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We consider an approximation procedure to evaluate the finite-temperature one-loop fermionic density
in the presence of a chiral background field which systematically incorporates effects from inhomoge-
neities in the chiral field through a derivative expansion. We apply the method to the case of a simple low-
energy effective chiral model which is commonly used in the study of the chiral phase transition, the linear
�-model coupled to quarks. The modifications in the effective potential and their consequences for the
bubble nucleation process are discussed.
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I. INTRODUCTION

It is commonly accepted that QCD at sufficiently high
temperatures undergoes a phase transition to a new state of
matter, the quark-gluon plasma (QGP), which was presum-
ably present in the early universe [1,2]. Compelling lattice
QCD results corroborate this belief [3], and experiments in
ultrarelativistic heavy-ion collisions [4,5] at BNL-RHIC
have recently shown data that clearly point to a new state of
matter [6].

To model the mechanism of chiral symmetry breaking
present in QCD, and to study the dynamics of phase
conversion after a temperature-driven chiral transition,
one can resort to low-energy effective models [7–16]. In
particular, to study the mechanisms of bubble nucleation
and spinodal decomposition in a hot expanding plasma
[17], it is common to adopt the linear �-model coupled
to quarks [18], where the latter comprise the hydrodynamic
degrees of freedom of the system. The gas of quarks
provides a thermal bath in which the long-wavelength
modes of the chiral field evolve, and the latter plays the
role of an order parameter in a Landau-Ginzburg approach
to the description of the chiral phase transition [11–14].
The standard procedure is then integrating over the fermi-
onic degrees of freedom, using a classical approximation
for the chiral field, to obtain a formal expression for the
thermodynamic potential:

 ��T;�;�� � V��� �
T

V
lndet

�
�G�1

E �M����
T

�
; (1)

where V��� is the classical self-interaction potential for the
bosonic sector, GE is the fermionic Euclidean propagator,
M��� is the effective fermion mass in the presence of the
chiral field background, T is the temperature and V is the
volume of the system. From the thermodynamic potential
(1), one can obtain all the physical quantities of interest.

To actually compute correlation functions and thermo-
dynamic quantities, one has to evaluate the fermionic
determinant that results from the functional integration
over the quark fields within some approximation scheme.
Alternatively, one can consider the fermionic density
which will appear as a source term in the equation of

motion for the chiral field. In the case of one-dimensional
systems one can often resort to exact analytical methods,
such as the inverse scattering technique [19]. In practice,
however, the determinant is usually calculated to one-loop
order assuming a homogeneous and static background field
[20]. Nevertheless, for a system that is in the process of
phase conversion after a chiral transition, one expects
inhomogeneities in the chiral field configuration due to
fluctuations to play a major role in driving the system to
the true ground state. Hence, their effects should in prin-
ciple be included in the computation of the fermionic
determinant.

In the case of high-energy heavy ion collisions, hydro-
dynamical studies have shown that significant density in-
homogeneities may develop dynamically when the chiral
transition to the broken symmetry phase takes place [13]
(see also [12] for an analysis in a different context). Their
pattern and intensity might indeed provide some insight on
the nature of the transition as well as on the location of an
eventual critical point. If the freeze-out in heavy ion colli-
sions occurs shortly after a first-order chiral transition,
inhomogeneities generated during the late stages of the
nonequilibrium evolution of the order parameter might
leave imprints on the final spatial distributions and even
on the integrated, inclusive abundances [21].

In this paper we consider an approximation procedure to
evaluate the finite-temperature fermionic density in the
presence of a chiral background field which systematically
incorporates effects from inhomogeneities in the bosonic
field through a gradient expansion. The method is valid for
the case in which the chiral field varies smoothly, and
allows one to extract information from its long-wavelength
behavior, incorporating corrections order by order in the
derivatives of the field [22]. This approach has been suc-
cessfully used to treat systems of low-dimensionality at
zero temperature in condensed matter physics [23]. Here
we consider a three-dimensional system at finite tempera-
ture. We apply the method to the case of the linear�-model
coupled to quarks, which provides a convenient framework
for the study of bubble nucleation and spinodal decom-
position in the case of a first-order chiral transition.
Nevertheless, the results presented below are quite general
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and may be of interest also in cosmology or in condensed
matter systems.

