PHYSICAL REVIEW D 74, 085016 (2006)

Stability of the normal vacuum in multi-Higgs-doublet models

A. Barroso,' P.M. Ferreira,' R. Santos,' and Jodo P. Silva®>
YCentro de Fisica Tedrica e Computacional, Faculdade de Ciéncias, Universidade de Lisboa, Avenida Professor Gama Pinto 2, 1649-
003 Lisboa, Portugal
2Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro, 1900 Lisboa, Portugal

3Centro de Fisica Tedrica de Particulas, Instituto Superior Técnico, P-1049-001 Lisboa, Portugal
(Received 28 August 2006; published 16 October 2006)

We show that the vacuum structure of a generic multi-Higgs-doublet model shares several important
features with the vacuum structure of the two and three Higgs-doublet model. In particular, one can still
define the usual charge breaking, spontaneous CP breaking, and normal (charge and CP preserving)
stationary points. We analyze the possibility of charge or spontaneous CP breaking by studying the
relative depth of the potential in each of the possible stationary points.
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I. INTRODUCTION

Most features of the standard model (SM) of electro-
weak interactions have been probed to a very high preci-
sion. Still, the Higgs sector remains largely untested and
new physics is certainly possible. In particular, one might
have more than one Higgs, as required, for example, by
supersymmetry. Multi-Higgs models are also appealing for
a variety of theoretical reasons related to CP violation:
(i) if the Higgs potential conserves CP, this symmetry
could be spontaneously broken by the vacuum; (ii) if there
are three or more Higgs doublets, then there might be CP
violation in the mixing matrix of the charged Higgs; and
(iii) the new sources of CP violation have the potential to
explain baryogenesis.

A drawback of these models is that they involve a large
number of parameters. For example, the scalar potential of
the most general two-Higgs-doublet model (2HDM) in-
volves 14 real parameters, while the potential which ex-
plicitly preserves CP involves 10 parameters (these may be
reduced to 11 and 9, respectively, through suitable basis
choices). Given the large number of parameters present in
these models, a variety of methods have been developed in
order to restrict the parameter space, some related to the
vacuum structure of the scalar potential. Recently, some
interesting features of the vacuum structure have been
obtained for the particular case of the 2HDM [1].
Namely, it was shown that, whenever a normal-charge
and CP conserving minimum exists in the 2HDM, the
global minimum of that potential is the normal one.
Moreover, it was shown that the depth of the potential at
a stationary point that breaks charge or CP, relative to the
normal minimum, is related with the squared mass matrix
of the charged or pseudoscalar Higgs (evaluated at the
normal minimum), respectively. Recent work on these
subjects may be found in [2]. In this work we will analyze
how these conclusions may, or may not, be generalized to
the case of a potential with N Higgs doublets.

The paper is organized as follows. In Sec. II we intro-
duce our notation and prove one of our main results: that
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the vacuum structure of a generic multi-Higgs-doublet
model may be reduced to vacua involving only two or
three doublets. This is accomplished through a series of
basis transformations, for which the potential is invariant,
even if its parameters are not. We discover that the study of
possible charge-breaking (CB) vacua is more easily done
in a basis where only three out of the N doublets have
nonvanishing vacuum expectation values (vevs). For CP
violation, the appropriate basis is even simpler: only two
doublets are nonzero. In Sec. III we compute the values of
the potential at the charge-breaking and normal vacua and
compare their values. We study whether it is possible to
obtain charge-breaking minima deeper than a normal mini-
mum. In Sec. IV we repeat this procedure, but now for CP
breaking vacua. We present our conclusions in Sec. V.
Appendix A provides a basis and gauge independent defi-
nition of the CB vacuum, while Appendix B contains a
specific example of a three Higgs-doublet model for which
the CB vacuum lies below the normal vacuum.

II. THE SCALAR SECTOR OF A GENERIC
N-HIGGS-DOUBLET MODEL

A. The scalar potential

In this article we follow closely the notation of
Refs. [3,4], where more details may be found—see also
[5-9]. Let us consider a SU(2) ® U(1) gauge theory with N
Higgs doublets with the same hypercharge y = 1/2, de-
noted by

0=()=ren () () o

where v; are their vacuum expectation values (vevs), and i
runs from 1 to N. In all that follows, we will use the
standard definition for the electric charge: Q = T3 + 7Y,
meaning that all vevs in the lower components of the
doublets are electrically neutral. With this definition, a
vacuum with all upper components of the vevs equal to
zero, v} = 0, does not break the charge symmetry.
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The scalar potential may be written as
Vi = Mij(q);rq’j) + Aij,kl(q)j(bj)(q)ltq)l)’ ()
where Hermiticity implies

