.

In this process we also have discovered a new gauge
symmetry that we will call the 2T gauge symmetry. This
includes both the A and the b gauge symmetries. These
gauge symmetries are responsible for removing gauge
degrees of freedom and identify the physical field as
Dy(X) = [P(X)]y2—y. We will see that the 2T gauge sym-
metry persists in the presence of all interactions of the field.
Furthermore, for each field in the theory there is an exten-
sion of this symmetry, so it is a rather general symmetry
that dictates the structure of the action.

3. Interactions among several scalars

Let us now describe interactions among several scalar
fields. For convenience we will do this in the gauge fixed
version’ by using directly ®' = ®} for all the fields
labeled by i =1,2,---. However, for brevity we will
omit the zero subscript in ®. We identify as So(P’) =
—1Z [a772X5(X*) P92 P’ the quadratic part of the action
in Eq. (2.25) at zero coupling constant. The interaction
term is then identified as

S (@) = — f dF2X8(X2) V(D). (2.36)

The b symmetry requires V(®’) to be overall homogeneous

of degree % For example, if there are two scalar fields,
say @(X) and H(X), the total action must be taken in the

form

S(®, H) = So(®) + So(H) — f d2XS(X2)V(D, H),
(2.37)

where the allowed potential energy can only be of the form

V(D H) = A, ®R/A=D 4 ), gRd/d=2)

+ Z/\kl(DkHlak+l—(2d/d—2)- (2.38)
%l

The coupling constants are all dimensionless in any di-
mension. Note that in four dimensions d = 4 only quartic
interactions are allowed V(®, H) = A,®* + AyH* +
S AP H! 8; ;4. No quadratic mass terms with dimen-
sionful constants can be included. This will impact our
discussion of mass generation as will be seen below.

"The fully gauge invariant version must have a B/(X) field
corresponding to each ®/(X). Furthermore, there is a separate A’
and b’ gauge parameter for each i. After the gauge fixing
procedure described in the previous section for each i, we end
up in the physical sector without the B/(X) and only with the
®/(X) whose remainder ®'(X) is gauge fixed to be
homogeneous.
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It is possible to modify the rigid result on the form of the
potential discussed above by modifying the action with
another type of term that includes &’(X?) instead of only
8(X?). To illustrate this, consider again the single field case
and include an additional term in the action of the form

Sy (@) = — ] AXS(XOW(D).  (2.39)

The equations of motion as well as the gauge symmetries
are altered with the total action

Sot(®@) = So(P) + (D) + S,(D). (2.40)
Therefore, the final potential V(®) could be different.
After a few trials with a few such functions, it becomes
clear that the resulting equations of motion may have only
trivial solutions except for special combinations of V and
W that must be chosen consistently to avoid a trivial
system. So far we have found only one very simple non-
trivial case, given by a quadratic W = %aq)z. This changes
the kinematic equation for ® and requires ® to be homo-
geneous ®(1X) = F@d(X) with a degree k(a) that de-
pends on the constant a. Consistent with the new
homogeneity degree of @, the potential energy is again a
monomial V(®) ~ ®7@ with a new power p(a) so that
V(®) has total homogeneity degree —d just as before.
Thus, the power p(a) of the monomial in the potential
V(®) can be changed arbitrarily as a function of the
coefficient a in W = 1 a®?. Currently we do not know of
other examples for which the coupled kinematic and dy-
namical equations have nontrivial solutions for other func-
tionals W(®).

It has now become clear that V(®) could be altered by
tinkering with the additional term W(®). However, it is not
a priori clear what forms of V(®) exist consistently with
the coupled differential equations.

If there is more than one scalar, such as ®, H, then the
system of equations derived from W(®, H) and V(P, H)
gets more complicated. A general study of which forms of
V(®) or V(P, H) can consistently be found through this
procedure is not currently available. We will return to this
topic when we discuss the mass generation mechanism in
the standard model.

B. Spinor field
1. Free field equations for fermions

For particles of spin 1/2 on the worldline the phase
space (XM, PM M) includes the anticommuting fermions
M. The worldline gauge symmetry acting on phase space
is enlarged from Sp(2, R) to the supergroup OSp(1|2) [2].
The generators of this symmetry in the flat background are
proportional to X%, P2 (X-P+ P-X), X -, P- . The
quantized fermions ¢ form a Clifford algebra and there-
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fore are represented by gamma matrices® ', T'™ acting on
the two chiral spinors of SO(d, 2) (assuming even d). The
gamma matrices satisfy TMTY + TNTM = 29MN which is
equivalent to the quantization rules for ™.

The physical states |'¥) correspond to the gauge invari-
ant subset of states on which all of the OSp(1|2) generators
vanish. It is sufficient to impose X - | V) = P - 4| ¥) = 0
because the remaining constraints follow from these. The
chiral field WX (X) is defined as the probability amplitude
of a physical state in position and spinor space \iff; X) =
(X, a|¥). The second chiral spinor field \iffl X)) =
(X, &|P) is associated with the second spinor labeled
with & instead of a. The number of components of each
chiral spinor of SO(d, 2) is 2%/2. In the case of d + 2 = 6
these 4-component spinors form the two fundamental rep-
resentations of SU(2, 2) = SO(4, 2).

Both chiral spinors must satlsfy the physical state con-
ditions. Thus, defining \If = \Ifa, it satisfies

X9, =0 (#¥),
W, (X) = chiral spinor of SO(d, 2).

(2.41)

8An explicit form of SO(d, 2) gamma matrices in even dimen-
sions labeled by M = (0, I, u and u = 0,i is given by v =
—ir X1, TV =7, X1, T°=1x1, =73 X v/, where y'
are the SO(d — 1) gamma matrices. It is convenlenlt to use a
lightcone type basis by defining I'*' = \/-(FO +I) =
—i27% X 1. The T™ are the same as the T™ for M = =/, i,
but for M = 0 we have I = —T° = —1 X 1. From these we

construct the traceless [V as
11 - 1 O
+ - —
= 1)

b (Y0
o= (T )

r'e = iﬁ(f)) 70" ) e = —iﬁ( 70# 8>,
where y,, = (1, ¥'), ¥, = (=1, %), noting the lower w indices.
Then  1LynJ"N = -~ g*~" + 1y, w0 =T J~'0 —
r- ud *+'1 takes an explicit matrix form. We can further write
yl=0lX1, y¥>»=0?X1, and y" = 0> X p", where the p’
are the gamma matrices for SO(d — 3). It is possible to choose
Hermitian p” for SO(d — 3). In d = 4 the p" are replaced just by
the number 1 and then the vy, ¥, are just 2 X 2 Pauli matrices.
These gamma matrices are consistent with the metric in spinor
space = —it; X 1 =T" = I'" that is used to construct the
contravariant spinor W,R = ‘I’Z’ g M- The metric 7 has the prop-
erties p(I™)n~! = -t and yIMVy~! = —(TMN)t or
equivalently  (pI'™) = (pTM)t  and  (»I'MN) = (nI'MN)T,
Therefore, we have the Hermiticity properties (1, M irp)t =
YoMy and (1 DMV )T = 4y, TMN s . We can also de-
fine the charge conjugation matrix C by C = 7, X o, = —Cn,
with € = Cyp = —1 X io,. The property of C is such that
crMct =@M | ct™c ' =(I")7" and CTMNC™!'=
—([MNT cTMNC=1 = —(I'MN)T Then CT™ are antisymmetric
matrices and group theoretically corresponding to (4 X
= 6 for SU(2,2) representations.

4)antisymmetric
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We use the notation J=T1M9,,, X =TM"X,,, and similarly
The general solution of XV =0is
P(X) = 8(X2)XV(X), (2.42)
where we have used XX = X2 and X28(X2) = 0. Here
W, (X) (without the hat"and with ¢ instead of @) is labeled
like the other chiral spinor of SO(d, 2).

Next we examine the second equation #¥ = 0 which
can be put into several forms as follows:

0= #¥ = J8(XHXTV] = SXO[H(XP) — 2W] (2.43)

- 5(x2)[—x5qf + 2<x o+ g)«lf} (2.44)

= 6(X2)[< TMNL v + )\If + (X “9 + %’)qf}
(2.45)

In the first line we have used 9,,8(X?) = 2X,,6'(X?) and
28' (XXX = 28'(X*)X% = —28(X?) to obtain an overall
delta function. In the second line we changed the order
JX = —X§ +2X-0+d+2. In the third line we have
used the definition I'MN = %(FMI;N — I'NTM), while
LMN = —i(XMaN — XN M) is the SO(d, 2) orbital angular
momentum. The structure -TMNLy = —TYNX, 0\ =
—X# + X - 0 can be regarded as the analog of spin-orbit
coupling, where the SO(d, 2) spin angular momentum is
given by SMV = LTMN_As we will see in the case of the
scalar in the appendix, the appearance of LMY is naturally
expected from the point of view of Sp(2, R) symmetry.

By applying X on Eq. (2.44) we can derive a homoge-
neity condition for ¥ as follows:

0= 5(x2)[—5(x;1\1f 4 25(<x o+ j)xp} (2.46)

d+2

- 25(x2)<x 9+ T)(xqf) (2.47)

where we have used XX8(X?) = X28(X?) = 0. According
Y d+2

to the last line, (X'V) is homogeneous of degree — 4=.
Then from Eq. (2.43) we learn that W, =% (X¥) is
homogeneous of degree —% since the right- hand side
has this homogeneity degree. This requires the second
terms in Egs. (2.44) and (2.45) to vanish, hence the two
terms of Eqgs. (2.44) and (2.45) vanish independently.
Therefore we learn that the OSp(1]2) gauge invariance
conditions of Eq. (2.41) require W, to satisfy the following
equations:
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[(xa+ D] =0

[XFWle_g =0 or [(21 TMNE 4 j)«lr} —0.
l X?=0
(2.48)

The derivatives must be taken before the condition X> = 0
is imposed.

This analysis is performed independently for the two
spinors Wt = §(X2)(XWR), and X = 8(X2)(X¥L),. So,
the free field equations for the two chiral fermions of
SO(d, 2) are of the form of Eq. (2.48), except for inter-
changing T « '™ to describe the L, R sectors.

The first equation in (2.48) is the kinematical equation
and the second is the dynamical equation. Both will be
derived from an action in the next subsection, and consis-
tent interactions will be introduced after that.

These 2T physics equations for chiral fermions in d + 2
dimensions [12] coincide with the equations proposed by
Dirac [15] for d + 2 = 6. So it has been known for a long
time that they reproduce the massless Dirac equation in
d = 4. More precisely, from ¥4(X) we reproduce the
massless Weyl equation for a left handed SL(2, C) spinor
and from WX(X) we reproduce the massless Weyl equation
for a right handed SL(2, C) spinor. We will return to this
detail explicitly when we derive the standard model in 3 +
1 dimensions from the one in 4 + 2 dimensions.

For the application to the standard model, it is essential
to classify the left/right handed chiral fermions differently
under SU(3) X SU(2) X U(1). This is why we were careful
in our analysis above to distinguish between left/right
spinors directly in d + 2 dimensions.

One may ask how do we do away with the extra spinor
components in going from the 4-component SU(2,2) spin-
ors WL, WE in six dimensions, to the 2-component
SL(2, C) chiral spinors in four dimensions. The explana-
tion is rooted in the 2T gauge symmetry extended to
fermions. The following fermionic-gauge symmetry was
first noted in [12]:

S,VE =X20E+ X, 8, VR =Xk + KLk,
L,R

15 = SO(d, 2) fermionic spinors. (2.49)

The easiest way to notice this symmetry is through
Eq. (2.42), where it is evident that the transformations
above leave the physical states WX = §(X2)XWR or ¥F =
8(X?) XL invariant. One may follow the symmetry down
to the Eqgs. (2.48) written in terms of W (rather than \i’)
where it is sufficient to have homogeneous ¢“R. This
symmetry will be an automatic fundamental symmetry in
the fermion action proposed below.