The paper is organized as follows. Section II presents
briefly the low-energy effective model adopted in this
paper. In Sec. III we introduce the method to incorporate
systematically effects from inhomogeneities in the chiral
field in the computation of the fermionic density. Results
for the (well-known) leading term and for the first non-
trivial corrections are discussed in Sec. IV. There, we also
consider the modifications undergone by the effective po-
tential and their consequences to the process of nucleation.
Section V contains our final remarks.

II. EFFECTIVE MODEL

Let us consider a scalar field � coupled to fermions  
according to the Lagrangian

 L � � �i��@� ���0 �M���� � 1
2@��@

��� V���:

(2)

where � is the fermionic chemical potential, M��� is the
effective mass of the fermions and V��� is a self-
interaction potential for the bosonic field.

In the case of the linear �-model coupled to quarks, �
represents the � direction of the chiral field � � ��; ~��,
where �i are pseudoscalar fields playing the role of the
pions, which we drop here for simplicity. The pion direc-
tions play no major role in the process of phase conversion
we have in mind, as was argued in Ref. [11], so we focus on
the sigma direction in what follows. However, the coupling
of pions to the quark fields might be quantitatively impor-
tant in the computation of the fermionic determinant in-
homogeneity corrections. This issue makes the com-
putation technically more involved and will be addressed
in a future publication. The field  plays the role of the
constituent-quark field q � �u; d�, and � � �q is the
quark chemical potential. The ‘‘effective mass’’ is given
by M��� � gj�j, and V��� � ��2=4���2 � ~�2 � v2�2 �

hq� is the self-interaction potential for �. The parameters
above are chosen such that chiral SUL�2� � SUR�2� sym-
metry is spontaneously broken in the vacuum. The vacuum
expectation values of the condensates are h�i � f� and
h ~�i � 0, where f� � 93 MeV is the pion decay constant.
The explicit symmetry breaking term is due to the finite
current-quark masses and is determined by the PCAC
relation, giving hq � f�m2

�, where m� � 138 MeV is
the pion mass. This yields v2 � f2

� �m2
�=�2. The value

of �2 � 20 leads to a �-mass, m2
� � 2�2f2

� �m2
�, equal

to 600 MeV. In mean field theory, the purely bosonic part of
this Lagrangian exhibits a second-order phase transition
[24] at Tc �

���
2
p
v if the explicit symmetry breaking term,

hq, is dropped. For hq � 0, the transition becomes a
smooth crossover from the restored to broken symmetry
phases. For g > 0, one has to include a finite-temperature
one-loop contribution from the quark fermionic determi-

nant to the effective potential as indicated in Eq. (1). When
the coupling between quarks and the chiral field, g, is large
enough, the system exhibits a first-order phase transition
even at � � 0 [9,11,13]. When we decrease g, the strength
of this first-order transition is weakened. At g 	 3:7, the
latent heat vanishes and we have a second-order critical
point at � � 0. In what follows we keep the explicit
symmetry breaking term hq� and consider the case g �
5:5, where the first-order line goes all the way down to
� � 0, since we are mainly concerned with the effects
from inhomogeneities in the process of homogeneous
nucleation.

The Euler-Lagrange equation for static chiral field con-
figurations contains a term which represents the fermionic
density, �:

 r2� �
@V
@�
� g��T;�;��; (3)

and the density of fermions at a given point ~x0 has the form

 �� ~x0� � Sp
�
~x0

�������� 1

G�1
E �M�x̂�

�������� ~x0

�
; (4)

where j ~x0i is a position eigenstate with eigenvalue ~x0, and
Sp represents a trace over fermionic degrees of freedom,
such as color, spin and isospin.