Aijr = Mitij = A e (3)
|

P *
Mij = Mjp
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Under a unitary basis transformation of the Higgs fields,
their kinetic terms remain the same but the coefficients u;;
and A;; ; are transformed in such a way that the potential
remains invariant. Using Eq. (1), the scalar potential be-
comes

Vg = ,U«ij(V;r v;) + )\ij,kz(V;r V,;)(V/:r v) + VIT[,U«U + ZAij,le;(r vile; + SD,T[,U«ij + ZAij,szZ vlv; + Mij(%o;r@j)
+ 2)‘ij,kl(§0? GDj)(V;J{r v)) + 2Ail,kj(¢’j Vz)(V;J{r ¢;)+ )‘ij,kl(gpjyj)(@]l- v) + )‘ij,kl(V;r GDj)(V;J{réDl) + 2)\1']',/(1(90;[40;)@2 V)

+ 2)lij,k1(§0;r QDj)(V;J(r‘Pz) + Aij,kl(@j%)(@/ﬁ%)-

Requiring in Eq. (4) that the linear terms in ¢; vanish
gives us the stationarity conditions

[pi; + 20vivdy; =0 (fori=1,...,N). (5)

Multiplying by V;r leads to
,U«ij(’/gL v,) = _2/\\1'1',/(1(1/3L Vj)(VZ V). (6)
The value of the potential at a stationary point is found
from Eq. (4) by setting all ¢; = 0. Using Eq. (6), this may
be written in the following three forms:
= Mz‘j(V;r v;) + )\ij,kz(V;r Vj)(V]:r v) (D

stationary point
VH yp

= %Mij(V,T v)) 3)

= _/\ij,kl(V;r Vj)(V;(r V). )]

B. A simple basis to study charge breaking in the
N-Higgs-doublet model (NHDM)

After spontaneous symmetry breaking the Higgs fields

acquire the vevs
u u
y Q .
Vn—-1 VN

() Ga)
(10)

An analysis of the potential with such a complicated vev
structure would be too difficult to perform. We will now
show how, using the freedom to choose a basis for the
Higgs doublets, one manages to simplify immensely this
study. We start by performing a unitary transformation on
the last two Higgs fields according to

(q)fv—1 ) _ 1 <V7v*1 vy )(‘I’N—l)
! U u .
Dl ”’%—1'2 + |V7v|2 Py Vy— Dy
(1)

With this transformation, the vevs of the last two fields
become

4)
@y = 1 [ 12 + 1w l?

N=1 |Vu |2 + |Vu |2 V}l\lfl Vﬁ/*l + V}u\,Vd ’

N-1 N (12)
1 0
(Dy) =
d d |
v 2+ |2 —VvyVy_ T VN Yy

respectively. We have thus succeeded in removing the
upper component of the vev of the last Higgs field.
Moreover, the upper component of (P} _,) became real
and positive. We can continue with similar transforma-
tions, applied to successive pairs of Higgs fields, until the

corresponding vevs become
0 0
vi_ ) vi, |

() ()
(13)

Notice that v} and »¢ in Eq. (13) are not the same as in
Eq. (10), but rather the values obtained after the successive
transformations of the type shown in Eq. (11). Similarly,
we keep the notation for the fields, although they have been
transformed through a series of basis changes. At the end
of the process outlined, »{ is real and positive.

We may now repeat the exercise with the lower compo-
nents. Indeed, through the transformation

(‘I”Nl): ! <de-dl v ><ch1)

/ ’

N 7 TR P T N VAN
(14)

we can change the vevs of the last two Higgs fields in
Eq. (13) into

(Py_p) = (\/W)—H%P) (Py) = (8)

(15)

respectively. This eliminates the lower component of (®},)
and makes the lower component of (®),_,) real and posi-
tive. We may continue with the other down components,
until we reach the following vev structure:
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() (o) (0) (o) a®

Notice that | 4], which is real and positive due to Eq. (15),
cannot be removed without implying the appearance of an
upper component on the second vev. We have thus reached
a simple but remarkable result. Indeed, although there are
many parameters involved in the general N-Higgs-doublet
model, its vacuum [10] structure can be brought into a
much simpler form, through a suitable basis choice.

If, after all these basis transformations, we are left with a
vev structure for which »{ # 0, then the vacuum breaks
electric charge. As in the 2HDM, we may now utilize the
gauge freedom in order to bring the vevs into the final

form: [11]
0
(0)

(i) Caen) (o)
(17)

where 6. is a phase, while «, v, and v, are positive real
numbers. This, then, is the simplest form one can find for a
CB vacuum.