Note that in the discussion above the gauge parameters
{ 11‘,’2R are independent. When we introduce all the fermions
in the standard model, each chiral fermion will naturally
have its own independent local fermionic symmetry pa-
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rameters f’ZR with their SU(3) X SU(2) X U(1) charges
identical to those of the corresponding fermion. So the
fermionic 2T gauge symmetry will be just large enough
to remove all ferminoic gauge degrees of freedom. This
will be a symmetry that is elegantly built in the structure of
the action for fermions.

The fermionic 2T gauge symmetry can eliminate only
half of the components in each WX because, despite
appearances, X{X, X{% contain only half as many inde-
pendent degrees of freedom as WXX. This fact, that will
become more evident below by constructing X,X as ex-
plicit matrices, is due to the condition X> = 0. So, half of
the components in each W-?(X) can be gauge fixed, while
their dependence on the d + 2 dimensions XM can be
reduced to (d — 1) + 1 dimensions x* by solving the kine-
matic conditions in (2.48). This leaves the correct physical
degrees of freedom for chiral fermions in d dimensions.

Thus, in the application to the standard model in the
following sections, where we use a specific embedding of d
dimensions as given in Eq. (4.1), four component SO(4,2)
spinors WXR(X) in six dimensions will be equivalent to two
component chiral fermions *®(x) in four dimensions
[SL(2, C) doublets] after eliminating the gauge compo-
nents of each quark and lepton via fermionic-gauge fixing.

We emphasize that in 2T physics this reduction to d
dimensions is understood as one of the possible gauge
choices that provides a holographic image of the d +
2-dimensional theory in the sense of Fig. 1.

2. Free field action for fermions

We now propose the following action whose minimiza-
tion gives the fermion Egs. (2.48)

So(W) = %i f (d2X) 8N TXFV + T 7 X D).
(2.50)

This action is manifestly Hermitian. It is possible to add to
So(W) the term ¢ [(d9P2X)8(X)W (=3 -X + X - )V
with an arbitrary real coefficient . However, as remarked
after Eq. (2.48) above, and after Eq. (2.57) below, this term
does not change any part of the discussion, hence we will
suppress « in this paper for simplicity, but it should be kept
in mind in future investigations. The action in Eq. (2.50)
can be rewritten only in terms of LMV as in Eq. (2.45), so
we can easily argue that this action is invariant under
Sp(2, R). Here the contravariant W% is defined as ¥ =
Wty by using the SU(2,2) metric 7 given in footnote 8,

and we have used the notation W 4 = 9,,%T™. Upon
general variation this action gives

5Sy(W) = i / (dd”X)cS\P{% SO KT

- ;aM[a(xz)rMX\p]} +He @50
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—i f (dd”X)S\P{cS(XQ)B(XEI v+ \p” + He.
(2.52)

iy f (dd+2X)a(X2)3ﬁr[x;fqr - <X- 5+ g)«p} + He.
(2.53)

In the first line, an integration by parts has been performed
to collect the coefficient of W, while H.c. stands for the
Hermitian conjugate term that contains 6W. The last term
in the second line comes from taking the derivative of the
delta function — 1 (9 6(X*)IMY¥ = — 1 §'(X)XXV =
—X28'(X*)W = 5(X?)W, thus obtaining an overall factor
of 8(X?). To derive the third line we interchange orders
gX=-XJ+2X-0+d+2.

Next we point out the fermionic 2T gauge symmetry
when we substitute

8,V =X + 05X (2.54)

instead of the general variation 8¥

8,50(W) = —i [ (@ 2X)8(X2)(X2E, + 5-X)

x [x;f\y - (X- o+ g)ﬂ +He o (2.55)

— i f (d42X),, [ XM 7, XU 5(X2)] + He. = 0.
(2.56)

In the first line the &(X*)X?{, terms and the
(X)L XXFW = 8(X*)X2{,#V vanish trivially, while
the remaining term 8(X?)£,X(X - 9 + )W can be written
as the total divergence in the second line provided ¢,
satisfies the homogeneity condition

- d+2.
(X- al, + §2> = 0. 2.57)
2 X2=0
If the term proportional to & noted following Eq. (2.50) had
been included, the same arguments would still hold for any
«. Note that the symmetry holds off shell without requiring
W or /, to be restricted in any way. By applying the
operator (X - 9 + ‘51) on both sides of Eq. (2.54) and using
the homogeneity of /, we note that (X -9 + %)SZ\P =
X*(X -0 +4, is proportional to X*. This implies
that, while the off shell ¥ in general has only pure gauge
degrees of freedom in its parts proportional to X? (sym-
metry X?{,), only homogeneous parts of the off shell ¥
with homogeneity degree of — ‘51 contain gauge degrees of

freedom of the type X 4.

We now return to the general ¥ and require the varia-
tional principle 8S,(W) = 0. The resulting equation of
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motion S(X?)[XJV — (X -9 +9)W¥] =0 is identical to
Eq. (2.44), which is also equivalent to Egs. (2.43) and
(2.45) by the same arguments supplied when studying
those equations. As we have argued before, the two terms
must vanish separately, and therefore the action principle
gives the correct equations of motion derived in Eq. (2.48).

Since the on shell free field is already homogeneous, we
can eliminate half of its degrees of freedom by fixing the
fermionic 2T gauge symmetry ¢,. Hence our action repro-
duces the correct degrees of freedom, and the field equa-
tions required by the 2T physics constraints that follow
from OSp(1]2) gauge symmetry, namely, g =0, ¥ =
0 with ¥(X) = (X)X (X).

3. Interactions for fermions

The interaction terms for fermions must respect the
fermionic 2T gauge symmetry as well as the SO(d,2)
invariance. Interaction with gauge fields constructed by
replacing ordinary derivatives d,, with covariant deriva-
tives Dy, = d,; + Ay, are automatically consistent with
these symmetries. The A,, are associated with the adjoint
representation of an internal gauge symmetry, and the
fermions are in some representation of the gauge group,
as usual in non-Abelian gauge theories.

In the application to the standard model, the A;, are the
SU(3) X SU(2) X U(1) gauge fields, and the SU(2,2) =
SO(4, 2) fermions PR are classified under this internal
group exactly like left/right handed quarks and leptons are
classified in the usual standard model.

The analysis in Egs. (2.50), (2.51), (2.52), (2.53), (2.54),
(2.55), (2.56), and (2.57) goes through unchanged in every
step except for replacing the covariant derivative D, in all
steps instead of 9,,. Note that this modifies the homoge-
neity (or kinematic) conditions on the fermionic-gauge
parameters in Eq. (2.55) to include the gauge field (X - D +
%)Z , = 0, since the ¢ 1,2 are classified just like ¥ under
the gauge group. However, as seen below, it is possible to
choose a gauge X - A = Oinwhich X - D = X - 9 so thatin
this gauge the kinematic equations revert to the ordinary
homogeneity condition.

We now consider interactions with scalars. Because of
the fermionic, as well as the SO(d, 2) symmetry, the inter-
actions must have the fermionic structures WELYXWR
WRYXWL coupled to the scalars and multiplied with the
delta function

Sin (¥, scalars) = f (@92X)8(XH)[WEX PR X (scalars)

+ H.c.] (2.58)

The group theoretical explanation is as follows. First, these
structures are SO(d, 2) invariant because the product of a
left spinor and a right spinor makes an invariant when
dotted with the vector X¥. For example, for SO(4, 2) =
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SU(2, 2) which is our main interest, the left spinor W is a 4
of SU(2,2), and the right spinor WX is a 4*, while the left
spinor W’ is again a 4*. The SU(2,2) product 4* X 4*
antisymmetrized is exactly the SO(4,2) vector in six di-
mensions. So the structure WXT',, ¥R must be dotted with
the vector X to make the SO(d,2) invariant WL XWX,
Second, under the fermionic-gauge transformations of
Eq. (2.49) the variation of WXXWR produces a factor of
X2, as in

S (WLXWR) = (ZLX? + [RY)XWR

+WEX(XPR + X)) (2.59)

= X2[(ZEXWR + WLYLR) + (ZRR + WEEH)] (2.60)

When multiplied with the delta function this vanishes
X?8(X?) = 0. Therefore, the interaction S;,, (¢, scalars) is
invariant under the fermionic 2T gauge symmetry.

Now we turn to the internal gauge group to see how to
couple the scalars in Eq. (2.58). Let us assume that WX XWX
is not invariant under the internal gauge group. For ex-
ample, if we classify WX under SU(3) X SU(2) X U(1) as
in the standard model, then ‘I’LX‘PR 1S invariant under
SU(3) but transforms as a doublet under SU(2) and has a
nontrivial phase under U(1). Therefore, to make an invari-
ant we must introduce a complex scalar H that has just the
opposite classification under the gauge group to be able to
construct a gauge invariant in the form WX X WRH, exactly
like the Higgs in the standard model. We will see that, in
the reduction from d + 2 to d dimensions by solving the
kinematic equations, this term will become the familiar
Yukawa coupling ¢*®h in d dimensions and will lead to
the correct Yukawa couplings of the Higgs field in the
standard model in d = 4 dimensions.

There is one more point to consider to obtain nontrivial
interactions with scalars, if d # 4. This is not immediately
evident from the action but becomes clear when we exam-
ine the equations of motion. The dynamical fermion equa-
tion of motion including interaction with scalars has the
form X(#¥L + HWVR + - - -) = 0. In addition, there are the
kinematic equations of motion which demand definite
homogeneity for each field. We learned above that the on
shell R have homogeneity degree —d/2 and the scalar
H has homogeneity degree —(d — 2)/2 [assuming the W
term analogous to Eq. (2.39) is zero for the H field]. We see
that, unless d = 4, the homogeneity of ¥ whichis —(d +
2)/2 does not match the homogeneity of the term HWY
which is —d + 1. Then each term must vanish separately,
and the interaction becomes trivial. To avoid this we need
to multiply H'W with a factor that establishes the same
homogeneity for both terms. Thus, in addition to H we
consider another scalar ® that is neutral under the SU(3) X
SU(2) X U(1) gauge group. Assuming that @ has homo-
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geneity degree —(d — 2)/2, we see that HWRP~(d=4/(d=2)
has degree —(d + 2)/2, which is the same degree as that of
#WL. Hence the action that produces nontrivial interac-
tions between fermions and scalars has the form

S, H, ®) = gy f (d1+2X)8(X2) (V- X VR H

+ URYPLA)P~—@-H/d=2  (2.61)

with a dimensionless coupling g in any dimension. The
exponent in ®~@=9/(d=2) would be shifted to another
value if W(®) # 0 in Eq. (2.39), since in that case the
homogeneity of ® would be different, but still some power
of @ will be needed as long as d # 4. With this form of
interaction we also find that the interactions in the dynami-
cal equations of motion for H and ® are also consistent
with their homogeneity. We see here that the role of ® is
similar to the role of a dilaton. In d = 4 the ® disappears
and the interaction reduces to a renormalizable Yukawa
interaction.’