Assuming a homogeneous background field, one can
compute the one-loop fermionic density in a simple way
[20]. In this case, the correction coming from the integra-
tion over the fermions can be directly incorporated into an
effective potential for the chiral field, as will be shown
below. However, perfect homogeneity is a very strong
hypothesis if one is interested in the dynamics of a phase
transition. On the other hand, the correct determinant
would have to be computed with an arbitrary profile for
the background field. In a few examples, one can do it
formally for one-dimensional systems [19]. For higher
dimensions, however, one must adopt some approximation
scheme to take into account inhomogeneity effects. In the
next section, we present a framework to incorporate sys-
tematically derivative corrections to the density �� ~x�. The
only assumption made on the behavior of the background
field is that it varies very smoothly.

III. INHOMOGENEITY CORRECTIONS

In order to take into account inhomogeneity effects of
the chiral background field, �, encoded in the position
dependence ofM in (4), we resort to a derivative expansion
as explained below.

In momentum representation, the expression for the
fermionic density assumes the form
 

�� ~x0� � SpT
X
n

Z d3k

�2��3
e�i ~k
 ~x0

�
1

�0�i!n ��� � ~� 
 ~k�M�x̂�
ei ~k
 ~x0 ; (5)
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where !n � �2n� 1��T are Matsubara frequencies for
fermions [20]. One can transfer the ~x0 dependence to
M�x̂� through a unitary transformation, obtaining

 �� ~x0� � SpT
X
n

Z d3k

�2��3

�
1

�0�i!n ��� � ~� 
 ~k�M�x̂� ~x0�
; (6)

where one should notice that ~x0 is a c-number, not an
operator.

Now we expand M�x̂� ~x0� around ~x0:
 

M�x̂� ~x0� � M� ~x0� ��M�x̂; ~x0�

� M� ~x0� � riM� ~x0�x̂
i � 1

2rirjM� ~x0�x̂
ix̂j

� 
 
 
 ; (7)

and use x̂i � �irki to write

 

�� ~x0� � SpT
X
n

Z d3k

�2��3
1

�0�i!n ��� � ~� 
 ~k�M� ~x0�

�
1� �M��irki ; ~x0�

1

�0�i!n ��� � ~� 
 ~k�M� ~x0�

�
�1
: (8)

To study the dynamics of phase conversion after a chiral transition, one can focus on the long-wavelength properties of
the chiral field. From now on we assume that the static background, M� ~x�, varies smoothly and fermions transfer a small
ammount of momentum to the chiral field, so that �M=M 1. Under this assumption, we can expand the expression
inside brackets in Eq. (8) in a power series:

 �� ~x� � SpT
X
n

Z d3k

�2��3
1

�0�i!n ��� � ~� 
 ~k�M� ~x�

X
‘

��1�‘
�

�M��irki ; ~x�
1

�0�i!n ��� � ~� 
 ~k�M� ~x�

�
‘
: (9)

Equation (9), together with

 �M��irki ; ~x� � riM� ~x�
�
1

i

�
rki �

1

2
rirjM� ~x�

�

�
1

i

�
2
rkirkj � 
 
 
 ; (10)

provides a systematic procedure to incorporate corrections
brought about by inhomogeneities in the chiral field to the
quark density, so that one can calculate �� ~x� � �0� ~x� �
�1� ~x� � �2� ~x� � 
 
 
 order by order in powers of the de-
rivative of the background, M� ~x�.

The new corrections will bring higher-order derivatives
to the equation of motion for the chiral field. In particular,
as will be seen below, the first nontrivial inhomogeneity
contribution will modify the Laplacian term in Eq. (3), and
can be seen as a correction to the surface tension in the
process of bubble nucleation.

This is a quite general method to approximate the fer-
mionic density and could be used in a variety of low-
energy effective field theory models for the study of the
dynamics of the chiral transition. In the next section we
apply this method to the case of the linear �-model
coupled to quarks.