However, we are interested in comparing the value of the
potential at the CB vacuum with its value at the normal
vacuum. Therefore, we must find out the form of the most
general normal vacuum, in the basis in which Eq. (17) is
written. Clearly, given our definition of electric charge, it
will have all v = 0. A generic charge-preserving vacuum,

then, will have the form
0 0
V%_l ’ v |

0 0
vd | vd P
(18)
4 are not the same as those

We emphasize that these v¢
appearing in Eq. (10). However, we can now apply the
same method we used previously to bring the normal
vacuum to a more manageable form. Through a transfor-
mation analogous to that of Eq. (14), we can set the last
doublet to zero. Notice that this basis change does not
involve the first two doublets, so the charge-breaking vac-
uum structure, Eq. (17), remains unaffected. Successive
basis transformations may be applied that do not change
Eq. (17) but set to zero the lower component vevs of
Eq. (18), until one is left with the final normal vacuum
structure,

Loy (b () (o)

If we try to perform another basis change to set |V§1| to zero,
we will destroy the simple form for the charge-breaking
vevs, Eq. (17). We denote by the ““B-basis” the basis where
the charge-breaking vevs have the simple form of Eq. (17)
and the normal vacuum vevs, the form given by Eq. (19).

19)

(o)
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The B-basis is appropriate to study the possibility of
charge-breaking vacua. This result shows that the study
of charge breaking for an N-doublet potential is reduced to
the analysis of the three-doublet situation.

C. A simple basis to study CP breaking in the NHDM
with explicit CP conservation

We are also interested in the possibility of CP being
spontaneously broken in N-Higgs-doublets models. In this
case we cannot simply choose the most general NHDM
potential —we must make sure that that potential does not
break CP explicitly. In Appendix A of [9], Gunion and
Haber invoke CPT and T2 = 1 (where T is the time-
reversal operator) to show that: “The Higgs potential is
explicitly CP-conserving if and only if a basis exists in
which all Higgs potential parameters are real.” We there-
fore consider one such basis for our NHDM potential: all of
its parameters are real and it explicitly preserves CP.

Given our definition of electric charge, the most general
charge-preserving vacuum (CP violating or not) will be of
the same form as Eq. (18). Our starting point, however, is
not the basis in which we wrote Eq. (18), but rather a
generic basis for which the parameters of the potential
are all real. It is now convenient to ensure that all basis
changes do not introduce complex parameters in the po-
tential. This means that we are restricted to orthogonal
basis transformations. Even with this restriction we are
still able to simplify immensely the study of the NHDM
potential. This is accomplished through two series of steps:

(1) We start with an orthogonal transformation on the

last two Higgs fields according to

<(D§V—1 ) _ 1
—1) =
Pl \/Imz(vjf,,l) + Im?(v4)

—Im(»%_,) —Im(»%)
X < —Im(Zj{,)l Im(vf{,ﬁ))
Dy
x < . ) (20)

This eliminates the imaginary part of the vev of the
last Higgs field. We can continue with similar trans-
formations, applied to successive pairs of Higgs
fields, until the corresponding vevs reach a structure
of the type

0 0 N 0
b} (oo} ()

0 21
(Re(v,d\,) ) @D

Notice that the Vf’ in Eq. (21) are not the initial ones,
but rather the values obtained after the successive
transformations of the type shown in Eq. (20).
Similarly, we keep the notation for the fields,
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although they have been transformed through a
series of basis changes. After these steps Im(v¢) <
0.

(2) We continue with the orthogonal transformation on
the last two Higgs fields

(q);\,] ) . 1
1) =
v ) R ) + R

Re(v4_,) Re(v) \[ Py_;
X(—Rel(vyfvl) Re(ygi))( Dy )
(22)

This eliminates the vev (®)}), simultaneously mak-
ing the lower component of (®},_,) real and posi-
tive. We can continue with similar transformations,
applied to successive pairs of Higgs fields, until the
corresponding vevs reach a structure of the type

(4} (rwn)} (o)
(o) (o}

where Re(v4) = 0.

Hence, when the scalar potential conserves CP, it is
possible to choose a basis in which only the first two
doublets have vevs, while keeping all parameters in the
potential real. At this point, we distinguish two physically
distinct scenarios. If Im(»¢) = 0, then the vacuum is a
normal one and preserves CP; if not, it spontaneously
breaks that symmetry—we call it a CP violating (CPV)
vacuum.