C. Gauge field

The gauge field equations of motion can be obtained
from two different approaches in 2T physics. We will not
provide the derivation here because it would require too
much space and instead refer to past work. The first ap-
proach uses OSp(2|2) as the gauge group on the worldline
that acts linearly on the phase space superquartet
(M, b1, XM, PM) which contains two worldline fermions
M(7) [2]. In d + 2 = 6-dimensional flat spacetime, the
physical states in the covariant quantization of this theory
are precisely the gauge bosons that we needind +2 = 6
dimensions [12]. The second approach is to consider a
spinless particle moving in background fields in any di-
mension d + 2, and subject to the Sp(2, R) gauge symme-
try. In this case, phase space contains only (X, PM) but the
action of Sp(2, R) is nonlinear in a way that depends on the
background fields ¢ >"Ms(X) of all integer spins s =
0, 1,2, 3,---. The background fields include gauge fields
Ap(X). The requirement of the consistent closure of the
Sp(2, R) Lie algebra generates kinematical equations for

“There are also other invariant couplings that occur in the
symmetric product of (4* X 4%); = 10 of SU(2,2). This product
takes the form WIT,,y WX and it can be coupled invariantly to
the gauge field and Higgs field in the form
WLT vk FYNXEWRE consistently with the SU(3) X SU(2) X
U(1) gauge symmetry of the standard model. Furthermore, this
term is invariant also under the fermionic-gauge symmetry after
taking into account the property of the gauge field X, F*Y =0
given in the next section. So this interaction is permitted by all
the symmetries of the theory. However, this term cannot be
included in the action of the standard model because it leads
to a nonrenormalizable interaction. Instead, it is expected to arise
with a calculable coupling from the quantum effects in the theory
and contribute to the anomalous magnetic moment [28].
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all background fields, including the gauge fields [3]. The
two approaches give the same kinematic equations for A,
namely,

XMFE,v =0,
M (2.62)
where Fyy = dyAy — InAy — igalAy, Ayl

while also demanding X?> = 0. The dynamical equation
follows from the OSp(2|2) approach for 4 + 2 dimensions
as given in [12] and can be extended'® to any d + 2
dimensions by including a dilatonic factor ®2(d—4/(d=2)

(D (D=2 pMNY) , = sources. (2.63)

These equations have been constructed to be covariant
under Yang-Mills transformations for some non-Abelian
gauge group G, so Dy, is the usual covariant derivative.
The dilaton factor ®2¢~4/(d=2) j5 a singlet under the gauge
group G. It disappears in four dimensions but is nontrivial
in dimensions other than d = 4. Its role is to provide
consistency with the kinematical conditions for all the
fields in the theory. Recall that the kinematical equations
follow from gauge invariance under the Sp(2, R) generator
(X - P+ P-X). The exponent 2% is determined by ho-
mogeneity which comes from this condition, with a rea-
soning similar to the one that led to the dilaton factor in
Eq. (2.61). This exponent would be shifted to another value
if W(®) # 0in Eq. (2.39), since in that case the homoge-
neity degree of the dilaton @ would be different, but the
exponent still vanishes if d = 4.

In the rest of this section we discuss the new 2T gauge
symmetry beyond the usual Yang-Mills gauge symmetry
G. To do so we will first use G to choose some gauges for
the Yang-Mills field and then discuss the 2T gauge sym-
metry in the fixed Yang-Mills gauge. We could discuss the
2T gauge symmetry of the equations of motion without
choosing any Yang-Mills gauge, as will be done for the
action in the next subsection. However, here we want to
take the opportunity to point out some useful gauge
choices.

Using the Yang-Mills type gauge invariance we may
impose various gauge conditions. In the gauge XMA,, =
0, the kinematic constraint (2.62) reduces to a homogeneity
constraint as follows:

9For general d + 2, the quantum spectrum of the OSp(2[2)
theory gives the gauge fields Ay, ...y, for a p-brane with p =
(d — 4)/2 [12]. Thus, for a gauge field Ay, we can use the
OSp(2|2) setup only for d = 4. The background field method
does not have this limitation and applies to any d. Thus, after
obtaining the appropriate equations for gauge fields, we have
managed to extend the gauge field equations to any dimension d
by introducing the dilaton factor as in Eq. (2.63).
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X-A=0:X"Fyy=X-9+1)Ay =0. (2.64)
Note that the homogeneity degree of A,, is —1, which is
the same homogeneity as the derivative d,,, consistent with
the covariant derivative Dy, = d,; + Ay, in all dimen-
sions. In this gauge the equations above, taken for d = 4,
agree with Dirac’s equations [15] as generalized to non-
Abelian gauge fields [18], and so it has been known for a
long time that after solving the kinematic equation, the
dynamical equation reproduces the correct equations of
motion for non-Abelian gauge fields in 3 + 1 dimensions.
We will return to this detail when we discuss the derivation
of the standard model in 3 + 1 dimensions from the one in
4 + 2 dimensions.

Now we turn to the new 2T gauge symmetry with the
transformation law

8,4y = X2a,,®12d-9/@-2)]

with [(X-D +d— 1)ay — XyD - aly—q =0,
and X-a=0.

(2.65)

The local parameters a,, are Lie algebra valued and must
be in the adjoint representation of the Yang-Mills gauge
group G to be consistent with the Yang-Mills classification
of A,;. We examine the dynamical equation to verify the 2T
gauge symmetry for on shell fields A,, as follows:

8 ADy (U /=D FMNYY (2.66)
— {—i®2A-D/@-D[(5_A,,), FMN]
+ DM((I)Z(d_4)/(d_2)D[M 5aAN])}X2=O (2.67)

= {—ixz[aM, FMN]
+ Dy (AI=/=2) pIM (X2 NI =2d=4/[@=2 )1,
(2.68)

= 2D, [(XMaN — XNa")] + X, (DMa" — DNaM)

+(d — 4)a "}y (2.69)

=4{(d— 1)a¥ + X - Da" — X"D - a}yo_, = 0. (2.70)

In this computation all terms proportional to X> have been
dropped after the derivatives are evaluated. In going from
the third line to the fourth we have used X - a = 0, and [X -
9P + 42 d]y._, = 0 as in Eq. (2.35) to obtain the term
proportional to d — 4. This shows that the dilaton factor is
required in the dynamical equation of the gauge field
Eq. (2.63) in order to have the 2T gauge symmetry in all
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dimensions d. Finally the last line vanishes due to the
property of the gauge parameter a,; given in Eq. (2.65).

The new gauge transformation says that the part of Ay,
proportional to X? contains gauge degrees of freedom. If
we first identify different parts of the gauge field as

Ay(X) = A% (X) + X2A,,(X) (2.71)
such that AY(X) =[Ay(X)]y>—(, then the remainder
A,(X) can be completely removed from the equations of
motion by using this gauge symmetry, provided the on
shell A,, satisfies the same conditions as a,, as given in
Eq. (2.65).

Note that the Yang-Mills field strength F,y is not
invariant under the new gauge symmetry. But the equation
of motion is invariant as seen above, and also the
action will be shown to be gauge invariant. The noninvar-
iance of Fy is welcome because this is how the d +
2-dimensional theory will contain the same physical infor-
mation that resides in the field strength F,,, in (d — 1) + 1
dimensions.

1. Non-Abelian gauge field action

We now propose the action principle that gives both the
kinematical and dynamical equations of motion in
Egs. (2.62) and (2.63). In the following we will assume
that the physical gauge for the 2T gauge symmetry dis-
cussed in the previous section is already chosen, and we
will build the action starting directly with the physical
component AY,(X). By comparison to the scalar action,
this is analogous to building the action directly for @,
skipping the fully gauge invariant treatment for A,,(X) that
we gave for both the scalar and the fermions. Thus every-
where we write Ay, below should be understood as being
the gauge invariant part AY,(X) = [A,,(X)]x—o.

The consistent 2T physics Yang-Mills type action in any
dimension is"!

1
s = - j (d42X) 8(X2) DA/~ Tr(F,, FMN)
(2.72)

The dilaton factor ®2@=4/(d=2) j5 pecessary for the con-
sistency of homogeneous terms in the equations of motion.
Evidently, this factor disappears for d = 4, which is the
case of interest for the application to the standard model.
The gauge coupling g4 as defined in Eq. (2.62) is dimen-
sionless in any dimension.

The general variation with respect to the gauge field
gives

"t is also possible to construct a fully Sp(2, R) invariant action
for gauge fields. This is given in the second part of the appendix.
The point is that every derivative can appear in the form LMV to
display fully the invariance under the underlying Sp(2, R). The
physical sector of either treatment is identical.
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8S(A) = — f (d9+2X)8(X?)P2d—4/(d-2)

X Tr(FMND,,(5Ay)) (2.73)

= [ (d772X) Tr{SA Dy [ D24 9/1d=2 §(X2) FMN]}
(2.74)

— f(dd”X) Tr{5AN[5(XZ)DM(CI)Z(d_4)/(d_2)FMN)

+ 2QAd=N/(d=2) 5(x2) X, FMNT}. (2.75)
In d # 4, there is also a contribution to the equations of
motion of the “dilaton” @, through the variation 6P
which is not shown. The equations of motion that follow
from this action include both the kinematical and dynami-
cal equations since the coefficients of §(X?), 8'(X?) must
vanish separately. There are however subtleties in the delta
functions that need to be taken into account as in footnote 5.
For this reason the A(X) that appears in this action is
already gauge fixed Ay (X) = A%(X), excluding the re-
mainder A,,(X), as emphasized in the beginning of this
section. After taking this point into consideration, we see
that this action yields precisely the correct equations given
in Egs. (2.62) and (2.63), so we have the correct action
principle for the physical sector A, (X) = A},(X). Of
course, S(A) has been built already to be gauge invariant
under some Yang-Mills type gauge symmetry group G. For
example G = SU(3) X SU(2) X U(1) in the application to
the standard model.

Next we show that we can add to A},(X) a remainder of
the form A,(X) = AY%(X) + X?A,,(X) without changing
the physics, provided A,,(X) satisfies the same equations
that d,, satisfies as given in Eq. (2.65). For this we first
assume that the action (2.72) is already written for the more
general A that includes the special A,,. We will then show
that this action has the 2T gauge symmetry in which A,,(X)
can be changed by arbitrary amounts a,,;. Therefore one
can choose the gauge A,, = 0 if so desired,

Thus, consider the transformation §,A4,, of Eq. (2.65),
and insert it in Eq. (2.73) to show there is a gauge symme-
try 6,S(A) = 0 as follows:

8,5(A) = f (d9+2X) Tr{d~2d-/(d-2)x2

X ay[8(X2) Dy, (DUA-H/([d=2) pMN)

+ 22d-H/(d=2) §/(x2) X, FMN]} (2.76)
- f (d42X)8(X?) Trlay(X - 0 + 1)AN
— ayDV(X - A)} 2.77)
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— f (@*2X)8(X2) Te{{(X - 9 + 1)(A - )

— DV(X - Aay) — ANX - day + (X - A)(D - a)]}

2.78)
S ] (@2 X)8(X2) TH(X - 0 + d)(A - a)
— Iy(X - Aa") + AN[-(X - D + d — 1)ay
+ XyD - al} 2.79)

— [ (@42X) TH{o,[(XVA - a — X - Aa™)8(X2)]

+ ANDM[(Xyay, — Xyan)S(X2] = 0. (2.80)

The steps in this calculation are explained as follows. In
Eq. (2.76) we use X>8(X?) = 0 to drop the first term, and
then use X28'(X?) = —&(X?) and write out X,,FMV in
the form X,,FMN = (X - 9 + 1)AY — DV(X - A) to obtain
Eq. (2.77). The form in Eq. (2.78) is equivalent to
Eq. (2.77) after evaluating the derivatives. To get to
Eq. (2.79) we added and subtracted the terms proportional
to d and moved the non-Abelian term in the covariant
derivative from the first line to the second line. One can
show that this takes the form of Eq. (2.80). Indeed after
evaluating the derivatives in Eq. (2.80) we get back
Eq. (2.79). Then we note that the expression DY[(Xya,, —
Xy ay)8(X?)] vanishes by using the conditions on the
gauge parameters a,, given in Eq. (2.65). Finally the total
divergence can be dropped.