IV. RESULTS

A. Leading term

The leading-order term in this gradient expansion for
�� ~x� can be calculated in the standard fashion [20] and
yields the well-known mean field result for the scalar quark
density

 �0 � �q
Z d3k

�2��3
M���=Ek���

e�Ek�����q�=T � 1
� ��q ! ��q�;

(11)

where �q � 12 is the color-spin-isospin degeneracy factor,

Ek��� � � ~k
2
�M2����1=2, and M��� � gj�j plays the

role of an effective mass for the quarks. The net effect of
this leading term is correcting the potential for the chiral
field, so that we can rewrite Eq. (3) as

 r2� �
@Veff

@�
; (12)

where Veff � V��� � Vq��� and
 

Vq � ��qT
Z d3k

�2��3
ln�e�Ek�����q�=T � 1�

� ��q ! ��q�: (13)

The potentials Vq and Veff for several values of the tem-
perature (at �q � 0) are displayed in Fig. 1 and 2, respec-
tively, assuming g � 5:5. In this case, the chiral phase
transition is of first order even for a vanishing chemical
potential, and Tc 	 124 MeV. The barrier for nucleation
disappears at Tsp 	 108 MeV, where the system reaches
the spinodal line [11].

This kind of effective potential is commonly used as the
coarse-grained thermodynamic potential in a phenomeno-
logical description of the chiral transition for an expanding
quark-gluon plasma created in a high-energy heavy-ion
collision [9–11,13]. From the modified field equation (12),
one can study, for instance, the phenomena of bubble
nucleation and spinodal decomposition. However, the pres-
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ence of a nontrivial background field configuration, e.g. a
bubble, can in principle dramatically modify the Dirac
spectrum [25], hence the determinant. In the case of con-
densed matter systems, where electronic doping often
plays a major role, the presence of fermionic bound states
can deeply affect the dynamics of the phase transition. This
is the case in the presence of a bubble background, where
besides unstable critical bubbles one can find metastable
configurations, depending on the relative occupation of
bound states, and a modification in the value of the nuclea-
tion rate [19,26,27]. In the case of a chiral model, analo-
gous effects can in principle appear for a nonzero quark
chemical potential. In any case, one expects the effective
potential to be modified by the effect of fluctuations of the
chiral field on the fermionic density, which motivates the
investigation of the next term in the expansion, which
contains some information about the inhomogeneity of
the bosonic field.

B. First corrections

The next nontrivial term in the expansion contains two
contributions: one coming from �1 and another from �2.
This is due to the rearrangement of powers of the gradient
operator. This term will correct the Laplacian piece in the
chiral field equation. Dropping zero-temperature contribu-
tions which can be absorbed by a redefinition of the bare
parameters in V, a long but straightforward calculation
yields

 ��1 � �2� � ��r
2M�Wq�T;�q;��; (14)

where

 Wq�T;�q;�� �
�q

2�2

Z 1
0
dkk2�H�Ek; T;�q�

�H�Ek; T;��q��; (15)

 

H�Ek;�q; 	� � �	
4

�
M̂4

12

~k2

E5
k

�
�e4	�Ek��q� � 11e3	�Ek��q� � 11e2	�Ek��q� � e	�Ek��q��n5

F�Ek;�q�

� 	3

�
M̂2

24

~k2

E4
k

�
5M̂4

6

~k2

E6
k

�
�e3	�Ek��q� � 4e2	�Ek��q� � e	�Ek����n4

F�Ek;�q�

� 	2

�
�
M̂2

16

1

E3
k

�
1

24

~k2

E3
k

�
M̂2

4

~k2

E5
k

�
15M̂4

4

~k2

E7
k

�
�e	�Ek��q� � e2	�Ek��q��n3

F�Ek;�q�

� 	
�
1

4

1

E2
k

�
3M̂2

16

1

E4
k

�
1

8

~k2

E4
k

�
5M̂2

8

~k2

E6
k

�
35M̂4

4

~k2

E8
k

�
e	�Ek���n2

F�Ek;�q�

�

�
1

8

1

E3
k

�
3

16

M̂2

E5
k

�
1

8

~k2

E5
k

�
5M̂2

8

~k2

E7
k

�
35M̂4

4

~k2

E9
k

�
nF�Ek;�q�; (16)