Let us then suppose we started with a normal vacuum,
and that we employed the basis transformations described
above until the vacuum structure was reduced to Eq. (23),
with real vevs »¢ = v, and v4 = v,. Because the remain-
ing vevs are real, we can perform a final basis transforma-
tion on the first two fields

(23)

(o1) = (e ) e
@) v2 + 02 —vy v \Py)

bringing their vevs into the form

m=(y)}  m=(p) 25)

where v = ,/v? + v3, and all remaining doublets are zero.

This is known as the “Higgs basis” for the normal vacuum
in the 2HDM [3,4].

However, we are interested in comparing the value of the
potential at the normal vacuum with its value at a CPV
vacuum. Therefore, we must find out what is the form of
the most general CPV vacuum, in the basis in which
Eq. (25) is written and with the definition of electric charge
we have adopted. It will be of the form of Eq. (18), with
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new vevs 4,

() () () ()

(26)
Because the normal vacuum has been reduced to the form
of Eq. (25), where only the first doublet is different from
zero, we can apply the steps 1 and 2 detailed above for this
new vacuum and again reduce the CPV vacuum to the form

) () e

with all remaining doublets zero. In this equation, z; and z,
are complex numbers. The sequence of steps that led us
from Eq. (26) and (27) did not change the normal vacuum
of Eq. (25), because none of those steps involved the first
doublet. We cannot further remove the imaginary or real
parts of z, because that operation would involve the first
doublet and, thus, take us away from a basis in which the
form of the normal vacuum of Eq. (25) remains valid. The
basis for which the normal and the CPV stationary points
have the simple form given by Egs. (25) and (27) will be
called the *“S-basis.”

The S-basis is very useful because, when using it for the
normal minimum, the Goldstone bosons are isolated as the
components of ¢;, while the other ¢; (i = 2,..., N) con-
tain other charged and neutral scalars fields [3—5]. Indeed,
in the S-basis

_ G*
¢1= <(H0 +iGY)/2 ) (28)

n
go,»=<(Ri +F?Ii)/\/§>’ (fori=2,...,N), (29
where G and G are the Goldstone bosons (which, in the
unitary gauge, become the longitudinal components of the
W and of the Z°); H° couples to fermions proportionally
to their masses (in the fermion mass basis); and H,-Jr , R,
and I; (i =2,...,N) are the charged and neutral scalars
fields. Notice that these are not the physical particles; those
will be obtained by diagonalizing the squared mass matrix
of the charged Higgs, and the squared mass matrix of the
neutral Higgs (including H°, R;, and I;). These important
properties will become obvious below.

D. The mass terms at the normal vacua

We now wish to study the quadratic terms in Eq. (4),
when the vevs are taken to coincide with those at a normal
vacuum. Since the basis transformations do not mix the
upper and lower components, the normal vacua have v =
0 for all 7, in any basis (as long as no gauge transformations
are made). As a result, the quadratic terms of Eq. (4)
evaluated at a normal stationary point may be written, in
any basis, as
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(M)} = (M2} @4 + (M)} Re(@f) Re(¢9)
+ (MDY Im(¢¢) Im(¢9)
+ (M%)} Re(¢f) Im(g)
+ (M3 Im( ) Re(p), (30)

where we identify

(M2 = iy + 24uv vy, €2))
(MR)Y = Relpij + 2 v vi + 2 vivi*
+ 2)\ik,le(/fV;j]’ (32)
(MDY = Relpij + 2Aavi v + 20 vivi®
- 2/\ik,leZV1 1 (33)
(]WIZU)?]I Im[lu’lj + 2)“/ k/yk Vl + 2/\zk leled
— 2/\ik,lek V?’], (34)
(M%R Im[Ml] + 2)‘z)klyk Vl + 2A1k l]Vk Vil
+ 2/\ik,jll}kl}l ], (35)

and the superscript N indicates that these mass matrices
have been evaluated at the normal vacuum.

Using Egs. (3), one can show that the matrix (M%)N is
Hermitian, while the real matrices (M2)N and (M?)N are
symmetric. The remaining two matrices are real and re-
lated by (M%)} = (M7,)¥. This implies that the 2N X 2N
matrix,

( (MR™

M2 N
ory ) 2

(MPN

is symmetric. Moreover, the matrix (M2 )N behaves like a
second rank tensor under a basis transformation of the
Higgs fields, but the other matrices do not.