We see that as long as A, satisfies the same equation as
ay, this gauge symmetry can gauge fix it to zero. Thus the
physics is the same for any remainder X24,, of this type.
We will see below that, in a special Yang-Mills gauge, the
class of allowed remainders AM(X) are those that are
homogeneous of degree —3.

The Yang-Mills gauge symmetry combined with the
new 2T gauge symmetry discussed in this section are just

sufficient to reduce the degrees of freedom in A,,(X) to be
|

BA(I) = XZA, 6AHi = XzAi,
8,Bg, 6,Byi as in Eq. (2.11)

8, Wk = X271 + X,
8, Wke = X201 + X00°,

5(1A5W — XZaz/[(I)f(Z(dfét)/d*Q),
8By similar to Eq. (2.11)
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physical and ghost free. The physical degrees of freedom
will then agree with the degrees of freedom of the gauge
field A, (x) in (d — 1) + 1 dimensions. This reduction will
be discussed, in particular, for the standard model in 3 + 1
dimensions in the following sections.

We emphasize that the Yang-Mills field strength Fy is
not covariant under the 2T gauge symmetry transformation
6,Ay as seen in the computations above. Therefore, using
the new gauge symmetry it is possible to gauge fix some of
the components of F;y at will. We will use this freedom in
the reduction from 4 + 2 to 3 + 1 dimensions to show that
only the 3 + 1-dimensional components F,, (x) survive as
the physical field strengths.

III. THE STANDARD MODEL IN 4 + 2
DIMENSIONS

In the previous section we have constructed the action
principle for field theories in the framework of 2T physics
in any d + 2 dimensions. The theory contains scalars
H,®, left/right handed chiral fermions Wl«, ¥Rs and
gauge bosons A}, classified according to any gauge group,
and also can be extended to include gravity'? in any d + 2
dimensions. Among the scalars we distinguish one of them
as the dilaton ®. Although the dilaton factors in Egs. (2.61)
and (2.72) disappear for d = 4, the dilaton may still couple
to the other scalars H' as in Eq. (2.38) even if d = 4, so we
keep the dilaton as one of the fields in the theory.

The 2T gauge symmetry was derived in a tortuous way
by starting from 2T physics equations of motion based on
Sp(2, R) local symmetry and its extensions on the world-
line. However, it is possible to reverse the reasoning and
suggest the 2T gauge symmetry directly in field theory as
one of the principles for building an action. This would
then lead to the action suggested above in a unique way.
This is the point of view we take in this section.

Thus, in addition to the field theoretic guiding principles
for constructing the standard model in four dimensions, we
add a new one, namely, the 2T gauge symmetry given by

}i spans all other scalar fields, 3.1
}a, B span all fermions, 3.2)
]fr spans all gauge bosons. (3.3)

2The equations of motion for the gravitational field in 2T physics is derived in [12]. The 2T action that generates these equations is
constructed using the methods of the present paper. This will be given in a separate paper.
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There is a separate 2T gauge symmetry parameter for each
field.!* Thus, degrees of freedom can be removed from
every field in d + 2 dimensions, such as to make it equiva-
lent to a field in (d — 1) + 1 dimensions.

Under the requirement of the 2T gauge symmetry the
Lagrangian must include an overall §(X?) or 8/(X?) factor,
and furthermore it acquires the form of the actions given in
the previous section. Then the theory must be constructed
in d + 2 dimensions. The action will not have translation
symmetry in d + 2 dimensions since X appears explicitly
through the delta function §(X?) and in the fermion terms,
but the action will have SO(d,2) symmetry. When the
SO(d, 2) is interpreted as the conformal symmetry in (d —
1) + 1 dimensions, which is the case in one of the embed-
dings of (d — 1) + 1 in d + 2, then Poincaré invariance,
that includes translation invariance and Lorentz invariance
in (d — 1) + 1 dimensions, emerges as part of conformal
symmetry. Thus, we take the point of view that the added
2T gauge symmetry principle requires the two-time struc-
ture in field theory, and this is fully consistent with every-
thing we know in (d — 1) + 1 dimensions.

In addition to the 2T gauge symmetry there is of course
the principles of Yang-Mills gauge symmetry and renor-
malizability requirements for d = 4. The Yang-Mills
gauge symmetry is straightforward as discussed in the
previous section. By renormalizability, in the present pa-
per, we mean that the emergent 3 + 1-dimensional field
theory should be renormalizable. This amounts to requir-
ing that the emergent theory in four spacetime dimensions,
at the classical level, should not contain any terms of
dimension larger than 4. In turn, this becomes a principle
for restricting the types of terms that can be included in the
classical 2T physics field theory in 4 + 2 dimensions. For
example we cannot include high powers of fields in the
classical 2T physics action. Eventually, when we develop
the techniques of computation with the quantum theory
directly in 4 + 2 dimensions, we need to replace the re-
quirement of renormalizability to mean the same directly
in 4 + 2 dimensions at the quantum level.

Given the principles stated above, we now construct the
standard model in 4 + 2 dimensions. The internal Yang-
Mills group structure is identical to the usual standard
model, but the spacetime structure is different, thus all
the fields are six-dimensional fields instead of four-
dimensional fields. The six-dimensional structure will im-
pose certain restrictions on the emergent standard model in

3The last one, 6bBAr is similar to Eq. (2.11). This is the gauge
symmetry required in ‘order to allow arbitrary remainders A, for
the gauge field Ay, = A9, + X2A,,. In the presence of this gauge
symmetry there would be no conditions on the parameters
a(X). We bypassed this more general setting that would include
the additional field By, and considered the gauge fixed form of
the action after the extra field By, is eliminated by a gauge
choice. In this gauge only to a spec1ahzed subset of a,; and
corresponding A;, play a role as discussed in the text. This was
sufficient for our purposes here.
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3 + 1 dimensions as outlined in the abstract. To be com-
pletely explicit we write out the details below.

The Yang-Mills gauge group is G = SU(3) X SU(2) X
U(1), so we have the corresponding Yang-Mills fields
Ay = (Gyy, Wy, Byy), namely, gluons Gy, and electroweak
gauge bosons (Wy, By). These are in the usual adjoint
representations denoted by the dimensions for SU(3) X
SU(2) and by the charge for U(1) written as a subscript,
as follows:

vectors of SO (4, 2):

Gy = (8 1)o, Wy = (1,3)o, By = (1,1). 34

The SO(4,2) scalar fields include the dilaton ® which is
neutral under SU(3) X SU(2) X U(1) and the Higgs dou-
blet H classified as usual

scalars of SO (4, 2):

+

. H
CI) == (1, 1)0, Hl == < 0 ) == (1, 2)]/2. (35)
H )1

Of course more scalars can be included, but for now we
will assume a minimal number as above. The fermionic
matter fields are the three generations of quarks and leptons
Wla(X), WRs(X) taken as the left/right quartet spinors of
SU(2, 2) = SO(4, 2), and in the usual representations of the
Yang-Mills gauge group G, as follows:

4 of SU (2,2):

uk ek L
(dL )1/6’ ( st )1/6’ (bL )(1/6)’

(3.6)
e Joam \ ) —am \ ™)
4% of SU (2,2):
W)y (s (B3
@) 3" ) qm G0y’ 37)
8o Ry () '

(eR)fl ' (MR)fl ' (TR)fl ‘

We have included the right handed neutrinos assuming
these particles develop Dirac- or Majorana-type masses.
To describe the fermions in a more compact notation we
further introduce the following definitions. The three left
handed quark and lepton doublets are defined as (Q%), /¢,
(LL")_(I /2), respectively, with i = 1, 2, 3 denoting the three
families. Similarly, we define the family labeling j = 1, 2,
3 for the right handed quarks and leptons as u®i =
(MR: CR! [R)2/39 dR‘ = (dR ) (1/3)» el =
(R, w®, 78)_y, and v® = (vf, ¥R, vR). All quarks are
triplets and all leptons are s1nglets under color SU(3).
The left handed quarks and leptons Q%i, LLi are doublets

and the right handed quarks and lepton u®i, d®i, e®i, vR; are
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singlets under SU(2) as listed above. Furthermore, each
field is charged under U(1) with the charges marked as
subscripts above. The electric charge of each field is then
given by Q = I3 + Y, where Y is the U(1) charge and I5 is
the third generator of SU(2) represented as %03 on all
doublets.

The covariant derivatives for each field is then straight-
forward, as usual in gauge theories. Then the action for the

standard model in 4 + 2 dimensions is given by

S(A, WER | &) = 7 f (d5X)5(X>)L(A, LR H. ),
(3.8)

L(A, VLR H, @) = L(A) + L(A, WLR) + L(WLR, H)

+ L(A, @, H), (3.9)

where Z is an overall normalization factor that will be
chosen below, and A = (G, W, B) is a shorthand notation
for the gauge fields. Thus, after peeling off the overall
volume element Z [(d°X)8(X?), the various parts of the
Lagrangian are given as follows. The factor of Z will be
fixed later to normalize the emergent volume element in
3 + 1 dimensions.

To get to the physics as simply as possible, we assume
the 2T gauge symmetry has already been gauge fixed to
simplify the action as discussed in the previous sections.
This means that the simplified actions given below for the
standard model contain fields whose remainders (i.e. parts
proportional to X?) are not the most general. For example,
all remainders can be fixed to be zero. More generally, they
are gauge freedoms that have appropriate homogeneity
properties to be consistently removable by the remaining
2T gauge symmetry. The latter version is not only more
general, but can also be simpler for understanding the
reduction from 4 + 2 to 3 + 1 dimensions discussed in
the next section.

The Lagrangian for the gauge bosons L(A) is then

L(A) = =1 Tr3(GynGMN) — L Try(Wyy WHN)

— %BMNBMN. (3.10)
Note that there is no dilaton factor in the Yang-Mills action
since d = 4. Each field strength is of the form A,y =
BMAN - GNAM - lgA[AM’ AN]’ for A = (G, W, B) with
corresponding gauge groups SU(3) X SU(2) X U(1), and
with different dimensionless coupling constants g3, g, &1
appearing instead of the g 4. Of course for the Abelian B,y
there is no quadratic term proportional to the U(1) coupling

81-
The Lagrangian L(A, @, H) is of the form Eq. (2.37)

1 1
L(A, @, H) = 5(1)32@ + 5(H*DZH + (D*H)TH)

— V(®, H) (3.11)
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where the covariant derivative D, H is given by
_ .7 7 .81
The potential energy can be written in the following gauge
invariant form:
A

V(®, H) = Z(HTH — a?®?)? + V(D) (3.13)
where the couplings A, a are dimensionless. Recall that
quadratic mass terms for H are not allowed in the potential
by the consistency of the kinematic equations of motion
that require homogeneity as discussed in Eq. (2.38). For
this reason we needed to introduce a coupling to the dilaton
field ®. Now V(®, H) has a nontrivial minimum for the
Higgs field H where the minimum occurs at Ht H = a2 ®?

or
H* 0
H=<HO>=a<I><1>.

This breaks the SU(2) X U(1) gauge symmetry down to
the electromagnetic U(1) subgroup. Next we need to dis-
cuss V(®) that stabilizes the dilaton ® at some constant
expectation value (®) # 0 that sets the scale for the weak
interactions as (H°) = a(®) = v in the range of 100 GeV.
For this we refer to the later discussion on the topic of mass
generation in Sec. VL.