and nF�Ek;�q� is the Fermi-Dirac distribution. The derivation of H�Ek; T;�q� is not particularly illuminating (a few steps
are presented in the appendix). However, in the low-temperature limit, corresponding to 	M� 1, the integral above is
strongly suppressed for high values of k, and the leading term has the much simpler form
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φ (MeV)
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-0.5
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0.5

1

V
ef

f / 
T

4

T = 130 MeV
T = 124 MeV
T = 108 MeV
T = 100 MeV

FIG. 2 (color online). Veff��� in the � direction for different
values of the temperature at �q � 0 and for g � 5:5.
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FIG. 1 (color online). Vq��� for different values of the tem-
perature at �q � 0 and for g � 5:5.
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 Wq�T;�q;�� 	
�q
�2

�������
2�
p

8
e�	jMj�	jMj�3=2; (17)

which gives a better idea of the profile of the first inhomo-
geneity correction. One can already anticipate that it will
be concentrated in the same region where the homogene-
ous correction was significant, i.e. 	M< 1 (cf. Fig. 1),
being exponentially suppressed for higher values of the
field. In fact, a numerical study of the complete Wq shows
that this function is peaked around � � 0 and non-
negligible for 	j�j< 1 (see Fig. 3).

The Euler-Lagrange equation for the chiral field up to
this order in the gradient expansion reads

 r2� � �1� gWq�T;�q;���
�1
@Veff�T;�q;��

@�
� V 0in���:

(18)

Here we used the fact that (1� gWq) is a positive definite
quantity, and defined a new ‘‘effective potential’’ that con-
tains all the corrections up to this order in the gradient
expansion, Vin. One should not confuse Vin with the stan-
dard definition of the one-loop effective potential in field
theory derived for a constant background [28]. Never-
theless, we keep the name effective potential for Vin for
convenience in the description of nucleation that follows.

The complete new effective potential can be obtained
from our previous results by numerical integration. In order
to proceed analytically, though, we choose to fit its deriva-
tive, which we know exactly up to this order, by a poly-
nomial of the fifth degree. Actually, we know that the
commonly used effective potential, Veff � V � Vq, can
hardly be distinguished from a fit with a polynomial of
sixth degree in the region of interest for nucleation [29].
Working with fits will be most convenient for using well-
known results in the thin-wall approximation to estimate
physical quantities that are relevant for nucleation, such as

the surface tension and the free energy of the critical
bubble. Results for the fits of V 0in��� for �q � 0 are shown
in Fig. 4.

We can now integrate analytically the polynomial ap-
proximation to the derivative of the complete effective
potential. In Fig. 5 we display the curves for Veff and Vin

for a few values of temperature and �q � 0.
From Fig. 5 one can notice a few consequences of the

inhomogeneity correction. The first general effect is the
smoothening of the effective potential. In particular, and
most importantly, the barrier between the symmetric phase
and the broken phase is significantly diminished, as well as
the depth of the broken phase minimum, although we still
have a first-order phase transition barrier. Therefore, one
can expect an augmentation in the bubble nucleation rate.
In principle, one should have better results from calcula-
tions within the thin-wall approximation. Also, the critical
temperature moves up slightly.

C. Effects on nucleation

Let us now consider the effects of the first inhomoge-
neity correction on the process of phase conversion driven
by the nucleation of bubbles [30]. To work with approxi-
mate analytic formulas, we follow Ref. [11] and express
Vin over the range 0 � � � T in the familiar Landau-
Ginzburg form

 Veff 	
X4

n�0

an�n: (19)

Although this approximation is obviously incapable of
reproducing all three minima of Vin, this polynomial
form is found to provide a good quantitative description
of Vin in the region of interest for nucleation, i.e. where the
minima for the symmetric and broken phases, as well as the
barrier between them, are located.