As we mentioned, these expressions are valid for normal
vacua in any basis. For the B-basis, where only {v, v4, v }
are different from zero, the indices {k, [} in the Egs. (31)—
(35) run only from 1 to 3. In the S-basis, where only the first
doublet has a nonzero vev, the mass matrices are simplified
considerably. In what follows the vevs, the parameters w,;,
and A;j; are all written in the S-basis; it is important to
understand that changing the basis would change the vevs,
but also the parameters w,; and A;;; [3]. We find

(Mg_k)?} = pij T 20201, 37
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(M%e)?} = Re[u;; + 207 (X410 + Ay + A1) (38)

(M%)Z{ = Re[u;; + 20 (A1 + Ay — i)l (39)

(M3, I)U —Im[p;; + 202 (A0 + Ay — Aijn)) (40)

(M%R)?} =Im{p;; + 207 (A0 + Ay + Al (4D
Using the parametrization of the normal stationary point in
the S-basis, shown in Eq. (25), on the stationarity condi-
tions of Eq. (5), we find

i+ 207254 = 0. (42)

But this coincides with the definition of (M% )N 1> 1nEq. (37)
and, since this is a Hermitian matrix, we conclude that the
first row and the first column of (M%) have zero in every
entry,

MY =0=ML)Y (for i =1,...,N). (43)
This shows that, indeed, ¢ in the S-basis coincides with
the charged Goldstone boson, in accordance with Eq. (28).

Also, using Eq. (39) with j = 1 and Eq. (42),
(M)

=Re(u;; +2v2A;111) +2v*Re(Aj 1 — Air) =0.

(44)
Since (M?)N is symmetric, we find

(MHY =0= (MHY (fori=1,...,N). (45)
To simplify, let us now consider for a moment the case in
which all u;; and all A;;; are real. As we explained above,
a CP-conserving NHDM potential falls under this cate-
gory. In that case, (M%,)N = 0 = (M7;)N, and the matrix in
Eq. (36) becomes block diagonal. In addition, (M%)N and
(M%)N are the squared mass matrices of the scalars and
pseudoscalars, respectively Thus, Eq. (45) shows that in
the S-basis Im(go ) coincides with the neutral, pseudoscalar

Goldstone boson, in accordance with Eq. (28).

ITII. THE CHARGE BREAKING VERSUS THE
NORMAL STATIONARY POINTS

Throughout this section we will work in the B-basis,
although it will be obvious that our final results hold in any
basis. We assume that both the N and CB stationary points
exist. We will now compute the values of the potential at
each of those stationary points. To that effect, we first recall
the results of Sec. II, where we showed that, in the B-basis,
the vev structure of both stationary points is given by
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o 0
c1 — ) Cyr = . B
1 Ul ? chelac
( 0 ) ( 0 )
nl = , n2 = R
S vV

with all remaining doublets having vevs equal to zero. The
parameter 8. is a phase, while «, v, and vy are real,
positive numbers. In general, »; and v, are complex. From
Eq. (5), we obtain the stationarity conditions for the CB
stationary point in the B-basis,

Cc3 =

N
w
Il

(wi + 2)\il,klczcl)a =0 47

(i1 + 2)li1,kIC;J{rC1)Uc1 + (mp + 2/\i2,k1C1J{rCz)Uc2€i6" =0,
(48)

fori=1,...,Nand k, [ = 1, 2. Since we assume that the
CB stationary point exists, &« # 0 and its coefficient in
Eq. (47) must equal zero. From Eq. (48), then, the coeffi-
cient of ve'% is also zero. As a result, the stationarity
conditions at the CB stationary point may be written as

i=1...,N;j, =12).

(49)

Mij, + 2)\ij1,klczcl =0

Let us now contract the indices {i, j,} with n n; . This

gives

(i=123;j;,=12),
(50)

(g, + 2Aij,,k10201)n;rnjl =0

and from here it is trivial to obtain

pining + 22 uniniele; = (wis + 2X et ehning =0

Gj=1...,3). 51)

Notice the appearance of the term wu; jn:rn ;j which, accord-
ing to Eq. (8), equals twice the value of the potential at the
normal stationary point, V.

Now, from Eq. (31), the mass matrix for the charged
scalars at the N vacuum in the B-basis is given by

(ML)} = pw + 22y, l]n (52)
Contracting the indices {k, [} with ck c¢; we obtain
(Mz)lekCl MlekCl“‘Z)\k[,,nTnc,tcl

=2VE® + 20l njcle, (53)

where we have used Eq. (8) to identify u klc,:f c; as twice the
value of the potential at the CB stationary point and the
symmetries of the A coefficients from Eq. (3). Comparing
Egs. (51) and (53), we can subtract them to find

0
), Normal vacuum (N),
U3

PHYSICAL REVIEW D 74, 085016 (2006)

0
0 ), Charge breaking vacuum (CB),

(46)

{
VB — v =1MLY cle, - Tus(pis + 2)‘i3,klczcl)ni'

ij“i*J
(54)