The Lagrangian L(A, WXR) for fermions is of the form
given in Eq. (2.50) but otherwise has all the terms in
parallel to the standard model in 3 + 1 dimensions as
follows:

L(A, WER) = (L BOM + Q1P X Q)

ALLXPLE + LD R L)

(3.14)

(3.15)

— LM XPa® + atiPXdh) — YR X Peki + eripXet)
(3.16)

— (@R XPuki + ik PYuks) — LR XprRi + PR YR,
(3.17)

The overall signs of the L/R kinetic terms in the 4 + 2
theory are chosen to insure the correct signs of the time
derivative terms in the kinetic terms of the emerging 3 + 1
theory. Note that '™ « I' are interchanged in comparing
the left/right sectors. Also, we have replaced the ordinary
derivative d,, ¥R by the Yang-Mills covariant derivatives
D,, as follows, again in parallel to the usual standard
model in 3 + 1 dimensions:

a

. A
Dy Q" = (aM - lgsGﬁZ? —ig, Wy -

NSRS

— %8y o
(3.18)
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)
Dyuks = (aM ~ igsGly - i%%)u’%, (3.19)
R, _ , a A8y R,
DMd = aM_lg:iGM?_’_l?BM d’, (320)
L. _ . = 7 .81 L;
Dy Lt = <aM —igoWy - 3 + IEBM>L oo (32D
Dy vRi = a,,v%, (3.22)
Dy et = (9, + ig By)e®, (3.23)

where % are the 3 X 3 matrices that represent the gener-
ators of SU(3) and % are the 2 X 2 Pauli matrices that
represent the generators of SU(2). This part of the
Lagrangian is invariant under a global family symmetry
group F' that transforms only the fermions indicated as
subscripts

F= U(3)Q1 X U(3)MR X U(3)dR X U(3)L’ X U(S)eR

X UQ3) z. (3.24)

The Lagrangian S(WX®, H) for Yukawa couplings is of
the form in Eq. (2.61) but without the dilaton factor since
d = 4. This couples the three families as follows, again in
parallel to the usual standard model in 3 + 1 dimensions:

L(YER H) = (g,);0M XuliHE + (gh) ;Hea® X QL
+(84);; Q" Xd®iH + (gz)jngRjXQLi
+ (g,) LY XvRiH + (gi)jiHcDRjXLL[
+ (g LhiXeRiH + (¢]) ;AN X LY.
(3.25)

Here

70
HC=iTZH*=< H_)
—H™ ) _ap

is the SU(2) charge conjugate of H, which transforms as an
SU(2) doublet and has opposite U(1) charge. The dimen-
sionless Yukawa couplings (g,);;» (84)ij» (8.)ij» (g.); are
complex 3 X 3 constant matrices since this is the most
general permitted by the gauge symmetry SU(3) X
SU(2) X U(1). These couplings break the global family
symmetry F of the Lagrangian L(A, ¥%X) mentioned
above. As is well known, by using the freedom of the
global family symmetry F, it is possible to choose a basis
for the quarks and leptons such that g, and g, are real and
diagonal, while g, and g, become Hermitian but non-
diagonal. This relates to the Kobayashi-Maskawa matrices
for the quarks and for the neutrinos. The off diagonal
entries mix families so that a separate family number is
not conserved. This leads to the explanation of how the
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more massive families decay to the less massive ones, and
how neutrino mixing occurs. Using the symmetry F to its
maximum to eliminate phases in the remaining off diago-
nal entries, the mixing between quark families (1,2) can be
chosen real, but the mixing between families (1,3) and
(2,3) remain complex. The complex phases in g, and g,
violate the discrete CP symmetry.

Based on the principles of 2T gauge symmetry in field
theory, that emerged from the underlying Sp(2, R) gauge
symmetry in the worldline formalism, we have constructed
the standard model in 4 + 2 dimensions. This action gen-
erates consistently both the kinematic and dynamical equa-
tions of motion for every on shell field in the theory. The
kinematic equations, together with the 2T gauge symmetry,
are just the necessary ingredients to make the 4 +
2-dimensional theory equivalent to the 3 + 1-dimensional
standard model. However the 4 + 2 structure imposes
some restrictions on the emergent 3 + 1-dimensional the-
ory that relate to unresolved issues in the standard model in
3 + 1 dimensions, including the issues of the strong CP
problem and the mass generation mechanism. These are
discussed in the following sections.

IV. THE EMERGENT STANDARD MODEL IN 3 + 1

In this section we demonstrate how the 3+
1-dimensional standard model emerges from 4 + 2 dimen-
sions. The new 2T gauge symmetry in field theory is
essential to show that every field in the theory can be gauge
fixed so that it becomes independent of X2, as already
assumed in the simplified gauge fixed form of the
Lagrangian given in the previous section. Then by using
the condition X?> = 0 imposed by the delta function we can
eliminate one of the components of X™ from every field in
the theory. A second component of XM will also be elim-
inated from every field by putting every field partially on
shell by satisfying the kinematic equations that follow from
the action. These two conditions are precisely the two
Sp(2, R) generators in the worldline formalism X> = (X -
P + P - X) = 0 that are solved explicitly in a fixed gauge
to obtain a holographic image of the 4 + 2-dimensional
system in 3 + 1 dimensions, as in Fig. 1. We now discuss
how this happens in field theory for the standard model. We
emphasize that the third Sp(2, R) generator is modified by
the interactions and will be left off shell in the discussion
below.

We start by choosing a lightcone type basis in 4 + 2
dimensions so that the flat metric takes the form ds? =
dXMdXNnyy = —2dX*'dX~" + dX*dX"n,,,  where
MNuvs with u, v =0, 1, 2, 3 is the Minkowski metric and
X+ = \/LE(XO/ + X"') are the lightcone coordinates for the

extra one space and one-time dimensions. Furthermore we
choose the following parametrization which defines the
emergent 3 + 1-dimensional spacetime x*

Xt =k, X' = kA, XH = gxt, 4.1)
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o X _Xe

k=X , A= F, XM = F
This provides one of the many possible embeddings of 3 +
1 dimensions in 4 + 2 dimensions. Each such embedding
corresponds to a Sp(2, R) gauge choice in the underlying
2T physics worldline theory. The present one corresponds
to the one labeled as the “‘relativistic massless particle” in
Fig. 1. In other embeddings, we will obtain a different 3 +
1-dimensional view of the 4 + 2-dimensional theory, as in
the examples of Fig. 1.

The fields are parameterized as ®(X) = P(k, A, xH),
and similarly for the others, where A, x* are homogeneous
coordinates which do not change under rescaling ®(¢X) =
®(tk, A, x*). The kinematic equations will be solved in
this parametrization to reduce the theory from fields in the
spacetime XM to fields in the smaller spacetime x*. After
this, there remains to satisfy the dynamical equations,
including interactions, only in terms of the fields in the
smaller spacetime x*. The dynamics in the reduced space
is described by the reduced action which holographically
captures all of the information in the 4 + 2-dimensional
theory.

With the parametrization of Eq. (4.1) we get X> =
22X X + X#X, = k*(=2A + x?). So the volume ele-
ment that appears in the action Eq. (3.8) takes the form

4.2)

(d°X)8(X?) = K¥drd*xdAS(k*(2A — x?)). 4.3)
When A = x?/2 is imposed, the 4 + 2-dimensional flat
metric reduces to the conformal metric in 3 + 1 dimen-
sions ds*> = dX"dX,, = k*(dx)?. This is how the SO(4,2)
in 4 + 2 dimensions becomes the conformal symmetry in
3 + 1 dimensions. The nonlinear realization of conformal
transformations in 3 + 1 dimensions x* is nothing but the
SO(4,2) Lorentz transformations in the space X™.

Recall that derivatives must be taken before the X> = 0
is imposed. Let us now use the chain rule 9, = (9,x) X
L+ (0yA) & + (9x*) 2 to compute derivatives as fol-
lows:

a1 9 9 19
IXH K dx*’ ox~' KON

9 1/ o 9 P (4.4)
——=—(Kk——A——x*—|
ox+ k\ 0k aA dxH

Using these we further compute X9, = k- and the
Laplace operator in 4 + 2 dimensions

1/ o 1/, 0 9
My = (S +x, ) -~ (kL v a-2)2
M K2<ax# x“am) K2< Mok >aA

1 9 \2
+ F(2/\ — x2)<ﬁ> ) 4.5)

We will also need the structures I'MX,,, TMX,,, T™d,,,
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I'™™y,, that appear in the fermion equations in 4 + 2 di-
mensions by using explicitly the gamma matrix represen-
tation given in footnote 8

XMLy = —I*'X" —=T'X" +T, X+ (4.6)
xto i2A
= ~ , 4.7
K< Y _xﬂ&ﬂ) @)
and
Ty =T "0, +T 9 + T+, (4.8)

_1 ;Maﬂ —ivV2(kd, — A3y — x*9,) . @9)
K —l\/fé,\ —ot GM

For I™X,,, T™3,, we obtain the same structures as above,

but replacing o, by o, and vice versa.

A. Reduction of scalars

We now proceed to solve the kinematical equations. We
start with the kinematic equations of the scalars (X - 9 +
%)q) = (kL + 1)® = 0. The Higgs scalar H also satis-
fies a similar equation but with the covariant derivative
replacing the ordinary derivative. We fix the Yang-Mills
gauge symmetry so that

X-A=0 forall YM fields A = (G, W, B). (4.10)
In this gauge X - D = X - 9; therefore, H satisfies the same
kinematic condition as the singlet ®. These homogeneity
conditions determine the kappa dependence fully as an
overall factor

®(X) = k'D(x, A), similarly for H. 4.11)
Now recall that according to Eq. (3.1) the part of the
homogeneous scalar field proportional to X? is gauge free-
dom with respect to the 2T gauge symmetry. We have
already said that we can gauge fix the remainder to zero,
but let us look at the details of how this is done. Thus if we
define ¢(x) = P(x,0) and write D(x, A) = d(x) + (A —
X—,j)&(x, ), then the remainder ¢ (x, A) can be gauge fixed at
will. It is convenient to choose the gauge ¢(x, A) =0

which makes the field ®(X) independent of A
D(X) =k p(x), similarly H(X) = «~'h(x).

(4.12)

Then it is simple to compute the 4 + 2-dimensional
Laplacian 0™ d,, of Eq. (4.5) since all derivatives % vanish
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and we obtain'*

1 32¢(X)

oMy, ®(X
uPX) = T axtox,

(4.14)

It will be argued below that the gauge fields will also get
reduced to four-dimensional fields,” so that D?H(X) =

%D/‘D wh will involve only the four-dimensional compo-
nent of the gauge field A,(x). In this way the scalar
Lagrangian L(A, ®, H) is reduced to the form

L(A,(x), ¢(x), h(x)),
(4.15)

L(Aw (0, ®(X), H(X) =

where L(A,(x), ¢(x), h(x)) is purely a four-dimensional
Lagrangian that has the same form as L(A/(X),
®d(X), H(X)) except for the fact that only four-dimensional
fields and only four-dimensional covariant derivatives ap-
pear. Replacing this in the action we obtain

SA, @, H) = Z [ kS dkd*xdAS (22N — 22))

x %L(A#(x), 6 (), h(x)) 4.16)

4If we do not choose the simplifying gauge é(x, A) = 0, we
still obtain the same result as follows. In computing oMy, d(X)
we recall that A = % is imposed by the delta function after all
derivatives are computed. Then the operator 9™ d,, in Eq. (4.5)
simpligies as follows. The last term drops because of the factor
(A — %) = 0 even after differentiation. The second term drops
because of the form of the homogeneous solution (4.11). The
first term simplifies because derlvatlves with respect to x*
gpear only in the combination o+ x w3y Lhen, settlng A=
/2 after differentiation with the derlvatlve operator =+ x 7
gives the same result as setting A = x2/2 before dlfferentlatlon
and then differentiating with respect to the total x dependence
including the part coming from A = x?/2

3 9 </ x
[(aTﬂ +x, M)cp(x A)L_m - a—ﬂd)(x, ?)' 4.13)

Therefore, we can set ®(x, A)[,_,» n= = d(x, 2) = ¢(x) before
differentiation. This i 1s equlvalent to dropping the term ~ in the
derivative operator 3):“ + X, 5% /\ Hence 0Md,, in 4 + 2 dlmen—
sions reduces to the Laplace operator in 3 + 1 dimensions
Eq. (4.14), in agreement with the simpler derivation based on

the fixed gauge.