A quartic potential such as Eq. (19) can always be
rewritten in the form

FIG. 3 (color online). gWq��� for different values of the
temperature at �q � 0 and for g � 5:5.

-0.75 -0.5 -0.25 0 0.25 0.5 0.75
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V
’ in

 / 
 T

3

T = 132 MeV
T = 124 MeV
T = 116 MeV
T = 108 MeV

FIG. 4 (color online). Fits for V0in��� for different values of the
temperature at �q � 0 and for g � 5:5. The lines shown in the
box correspond to the exact results.
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 U�’� � 
�’2 � a2�2 � j’: (20)

The coefficients above are defined as follows:

 
 � a4; (21)

 a2 �
1

2

�
�
a2

a4
�

3

8

�
a3

a4

�
2
�
; (22)

 j � a4

�
a1

a4
�

1

2

a2

a4

a3

a4
�

1

8

�
a3

a4

�
3
�
; (23)

 ’ � ��
1

4

a3

a4
: (24)

The new potential U�’� reproduces the original Vin��� up
to a shift in the zero of energy. We are interested in the
effective potential only between Tc and Tsp. At Tc, we will
have two distinct minima of equal depth. This clearly
corresponds to the choice j � 0 in Eq. (20) so that U has
minima at ’ � �a and a maximum at ’ � 0. The mini-
mum at ’ � �a and the maximum move closer together
as the temperature is lowered and merge at Tsp. Thus, the
spinodal requires j=
a3 � �8=3

���
3
p

in Eq. (20). The pa-

rameter j=
a3 falls roughly linearly from 0, at T � Tc, to
�8=3

���
3
p

at the spinodal.
The explicit form of the critical bubble in the thin-wall

limit is then given by [19]

 ’c�r;�; Rc� � ’f �
1

�
������
2

p

�
1� tanh

�
r� Rc
�

��
; (25)

where ’f is the new false vacuum, Rc is the radius of the
critical bubble, and � � 2=m, with m2 � U00�’f�, is a
measure of the wall thickness. The thin-wall limit corre-
sponds to �=Rc  1 [19], which can be rewritten as
�3jjj=8
a3�  1. This small parameter has the value of
1=

���
3
p

at the spinodal, which suggests that the thin-wall
approximation might be qualitatively reliable for our pur-
poses. Nevertheless, it was shown in [11] that the thin-wall
limit becomes very imprecise as one approaches the spi-
nodal. In this vein, the analysis presented below is to be
regarded as semiquantitative. To be consistent we compare
results from the homogeneous calculation to those includ-
ing the inhomogeneity correction within the same
approximation.

In terms of the parameters 
, a, and j defined above, we
find

FIG. 5 (color online). Veff and Vin��� for different values of the temperature T � �108�a�; 116�b�; 124�c�; 132�d�� MeV at �q � 0
and for g � 5:5.
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 ’t;f 	 �a�
j

8
a2 ; (26)

 � �
�

1


�3’2
f � a

2�

�
1=2

(27)

in the thin-wall limit. Determination of the critical radius
requires the surface tension, �, defined as

 � �
Z 1

0
dr
�
d’b
dr

�
2
	

2

3
�3 : (28)

The critical radius then becomes Rc � �2�=�U�, where
�U � V��f� � V��t� 	 2ajjj. The free energy of a criti-
cal bubble is finally given by Fb � �4��=3�R2

c. From
knowledge of Fb, one can evaluate the nucleation rate ��
e�Fb=T . In calculating thin-wall properties, we shall use the
approximate forms for ’t, ’f, �, and �U for all values of
the potential parameters.