This is our main result regarding the possibility of charge
breaking in the NHDM. Although obtained in the B-basis,
it is very simple to rewrite Eq. (54) in a basis invariant
form. At this point it is important to recall the results
obtained in Ref. [1] for CB in the case of the 2HDM. In
the notation of this paper, the conclusions therein reached
are written as

VB — = J(M3)Ne (55)

ljlj

When the normal stationary point is a minimum, the matrix
(M2)N has, besides the Goldstone bosons, only positive
eigenvalues, and it is very easy to prove [1] that one obtains
V,SB — V,I‘} > (0. Hence, if a normal minimum exists, the
CB stationary point is always above it. No possibility of
tunneling from the normal minimum to a deeper CB sta-
tionary point exists in the 2HDM.

The similarity with the NHDM case is clear, but the
difference of the potential depths now contains an extra
term, proportional to v;. Let us consider that the normal
vacuum in the NHDM is indeed a minimum. Then, as
before, the term (M2 )l cicj is strictly positive [12].
However, there is no a priori reason for the second term
in the right-hand side of Eq. (54) to be positive. In fact,
depending on the values of the parameters p and A, it may
well be negative, so much so that it overwhelms the posi-
tive contributions from (M%)Ncfc;.

As an example of this possibility, we undertook a study
of CB in the 3HDM for generic values of the parameters of
the potential. For simplicity we considered the 3HDM
potential without explicit CP violation. Our conclusions
are as follows:

(1) As in the case of the 2HDM, it is certainly possible
to find combinations of {u, A} for which there are
normal minima with a CB stationary point located
above them.

(2) However, unlike the 2HDM situation, we have
found combinations of {u, A} for which both the
normal and charge-breaking stationary points are
minima, but verify VGB < V.

In Appendix B we give a set of numerical values of {u, A}
corresponding to this situation. In fact we obtain, from
such parameter values,

VB = —2.6678 X 10° GeV* < V¥
= —2.2792 X 10° GeV*. (56)
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A numerical minimization of the potential found no value
below VB,

To ensure that both CB and N are minima, we calculated
the scalar squared mass matrices at both stationary points.
Other than the expected zero eigenvalues (3 for the N
minimum, 4 for the CB one) all the others are positive.

In conclusion, the study of charge-breaking vacua in the
NHDM reduces itself to the study of a 3HDM potential.
For this one—and unlike the 2HDM case—there is the
possibility of CB minima which are deeper than a normal
minimum.

where v is real and at least one of {z;, z,} is complex.
Unlike the CB case, we are able to reduce the study of CP
violation in the NHDM to the analysis of only two dou-
blets. Throughout this section we will work in the S-basis.
We now assume that both the N and CPV stationary points
exist. Equation (42) shows the stationarity conditions of
Eq. (5) applied to the normal stationary point and written in
the S-basis. Similarly, using the parametrization of the
CPV vevs in the S-basis, shown in Eq. (27), on the statio-
narity conditions of Eq. (5), we find

(i + 2)‘i1,k1S;{rS1)Z1 + (up + 2/\i2,kls]J<rsl)ZZ =0. (58)
Specifying for i = 1 and rearranging the terms, we obtain
ikt s = _2A11,k131ts111 - 2A12,kstSIZ2- (59

This can be viewed as a system of one complex (two real)

equation in the two real unknowns gw;;, and ;. The
solutions are easily obtained. One finds that

1 _ 3

=t = Anlzl? + Ay iz + 2520)
+ (A2 = Az + Aozl

= )l11,11|Z1|2 + Az + Az (60)

+ (A1 + A2

= A T Ay —

- )\21,21)|Zz|2
/\il,jl)S,TSj-

In addition, the stationarity condition at the normal mini-
mum, Eq. (42), yields

_ t
= Ayjunin;

)\“,jl)njnj. (61)

_1 — 2
M1 =V VSTRT
= A+ Ay —

We conclude that
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IV. THE CPV VERSUS THE NORMAL
STATIONARY POINTS

Let us consider a Higgs potential with explicit CP
conservation and no CB stationary points. As we showed
in Sec. II, it is possible, through a series of orthogonal
transformations that preserve w and A as real (though
changing its values), to reach what we called the S-basis,
where a normal (CB and CP preserving) and CPV (CB
conserving, CP violating) stationary points have vevs
given by

(57)

[

(Aijjin + Ay — (Aijin + Ay — /\il,jl)n;fnj*

(62)