5As seen in Eq. (4.30) the gauge fixed form of A,, includes the
nonzero component A~ x/‘A LX) = —A,, while At =
—A_; = 0. Therefore, the covariant derivatives in the extra
dimensions D takg the form D_, =9_ = iaA and D, =
dp —iAy =09, +Lx*A,. These appear in DYD), =
—-D,.D_,—D_ ,D+, + D“Dﬂ Since D_/ = —8)\ vanishes on
the A independent h(x) and A,(x) we obtain the reduction
DM Dy — D*D, which then leads to the four-dimensional

theory.
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_ [z f deuS(ZIKlu)} f d*xL(A, (%), $(x), h(x)).
4.17)

In the last step we have changed integration variable to u =
A— % We see that the action has an overall logarithmi-
cally divergent factor which is cancelled by choosing the

overall normalization Z in front of the whole action in
Eq. (3.8), so that

ZdeduS(ZlKlu) =1. (4.18)

The same factor will appear in all the terms of the action in
the reduction from 4 + 2 to 3 + 1 dimensions. The four-
dimensional ~action  S(A, ¢, h) = [d*xL(A,(x), $(x),
h(x)) is translation and Lorentz invariant and captures all
of the information contained in the six-dimensional action
S(A, ®, H) without losing any information. In this sense,

the four-dimensional action is a holographic image of the
higher-dimensional one.

B. Reduction of chiral fermions

We start by writing every fermion in the form
WLR(X) = WhR(X) + X2WLR(X), where W5R is defined
as WR(X) = [WER(X)]y—g = V5 (k, x) which is inde-
pendent of A. We can gauge fix ¥L%(X) = 0 off shell by
using the X?¢; part of the 2T gauge symmetry for fermions
of Eq. (3.2). In this gauge VAR (X) = W{*(k, x) becomes
fully independent of A. Next we use the kinematical equa-
tions (X -0 + HhWLR = (kL + 2)WER = 0. This deter-
mines the kappa dependence fully as an overall factor for
all fermions, and we get the homogeneous form

WLR(X) = k=2 LR (x). (4.19)
Since we now have homogeneous fermions, half of the
degrees of freedom can be removed by using the fermionic
2T gauge symmetry of Eq. (3.2) with the parameters X {g e,
)_(5;‘ # that have the same degree of homogeneity. It is
convenient to choose the lightcone type gauge I'*' WlR =

0 in the extra dimensions that requires the two lower
components of W-R to vanish:

L (yhRG)
WER(X) = ,
2% 2< 0 ) (4.20)

Note that WEF is constructed by taking Hermitian conju-
gation and applying the SU(2,2) metric n = —it; X 1
given in footnote 8. At this point we remain with only
four-dimensional fields ¢*®(x) written in the form of
SL(2, C) doublets.
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For the gauge fixed form of W™* given above, the
structures PWL and WL X that appear in the action take
the following forms after using Eqgs. (4.7) and (4.9):

i2A
,U«(j-,u

XO'

L L w)( s @21)

(lf 208, =t ara ), 4.22)

21/4

and

Sl _ 1 oD,
M - 21/4K _.\/za
l A

—ix2(kD, — A9, — x"D#)>

— g
O'D’u

Lyt (x)
‘ 42
><< . ) (4.23)
_ 1 (o*D,ytx)
- ( u ) (4.24)

where we have used'® 9,4%(x) = 0. Note that only a,
appears instead of D, due to a Yang-Mills gauge choice
A_r = —A"" =0 as explained below and in footnote 15.

There remains to show that the dynamical equations of
the original fermions reduce to the usual four-dimensional
massless fermion equations in 3 + 1 dimensions. This can
be done either for the equations of motion or more con-
cisely for the Lagrangian, with equivalent conclusions.
Thus consider the fermionic structures of the type
VLXPWL WRYPUR oWl X WRH that appear in the 4 +
2-dimensional action in Egs. (3.15) and (3.25). From the
above gauge fixed expressions for VAR WLy and PWr,
we compute

_ - 1 -
WX PWL = FM&MDML,
- = 1 -
_i‘I’RX¢\I’R — _ FlpLO.,uD'MQpL,
- - 4.25
g\I’LX\PRH = %l//Ll//Rh, ( )
K
gULX WL :%J/Rth*'

Note that all explicit dependence on X" has disappeared.
These emergent forms are precisely the correct translation
and Lorentz invariant kinetic and Yukawa coupling terms
that should appear in the four-dimensional action.
Therefore, we have shown that after using the kinematical

'®Even if we had not chosen the simplifying gauge W-*(X) =
0 which made ¥L-®(X) independent of A, we can still reach the
same conclusion for Eq. (4.24) for any W (X) after first
differentiating with respect to A and then settlng A= x2/2.
The argument for this is similar to footnote 14.
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equations, and imposing some gauge fixing, all the fermion
terms in the 4 + 2-dimensional action reduce to a four-
dimensional theory:

S(fermions) = Zf |k|Pdrd*xdAS(k*(2A — x?))

X i4 L(fermions) (4.26)
K
= fd4XLfermions(Ay(x); h(x)’ ¢L'R(x))’ (427)
where Eq. (4.18) is used. Here

Liermions(A . (x), h(x), ¢"%(x)) is the reduced form of the
fermion terms L(A, W&R) + L(WER, H) that appear in the
4 + 2 theory in Egs. (3.15) and (3.25). This is precisely the
usual chiral fermion terms in the standard model
Lagrangian in 3 + 1 dimensions interacting with the
SU(3) X SU(2) X U(1) gauge bosons and the Higgs field.

C. Reduction of gauge bosons

We start by gauge fixing the Yang-Mills gauge symme-
try in the form of Eq. (2.64) X - A = 0, so that the kine-
matic equations for the Ay, = (G, Wy, Byy) become the
simple homogeneity condition XNFy, = (X9 +
1)Ay = (kd, + 1)A), = 0. Thus in this gauge we can
write

AM(X) = k1AM (x#, M), (4.28)

There is a leftover gauge symmetry given by Yang-Mills
transformations 6,Ay = Dy A = Iy A — i[Ay, A] that
do not change the gauge condition X -+ A = 0. This leftover
symmetry corresponds to homogeneous A(X) of degree 0

X-8,A=0—X-0A=0. (4.29)

This is just sufficient gauge symmetry to remove one full
degree of freedom in d + 2 dimensions from a homoge-
neous gauge field AY(X). Using this freedom we choose a
lightcone type gauge in the extra dimensions A*'(X) = 0
(note A_, = — 77_/+/A+' = () and also use the fact that X -

A = 0 to solve for the other lightcone component in terms

of the four Minkowski components A*(X). We find

AM(X): AT = —-A_ =0,

; 1
AT = A = AL ), (4.30)

AR(X) = %A"(x“, ).

We now turn to the 2T gauge symmetry. In the present
gauge its parameters a™ (X) of Eq. (2.65) must be restricted
to maintain the gauge choice A*'(X) = 0. Therefore, we
must take a*'(X) = 0. Furthermore due to X - a = 0 they
must have the same form as AY(X), namely, at' =0,
a” = X*a,. The conditions that the remaining a*(X)
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must satisfy in this gauge follow from Eq. (2.65) as
(X9 +3)a*(X)=X"D-a,
X-9+3)a X)=X*D"-a.

4.31)

Since a™ = 0 we must have D - a = 0, hence a*(X) must
be homogeneous (X - 9 + 3)a*(X) = 0, and therefore we
have

a'“(X) =

ak(x, A). (4.32)

1
3
We can now use this homogeneous degree of freedom in
the 2T gauge symmetry to eliminate the A dependence
from the gauge field AM(x#, A).

To proceed we first identify different parts of the gauge
field as

A, (X) =A%X) + XA,

1 X

; |:AM(x) + (,\ - 3)vﬂ(x, )\)}
such that A% (X) =[A,(X)]x2—o = k 'A*(x). Then, we
use the gauge parameters a*(x, A) to gauge fix V#(x, A) =
0. In this way we have arrived at a gauge fixed field AY (X)
that is independent of A:

AM(X): AT =

2

(4.33)

—A_ = O,

; 1 1
AT = —Ap = —xMA, (), A*(X) = —A*(x).
K K
(4.34)

We can now compute field strengths. Recall from the
chain rule in Eq. (4.4) that 9_» = ', will vanish when
applied on the A independent fields. Therefore, we find

Fu,(X) = k72F,,(%),

(4.35)
with F,,,(x) = 9,4, — 9,4, —i[A,, A,]
Fi,(X) =k 2x"F,,(x),

o # (4.36)

F_/#(X) = 0, F_p_r(X) =0.

The Lagrangian density becomes
1
LA(X)) = — 1 Tr(FynF")(X)
1

= — m TT(F#VFMV)(X). (437)

We see that only the four-dimensional field strength F,,,
has survived as the only independent field. It was possible
to gauge fix the components F_,,(X), F,_(X) to zero,
because Fj;y(X) is not gauge invariant under the 2T gauge
symmetry, although the action as well as the dynamical
equations constructed from F;y are gauge invariant.
Using these results we can now see that after using the
kinematical equations, and imposing some gauge fixing, all
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the gauge theory terms in the 4 + 2-dimensional action
reduce to a four-dimensional theory

S(A) = Z f kPP drd*xd (22N — x2)) X %L(A"(x))
(4.38)

— f d*xL (A, (x)). (4.39)

This is precisely the usual Yang-Mills terms in the standard
model Lagrangian in 3 4+ 1 dimensions for the SU(3) X
SU(2) X U(1) gauge fields.

We have thus demonstrated that the 3 + 1-dimensional
standard model emerges from 4 + 2 dimensions.

V. RESOLUTION OF THE STRONG CP PROBLEM

Recall that the strong CP problem in QCD is due
to the fact that a term of the form S, =% X
[dx*e 0, Tr(G**G*7) can be added to the QCD action
in 3 + 1 dimensions without violating any of the gauge or
global symmetries. Unfortunately this term violates CP
conservation of the strong interactions. So, phenomeno-
logically speaking, if it is not absolutely zero, it must be
extremely small. However, there is no explanation of this
fact within the simple version of the standard model. This
problem can be circumvented by extending the standard
model with an additional U(1) symmetry, called the
Peccei-Quinn symmetry [29], by doubling the Higgs bo-
sons. The spontaneous breakdown of this symmetry, along
with SU(2) X U(1) leads to the Goldstone boson called the
axion. So far searches for the axion have limited its pa-
rameters sufficiently to basically rule it out. This leaves us
with a fundamental problem to solve.

We will argue that there is a resolution of this problem in
the 4 + 2 formulation of the standard model. The key point
is that a term similar to the form €,,,, Tr(G#*G*) that
appears in the QCD Lagrangian in 3 + 1 dimensions can-
not be written down in 4 + 2 dimensions as an invariant
under the symmetries. This is because in 4 + 2 dimensions
the Levi-Civita symbol gMMM:MiMsMs hag six indices
instead of four.