/\il,jl)S;rSj =

We are now ready to calculate the difference between
the value of the scalar potential at the CPV stationary point
and the value of the scalar potential at the N stationary
point. We start from the definition of the pseudoscalar mass
matrix (M?)N in Eq. (39) and multiply it, respectively, by

sTsj and nTnj, to find

Q(Mz),] iS;i = %MijsTs' + UZ(Ai/' n T )‘il,lj - /\il,jl)S;rSj,
M3 l]nl nj= iﬂz]” nj+ v (At A — i1,j1)n;r”j-
(63)
Subtracting both lines we find
VY — VN = JMP)Ns]s;. (64)

In obtaining this result we have used Eq. (62), and we
noticed that, according to Eq. (8),

VISPV = Elu’lj l Sjs VII}I = %/—Lijnl"rnj' (65)

Furthermore, we used the fact that Egs. (25) and (45) imply
that

(M})Nnin; =o0. (66)

Equation (64) is the generalization of the results obtained
in Ref. [1] for CP violation in the 2HDM.

It can be shown, using the general definition of (M?)N in
Eq. (33), that Eq. (64) is invariant under orthogonal basis
transformations, so that in Eq. (64) we can actually con-
sider the indices {i, j} going from 1 to N. For simplicity, we
evaluate it in the S-basis. As before, when N is a minimum,
we will have
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VY — VN =X M)Y|zl* > 0. (67)

The result is strictly positive because the only zero eigen-
value of the matrix (M?)N is in the first line/row; the
remaining submatrix is definite positive. This implies that
all of the elements of its diagonal—such as (M?)}, —are
positive. This is another advantage of utilizing the Higgs
basis.

Equation (67) generalizes the results obtained in Ref. [1]
for the particular case of N = 2: whenever a normal mini-
mum exists it is certainly deeper than any CPV stationary
point.

Notice that one can obtain a CPV stationary point which
is deeper than a normal stationary point N. This occurs for
parameters such that (M7)Y, < 0. However, in that case N
is not a minimum (although it is a stationary point).

V. CONCLUSIONS

We have studied the vacuum structure of the most gen-
eral N-Higgs-doublet model. We have shown that, in order
to compare the depth of the potential at a normal minimum
with its depth at a CB stationary point, a basis may be
chosen such that the vacuum structure mimics that of the
3HDM. Similarly, in order to compare the depth of the
potential at a normal minimum with its depth at a CPV
stationary point, a basis may be chosen such that the
vacuum structure mimics that of the 2HDM.

This great simplification allowed us to generalize the
results of [1], showing that, whenever a normal minimum
exists, it is certainly deeper than any CPV stationary point.
However, we found one remarkable difference regarding
CB: whereas in the 2HDM it is impossible to find CB
minima below normal ones, that does not happen for the
NHDM, with N = 3. This raises the possibility of finding
charge-breaking bounds [13] for these potentials, which
might improve their predictive power. Notice, however,
that if the parameters of the potential are such that at the
N minimum (in the B-basis) one has v; = 0, one recovers
the 2HDM result for the NHDM potential: if such a normal
minimum exists, it is certainly deeper than the CB one.
This can be used as a sufficient condition to prevent CB
from occurring in the NHDM.

It is interesting to note that Eq. (54) shows that the
difference between the value of the potential at the CB
stationary point and the value of the potential at the normal
stationary point is related to the charged Higgs squared
mass matrix. That relation is perfect for the 2HDM, but
“spoiled”” by the v; terms in Eq. (54) for the NHDM.
Similarly, when the potential conserves CP, Eq. (64) shows
J

[ve | + [vé]? 0

MG =
! 0 0

N

0 [ + |v9]? 0

\/zy‘.i* P
i Vi
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that the difference between the value of the potential at the
CPV stationary point and the value of the potential at the
normal stationary point is related to the pseudoscalar
squared mass matrix. Thus, the depth of a potential at a
stationary point that breaks a given symmetry, relative to
the normal minimum, is related to the squared mass matrix
of the scalar particles directly linked with that symmetry.
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APPENDIX A: CHARGE BREAKING—THE
KINETIC TERMS

In this Appendix we present a basis and gauge indepen-
dent definition of the charge-breaking vacua. This could be
done by looking at the Goldstone bosons in the scalar mass
matrix, but it is easier to look at the mass of the photon
instead. The kinetic terms for the scalar fields are

(AD)

! 2
. 8 §
<lalu - ET‘IWZ' - EBl‘v)(I)l I ,
where W¢, (a = 1,2,3) and B, are the SU(2), and U(1)y
gauge bosons, respectively, and 7, (a = 1,2, 3) are the
Pauli matrices. After spontaneous symmetry breaking we
obtain mass terms for the gauge fields given by