We may ask if there are any additional invariant terms
that we could have included in the 4 + 2-dimensional
theory that could lead to Sy upon reduction to 3 + 1
dimensions? In providing an answer to this question we
must take into account the 2T gauge symmetry as well as
the principle of renormalizability. The latter says that we
should not include any terms in 4 + 2 dimensions that
would lead to nonrenormalizable interactions in 3 + 1
dimensions. Then one cannot find any terms that include
the delta function §(X?) in the volume element, except for
the following one:
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f(d6X)5(X2)XM] 9, Tr(FM3M4FM5M6)8M1M2M3M4M5M6‘
6D

This term vanishes identically as follows. The ordinary
derivative d);, can be rewritten as the covariant derivative
D), when applied on each of the field strengths inside the
trace, since the non-Abelian terms sum up to become the
commutator of matrices that vanish due to the trace. Then
we use the Biachi identities Dy, F,p,) = O to show that
the term is null.

There remains the following type of term to consider
without the delta function:

f(d6X) Tr(FM]M2FM3M4FM5M6)8M1M2M3M4M5M6. (52)

The fact that it is cubic rather than quadratic seems to
already violate the renormalizability requirements.
However, this is a topological term that can be written as
a total divergence, so it cannot violate renormalizability.
Furthermore, since it is a total divergence, it is automati-
cally invariant under all the infinitesimal gauge symmetries
we discussed before. Furthermore, it cannot contribute to
the equations of motion. For the SU(3) X SU(2) X U(1)
gauge group there are several such gauge invariants,
namely,

](d6X)[a Tr(G a1, Grtym, Grasma,)

+ D Tr(Wg 1, Watsr, Warsm,) + ¢(Bag, n, Briyna, Buoua,)
+ dBy,mt, TEWogar, Warom,)

M M,MsM4MsM,
+eBM1M2Tr(GM3M4GM5M6)]8 17727345 e,

(5.3)

The one that comes closest to producing S, is the last
one, since upon reduction to 3 + 1 dimensions we
might get the term  [dx'e,,,, Tr(G**G*7) X
fIKISde)\B+/,/(x, A, k). However, we have shown in
the previous section that such a term is gauge dependent
under the 2T gauge symmetry. In particular in the reduc-
tion to 3+ 1 dimensions we have shown that all
F_1,(X) =0, Fy_/(X) = 0 vanish not only for B,y but
for all others as well. Hence the topological term vanishes
identically.

This resolves the strong CP problem in QCD in the
emergent standard model in 3 + 1 dimensions.

VI. MASS GENERATION

We will mention briefly several mass generation scenar-
ios, namely, dynamical symmetry breaking, Coleman-
Weiberg mechanism with only the SU(2) X U(1) doublet
field H and no dilaton, new mechanisms offered by the 2T
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physics formulation, and finally a discussion in more detail
regarding the dilaton assisted Higgs mechanism.

Dynamical symmetry breaking in the form of extended
technicolor is certainly one of the possibilities for mass
generation. This would proceed by adding all the ingre-
dients of extra technimatter and techni-interactions in par-
allel to what is done in the usual 3 + I-dimensional
theories of technicolor. The 4 + 2-dimensional theory
seems to proceed in the same way, and therefore we do
not have new comments on this possibility from the point
of view of 4 + 2 dimensions.

The Coleman-Weiberg mechanism proceeds through
radiative corrections in a completely massless theory
with quartic plus gauge interactions [30]. This would apply
in 3 + 1 dimensions to the Higgs field H in interaction with
the electroweak gauge bosons and produce an effective
potential which does lead to spontaneous breakdown. Of
course, we would need to recompute these effects directly
in the 4 + 2-dimensional quantum theory, but for now let
us assume that the result is roughly similar. In the 3 + 1
theory this mechanism predicts a definite mass ratio be-
tween the massive vector and the massive Higgs. Using the
values of the electroweak coupling constant and an average
of the W/Z masses, the mass of the Higgs comes out in the
range of about 10 GeV and seems to be ruled out already.

In 2T physics there are new ways of understanding mass
as having a relationship to some moduli in the embedding
of 3 + 1 dimensions in the higher space of 4 + 2 dimen-
sions. This produces the massive relativistic particle in-
stead of the massless particle, as indicated in Fig. 1. This
effect, which has no relation to the Kaluza-Klein type of
mass, has been studied in the worldline formalism for
particle dynamics [7,11]. It has even been suggested as
an alternative mechanism to the Higgs [20] but remained
far from being understood. The application of this ap-
proach to understand the various corners of Fig. 1 in the
context of field theory is at its infancy [12] and needs to be
studied in the presence of interactions as formulated in this
paper. This has not been developed so far, but should be
mentioned as a new possible source of mass that remains to
be investigated.

Next we turn to the Higgs mechanism, which is the most
popular possibility within the usual standard model. We
find that there are new twists in the 4 + 2 formulation, and
as a result there could be measurable phenomenological
consequences as described below.

The 4 + 2 action leads to the absence of quadratic mass
terms in the Higgs potential. Therefore, instead of the
tachyonic mass, an interaction of the Higgs H with a
dilaton @ was introduced in Eq. (3.13) in the form

V(®, H) = %(HTH — a2®?)2 + V(D) (6.1)

to induce the spontaneous breakdown of the electroweak
symmetry SU(2) X U(1). The reason that only quartic
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interactions were allowed is intimately related to the b
symmetry [which ultimately comes from the underlying
Sp(2, R)]. The b symmetry removes gauge degrees of free-
dom from the 4 + 2-dimensional fields and reduces them
to the 3 + 1-dimensional degrees of freedom.

The reason for the pure quartic interaction also can be
understood directly by studying the equations of motion.
As shown in the previous section, the solution of the kine-
matic equations of motion for the scalars require that they
must be homogeneous of degree —1. This means that their
dependence on the extra dimension x must be of the form

H(X) = %I:I(x), d(X) = %‘iD(x). (6.2)
The dynamical equations of motion 9°® = 94, V(®, H) +
-+ and °H = 9y V(®, H) + - - - now have the left-hand
side proportional to «x~3; therefore, the right-hand side also
must be proportional to k3. Combined with Eq. (6.2), this
requires V(®, H) to be purely quartic. If any additional
terms, such as quadratics are included in V(®, H), they
have to vanish on their own since they will have a different
power of k.

For this reason the dynamical breakdown of the SU(2) X
U(1) electroweak symmetry cannot be accomplished with
a tachyonic mass term for the Higgs field H, since this is
forbidden in the 4 + 2 formulation. Instead, a coupling to
the dilaton as given in Eq. (6.1) generates the nontrivial
vacuum configuration in Eq. (3.14). The equations of mo-
tion for the scalars (assuming all other fields vanish at the
vacuum) are

0’H = AH(HtH — o2®?),

(6.3)
92D = —2a2®(HTH — a2®?) + V/(D).

At the vacuum configuration (HTH — o?®?) =0, the
Higgs field must satisfy 9°H = 0 while H(X) is also
homogeneous of the form Eq. (6.2). We have seen already
that 02H(X) = k392H(x); therefore, H(x) must be a con-
stant at the vacuum, but H(X) still depends on the «
coordinate

v(0
<H(K7 A: x,u,)) = ;( 1 >;

v = electroweak scale ~ 100 GeV.

(6.4)

The electroweak scale of about 100 GeV is determined by
fitting to experiment.

Returning to the equation for ®, at the Higgs vacuum, it
reduces to the form 9°® = V/(P). But it must also satisfy
the vacuum value (HtH — a>®?) = 0 and be homogene-
ous as in Eq. (6.2); therefore,

(@X) = = —. (6.5)

Ka
Hence, 0>(®) = 0, which requires V'({®)) = 0 at the vac-
uum. If V(®) is also taken as a quartic monomial V(®) =
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"z/ ®* (as required by the b symmetry), then the only
solutionis A’ = 0, or V(®) = 0 identically (at the classical
level) to fit phenomenology.'’

Actually, the above discussion for the dilaton @ is
incomplete. To fully understand the interactions of the
dilaton one must include the gravitational fields with which
it naturally interacts. For example, in string theory the
vacuum expectation value of the dilaton plays the role of
the string coupling constant that controls all string inter-
actions. There is no full understanding yet how our four-
dimensional vacuum (or the 4 + 2 upgrade in our case)
emerges from a more fundamental theory that includes
gravity. This information will eventually include the vac-
uum expectation value of the dilaton. Therefore at the
present we have no theoretical control on how to stabilize
the vacuum expectation value of the dilaton.

For this reason, in our model we simply take the value of
(®) # 0 as given by the phenomenology of the Higgs
(H) # 0. But we imagine that (®) is stabilized by addi-
tional interactions in the gravitational or string theory
sectors to have a fixed value related to v ~ 100 GeV,
and the dependence on the extra dimension «, and the
coupling « as given above in Eq. (6.5). Then this form of
the dilaton plays the same role as the tachyonic mass term
of the Higgs in the usual standard model. This is then the
source that drives the electroweak symmetry breaking.

In this way we have given a deeper physical basis for the
Higgs vacuum. In the 4 + 2 theory mass generation
through a Higgs is not isolated from the gravitational (or
string) interactions. In fact our suggested point of view is
intellectually more satisfactory because a Higgs vacuum
fills all space with the constant v. To imagine that this
space-filling vacuum could be achieved without the coop-
eration of the gravitational sector or without appealing to
the vacuum selection process in the evolution of the
Universe since the big bang suggests that something was
amiss in the logic of mass generation.

Given the discussion above, we suggest that the vacuum
value of the dilaton (effectively the tachyonic Higgs mass)
is imposed mainly by the gravitational or string sector of a
more complete theory. But, given that (®) # 0 is not just
an isolated constant, but the value of a field, we should
analyze how the small fluctuations of the dilaton around its
vacuum interact with the rest of matter. Therefore, our
proposal has phenomenological consequences as discussed
below.

7Recall that we can change the homogeneity degree of ® as in
Eq. (2.39) from —1 to (—1 + %) by permitting the term W(®) =
%CI)2 in the action. Whatever the new homogeneity degree of ®
is, it must appear in the potential V(®, H) with appropriate
powers to make every term in V(®, H) have homogeneity degree
—4. For example if the degree of ® is —2 then every ®> we see
in V(®, H) should be replaced by ®. This gives quadratic terms
for @ but does not change the conclusions. More complicated
forms of W(®) have not been studied yet.
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We now discuss the small fluctuations of both the Higgs
and the dilaton. We give the discussion directly in terms of
the 3 + 1-dimensional fields. We choose the unitary gauge
for the Higgs by absorbing 3 of its degrees of freedom into
the electroweak gauge fields. For the remaining neutral
Higgs field, and the dilaton field, we write everywhere
the following vacuum shifted forms:

HO00 = (0 + A, O() = - (v + ag(),

(6.6)

where h, ¢ are the small fluctuations. The potential energy
in Eq. (6.1), with V(®)=0, becomes V(b H)=
% V(h, ¢) where V(h, ¢) is the potential energy from the
point of view of the 3 + 1-dimensional theory. It is given
by

Vi $) = S+ 07— (0 + @l (67)

_ %(h — adP(h+ ad + 20, 6.8)
In the limit & — O that corresponds to zero coupling to the
dilaton, we recognize the standard theory of the Higgs
boson with its usual potential V(h) = Av*h? + Avh® +
Ah*. If h is observed at the Large Hadron Collider
(LHC), from its mass given by Av? = Im?, the coupling
constant A would be determined, and its self interactions
Avh® + 4 h* are then predicted.

If « is very small, then the coupling of the Higgs (and
the rest of the standard model) to the dilaton ¢(x) may
appear to be well hidden from measurement in the near
future.

However, no matter how small « is, there is an inevitable
fact of a massless Goldstone boson associated with the
spontaneous breaking of scale invariance. We emphasize
that the emergent standard model is scale invariant at the
classical level because there are no mass terms at all. In
fact, the emergent standard model is invariant under the
conformal group of transformations SO(4,2) at the classi-
cal level, where the conformal SO(4,2) is precisely the
Lorentz symmetry in the higher 4 + 2 dimensions as ex-
plained by 2T physics. The spontaneous breaking of the
electroweak symmetry simultaneously breaks the global
scale symmetry and generates a Goldstone boson.