1 I g'B, +gW  2gWh (VE‘)
g'B, —gW3 |\ V!

4 \/igWZ’
1o w2
WP — W — WM + lWM
I \/E “ \/z

After some reorganization, the result is proportional to
WPH
W
W3,u ,
¢ gu
8

2
. (A2)

where

W), — iW;
Jd ! M (A3)

!
(W;f, W2, W3, %BM>M?B (A4)

where

0 V2t
V2t e
dp |

2 d|2 2
[ve]* + wd* |wt]? — [of

e e N P e P

(AS)
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for each doublet ®; (i = 1, ..
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., N). Summing over all doublets and introducing the complex vectors

z, = {vi vh vl za =i, vg, i), (A6)
the mass matrix may be written as
y |z, 17 g |z4l? P E)r p 8 gzd “Zy
ME=ZMEZ=1 0 0 bl Pl | AP
V22020 V220020 Nzl = lzal? 1z 2l

with the notation

N
(2 2a)* = 24" 20 = Y (V)WL (A8)
i=1

The determinant becomes

detMSB = 4(|Zu|2 + |Zd|2)2[|zu|2|2d|2 - |Zd : Zu|2]-
(A9)

This allows us to define the charge-breaking (CB) vac-
uum in a completely basis and gauge independent fashion.
Indeed, in order for the vacuum to conserve charge, i.e., to
conserve U(1)gjy,, We need to have a massless photon. But
that implies that the determinant in Eq. (A9) must vanish.
Any combination of vevs {v¥, v9} for which this does not
occur is therefore a CB stationary point. As is easily seen

{
from Eq. (A9), we cannot get a CB vacuum with only one
Higgs doublet, a well known result.

APPENDIX B: A THREE HIGGS-DOUBLET
POTENTIAL WITHOUT EXPLICIT CP
VIOLATION

In this Appendix we give a specific example of a 3HDM
potential without explicit CP breaking for which one finds
a CB minimum deeper than a normal one. Since no explicit
CP breaking occurs, we work in a basis where all {u, A} are
real. The values of the parameters are given in Tables I and
IL

All remaining parameters are obtained from these using
the symmetries of {u, A} expressed in Eq. (3). As men-
tioned this set of parameters gives us a normal minimum
and a CB one. The values of the vevs obtained are given in

TABLE 1.  Values of the u parameters (GeV?).

M1 M2 M3 M22 M23 M33
—17.0655 X 10* 1.6359 x 10* —2.0184 x 10* —1.2587 X 10* —1.7382 x 10* 5.0687 X 10*
TABLE II. Values of the A parameters.

A M USIRE A A3 M3 Ao USERE! A1
0.6385 —0.4227 —0.0347 0.2500 0.3128 0.8696 —0.0987 0.2285 0.3917
Ao Aoo3 M2t Aas2 AMaj3 M3 i3 M3 AM3o3 A33i
—-0.3132 0.1735 0.1780 —0.0190 0.4370 0.1852 —0.1830 0.3268 0.1620
A3 A1333 Apx An23 An33 A3 A3 A333 A33,33
—0.1566 —0.2230 0.2373 —0.2803 —0.1203 0.0536 0.4147 0.1545 0.5368
TABLE III. Values of the vevs for the normal and CB minima (GeV).
vy vy U3 Vel Ve @
225.2135 —41.9564 89.6355 325.5199 343.9166 17.9887
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Table III (we considered a CB minimum with the phase &,
equal to zero).

With these vevs, one finds the values of the potential
quoted in the main text. Using the methods developed in
the first paper of [1], it is a simple matter to write down the
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squared mass matrices for the scalar fields. They are found
to have, other than the expected Goldstone bosons, only
positive eigenvalues for both the CB and N stationary
points, thus proving that both are minima.
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By “vacuum’ we mean any vev configuration at a sta-
tionary point, not necessarily at a minimum. In fact many
of these ‘“‘vacua” may well end up being revealed as
saddle points or maxima, as occurs in the 2HDM [1].
Since in Eq. (16) v¥ and »§ are real, we may change the
notation into v = a, v{ = v;e " °, and ¢ = v,. We may
then apply an SU(2) gauge transformation combined with
a (hypercharge) U(l) transformation: e /07:/2¢i01/2 =
(5 ), where 1 is the 2 X 2 unit matrix. This transforms
Eq. (16) into Eq. (17).

The demonstration is trivial, using the stationarity con-
ditions for the normal minimum in Eq. (5), the form of the
CB vevs given in Eq. (46), and the definition of (M%)N in
Eq. (31).
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