To identify the Goldstone boson we define the following
orthogonal combinations of the fields &, ¢

ﬁzh—a(ﬁ $=ah+¢
Ny N gy ©9)
or h:h+a¢ d):—ah-i-(ﬁ

\/1+a2’ \/1+a2'

In terms of /2, ¢ the kinetic terms remain correctly nor-
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malized (9,1) + (9, $)> = (3,h)* + (3, $)* while the
potential energy takes the form

(1 — a®)h +2ad + 1 + a?2v)2
(6.10)

V(h, ¢) =

B>

From this we see that the field / is massive, but the field ¢
is massless since there is no quadratic term proportional to
¢’

We must emphasize that the analysis of this Goldstone
boson is certainly incomplete. First we must remember that
the dilaton couples to the gravitational or string sector
and this can alter its mass. Furthermore, the scale invari-
ance we mentioned above is known to be broken by quan-
tum anomalies, at least as it is usually computed in any
3 + 1-dimensional theory. Furthermore, the Coleman-
Weinberg mechanism will also add mass-generating radia-
tive corrections. Any of these or all of these effects would
lift the mass of the dilaton, so the Goldstone boson iden-
tified above is not expected to remain massless. However,
being potentially a Goldstone boson, its mass may not be
too large and perhaps it is within the range of possible
observations.

Can we expect to see such a dilaton in the coming
experiments? Let us try to estimate its couplings to stan-
dard matter by first neglecting the effects mentioned in the
previous paragraph. Evidently, this estimate must go
through the Higgs sector. The dilaton ¢ couples to all
fermions and electroweak bosons since the standard cou-

pling of the Higgs 4 must be replaced everywhere by h =

htad . . . . .
NEek The dimensionless coupling of 4 is proportional to

the mass of the quarks and leptons in the form m; /v, where
m; is the mass of the quark or lepton and v is the electro-
weak scale. Therefore, the coupling of the dilaton ¢ to
every quark and lepton is given by = (m;/v) X a. The
strongest coupling is evidently to the top quark since it has
the largest mass. The value of a will determine whether
this coupling is strong enough to be seen in the coming
LHC experiments or in precision measurements that test
radiative corrections.

The dilaton-Higgs scenario is certainly among the pos-
sible scenarios even in the usual standard model, but it has
not been suggested before. The 2T physics formulation
provides a compelling motivation for favoring this alter-
native, especially since the 2T physics approach solves the
strong CP problem. Therefore, it needs to be taken seri-
ously and studied more thoroughly. The effects of the
dilaton should be incorporated into phenomenological es-
timates and it should be included among the experimental
searches for new particles especially as part of understand-
ing the origin of mass.

If the dilaton-Higgs scenario is realized in nature, it
would imply that the Higgs vacuum expectation value
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(H°(X)) = 2 or the corresponding dilaton ((P(X)) = X ) is
a probe into the extra dimension «.

VII. DIRECTIONS

In this paper we constructed the principles for field
theory in d + 2 dimensions. Because of the new 2T gauge
symmetries, the interactions are unique and the physical
formulation is ghost free. This produces the physics of
(d — 1) + 1 dimensions but from the vantage of d + 2
dimensions. The advantages of formulating physics from
the vantage of d + 2 dimensions are conveyed by the
duality, holography, symmetry, and unifying features of
2T physics illustrated partially in Fig. 1.

In this paper we have studied only one of the 3 +
1-dimensional holographic images of the new formulation
of the standard model in 4 + 2 dimensions. This estab-
lished first of all that the 2T physics formalism is com-
pletely physical and capable of correctly describing all we
know in physics up to now, as embodied by the standard
model of particles and forces.

Moreover, the standard model in 4 + 2 dimensions re-
solved an outstanding problem of QCD, namely, the strong
CP problem. In addition it also provided a new point of
view on mass generation by relating it to a deeper physical
basis for mass. These features indicate that the 4 + 2
vantage is capable of leading our thinking into new fertile
territories and apparently explain more than what was
possible in 3 + 1 dimensions.

Indeed a brief look into the ideas conveyed in Fig. 1 is
sufficient to say that there is a lot more to explore and
explain by using the new formulation of the standard
model. Perhaps such ideas will lead to new computational
techniques for analyzing field theory nonperturbatively and
shed more light into structures such as quantum chromo-
dynamics that is still in great need for technical progress.

Beyond the standard model, similar field theory tech-
niques can be used to discuss grand unification and gravity.
Grand unification would proceed through gauge theories as
in the present paper. The equations of motion for gravity
already have been constructed in [12] and these can cer-
tainly now be elevated to an action principle. It would be
interesting to explore gravitational physics, including cos-
mology, black holes, and the issue of the cosmological
constant by using the 2T physics formulation.

Supersymmetry should be incorporated by basing it on
the formulation of the superparticle in 2T physics consis-
tently with the Sp(2, R) symmetry [4—6]. The field theory
version of this is likely to have a richer mathematical
structure of supersymmetry than 3 + 1 dimensions. The
twistor formalism [5,6,10,11] that is closely connected to
this approach could lead also to a twistor or supertwistor
version of field theory.

Beyond these, we recall that at the basis of what we
presented is the very basic principle of Sp(2, R) gauge
symmetry that makes position and momentum locally in-
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distinguishable. However, the field theory approach we
used here distinguishes position from momentum. We
may ask if we can come up with a more even-handed field
theoretic formulation. There is a beginning along these
lines in [31]. When some such approach succeeds to de-
scribe standard physics we will have access to deeper
insights.

We have not even begun to discuss the quantum theory
in this paper. It is evident that having an action principle
was the first concrete step needed to define the quantum
theory consistently through the path integral. This can now
proceed in the standard manner, taking into consideration
the gauge symmetries. Motivated by Dirac’s approach to
conformal symmetry, there were some efforts in the past to
discuss quantum field theory in 4 + 2 dimensions [19,21].
This was done by using some guesswork and without the
benefit of an action principle, but it could provide some
guidance for a renewed effort to formulate and use quan-
tum field theory directly in 4 + 2 dimensions and then
apply it to practical computations.
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APPENDIX

Here we give another form of the gauge fixed action for
the scalar field [instead of Eq. (2.25)] and the gauge field
[instead of Eq. (2.72)] that makes the underlying Sp(2, R)
symmetry fully transparent. For fermions we do not need a
separate gauge fixed treatment of the equations of motion
to display the underlying Sp(2, R) symmetry, since we have
seen that the fully gauge invariant version already can be
written in terms of LMV as in Eq. (2.45).

We emphasize that the fields @, A;, that appear below
are the gauge fixed versions as discussed following
Eq. (2.25) and (2.80), respectively. This means that their
remainder proportional to X? are not the most general but
are restricted to a form allowed by the remaining 2T gauge
symmetry.

The only Sp(2, R) invariant in the 2T particle mechanics
is the SO(d,2) orbital angular momentum LMN =
XMpN — XNPM In the field theory version we substitute
PM = —igM. therefore, it is natural for derivatives to
appear in the combination of

LMN = —i(XMgN — XNaM), (A1)
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So, the kinetic term in the action for a scalar field ® can be
taken as follows [the potential term is identical to
Eq. (2.25) and is omitted below]:

@) = —5 [ @230 SN Ly @)

+ (1 - ‘f)qﬂ}

Note here the §'(X?) rather than the §(X?) to implement the
Sp(2, R) constraint X?> = 0. The reason for the constant
term (1 — df) is also Sp(2, R). It is related to the fact that the
SO(d, 2) Casimir operator §LMVL,y and the Sp(2, R)
Casimir  operator Cgp @R — 101102 + 0001) —
01,0, are related to each other by the following equation

[1]:

(A2)

acsre® Ly, o (1 - d—2> (A3)
2 2 MN 4

d—2 d+2
=—X282+<X-a+—2 ><X~a+—2 ) (A4)

Thus, after an integration by parts [noting LMV §'(X?) =
8'(X*)LMN] the action can be written in terms of the
Sp(2, R) Casimir operator

! ! 4
So(®) = 5 f dd”XS’(XZ)cD(ELMNLMN e %)cp
(AS)

1

-5 f AP 2X 5 (X?)DECF) o (A6)

= % [dd”X(I){B(XZ)az(D + 5'(X2)(X g+d2 ; 2)
_l’_

In the last line we inserted the explicit form of the Casimir
operator and used —X2?8'(X?) = 8(X?) so that the first
term has the familiar appearance as the kinetic term of a
Klein-Gordon field in d + 2 dimensions as in Eq. (2.25),
now with the delta function 8(X?) instead of §'(X?). We
see that with the extra terms proportional to §’(X?) we can
rebuild the Sp(2, R) Casimir operator and make it evident
that there is an underlying Sp(2, R) invariance.

The general variation of the action in Eq. (A2) is
8Sy(®) = fdd+2X8’(X2)5@(4C§p(2’R))CD; therefore, the
equation of motion is

(A7)

8'(XH)C D = 0. (A8)

This can be written in the form

PHYSICAL REVIEW D 74, 085019 (2006)
d—2 d+2

8(X2)9*d + 6’(X2)<X- d+ T)(X 9+ T)@ =0,

(A9)

from which we conclude that ® satisfies two equations, not
just one. Provided the remainder of ® = &, + X2® is a
priori gauge fixed to be homogeneous'® (X - 9 + %)&) =
0, the resulting equations for the full ® are [3°®]y>_, = 0
and (X -0+ %)(X- a+ %)(D = 0. In particular this

R)

implies that the Casimir C;p(l vanishes on the free field

[CP2R Dy = 0. (A10)
Now we see that on ® = §(X2)® the quantities X? and 9>
vanish, hence their commutator which is proportional to
(X-90+ %)CI) = (0 must also vanish. This is the solution
we must take consistently with the equations of motion
derived above. This indicates that we have come full circle
and derived the Sp(2, R) singlet condition on [§(X?)®]
directly from the field theoretic action principle. Note
that the simpler looking gauge fixed action that we adopted
in the text in Eq. (2.25) gives the identical information.

For gauge bosons we can give an alternative but equiva-
lent form of the gauge fixed action in Eq. (2.72) to display
all derivatives in the form LMV Then the action takes the
following manifestly Sp(2, R) invariant form

1
S(A) — Z /(dd+2x)5/(X2)q)2(d74)/(d72) Tr(FMNKFMNK),
(A11)
where

Funk = FiunXkp,

with Fyy = 0y Ay — onAy — igalAu Ayl (A12)
is invariant under Sp(2, R) since only LMV appears. Note
the 6'(X?) rather than 8(X?) in the volume element which
is similar to the scalar action in Eq. (A2). The §'(X?) is just
what is needed to relate to the action in Eq. (2.72). When
we compute Tr(F g FYVK) we find

8'(X?) Tr(Fyng FMNK) = 8'(X?)X? Tr(Fpy FMN) + - - -
(A13)

= —8(X?) Tr(FynyFMN) + - - -. (Al4)
The first term reproduces the other action in Eq. (2.72)
while the extra terms play a role similar to the extra terms

"8As emphasized in footnote 5, the correct two equations
emerge only if & is already gauge fixed in this action.
Otherwise the equations include a nonhomogeneous remainder
@ which completely spoils the dynamical equation.
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in the scalar action above to complete into the Sp(2, R)
invariant. When all the equations of motion, and gauge
symmetries, are taken into account, the two actions give
equivalent results in the physical sector. We emphasize that

(1]

PHYSICAL REVIEW D 74, 085019 (2006)

the remainder Ay, in Ay, = A, + X?A,, must be a priori
gauge fixed to satisfy the same properties of the remaining
gauge freedom a,, as given in Eq. (2.65).
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