To illustrate the effect from the inhomogeneity correc-
tion, we compute the critical radius and Fb=T for three
different values of the temperature. For T � 108 MeV,
corresponding to the spinodal temperature, which is not
modified by the first inhomogeneity correction, the cor-
rected values are Rc 	 0:98 fm and Fb=T 	 0:20, as com-
pared to Rc 	 1:1 fm and Fb=T 	 0:9 in the homogeneous
case. The same computation for T � 116 MeV yields
Rc 	 2:15 fm and Fb=T 	 1:14, as compared to Rc 	
2:2 fm and Fb=T 	 2:1. At T � 124 MeV, which corre-
sponds to the critical temperature for the homogeneous
case, the critical radius and Fb=T diverge in the homoge-
neous computation, whereas Rc 	 35 fm and Fb=T 	 394
including inhomogeneities. The numbers above clearly
indicate that the formation of critical bubbles is much
less suppressed in the scenario with inhomogeneities,
which will in principle accelerate the phase conversion
process after the chiral transition.

V. SUMMARY AND OUTLOOK

We have introduced a systematic procedure to evaluate
inhomogeneity corrections to the finite-temperature fermi-
onic density in the presence of a chiral background field,
which incorporates effects from fluctuations in the bosonic
field through a gradient expansion at finite temperature and
density. Higher-order contributions give more nonlocal
corrections to the effective Euler-Lagrange equation for
the chiral field, and the condition for the validity of the
method is a smooth variation of the chiral field, which
should be enough in the analysis of its long-wavelength
behavior in the phase transition.

Incorporating the first inhomogeneity correction in the
computation of the effective potential of the linear
�-model coupled to quarks, we found that the latter is
significantly modified. Besides a general smoothening of
the potential, the critical temperature moves upward and

the hight of the barrier separating the symmetric and the
broken phase vacua diminishes appreciably. As a direct
consequence, the radius of the critical bubble goes down,
as well as its free energy, and the process of nucleation is
facilitated. Although the numbers presented above should
be regarded as simple estimates, since they rely on a
number of approximations, the qualitative behavior is
clear. In a detailed quantitative analysis, one should not
only integrate numerically the effective potential and relax
the thin-wall approximation, but also include the pion-
quark interaction in the computation of the fermionic
density. We believe that the contribution from the pion
sector will enhance the effect from inhomogeneities.

In all the discussion above, we intentionally ignored
corrections coming from bosonic fluctuations, which
would result in a bosonic determinant correction to the
effective potential [31]. To focus on the effect of an in-
homogeneous background field on the fermionic density,
we treated the scalar field essentially as a ‘‘heavy’’ (clas-
sical) field, whereas fermions were assumed to be ‘‘light.’’

Experimental signatures of inhomogeneities for high-
energy heavy ion collisions were discussed, for instance,
in Refs. [13,21]. In particular, inhomogeneities seem to
favor an ‘‘explosive’’ scenario [16] for the phase conver-
sion even at early stages of nucleation. However, one
should first incorporate dissipation and noise effects, which
tend to retard the explosion [29], before estimating the time
scales involved. This analysis will be left for a future
publication.
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APPENDIX

In this appendix we sketch the main steps to build the
function Wq�T;�q;�� that corrects the Laplacian in the
Euler-Lagrange equation for the chiral field.

The first inhomogeneity correction has contributions
from �1 and �2. The contribution coming from �1 is
proportional to rirj�:

 ��2�1 � ~x� � �Tr�
Z
K

�0k0 � ~� 
 ~k�M� ~x�

k2
0 � E

2
k

�

�
1

2
rirjM� ~x0�x̂ix̂j

��
�0k0 � ~� 
 ~k�M� ~x�

k2
0 � E

2
k

�
;

(A1)

where we use a compact notation for the sum-integrals

EFFECTS FROM INHOMOGENEITIES IN THE CHIRAL . . . PHYSICAL REVIEW D 74, 085013 (2006)

085013-7



 

Z
K
� T

X
n

Z d3k

�2��3
; (A2)

K � �k0; ~k� � �i!n ��q; ~k�, and Tr� is a trace over Dirac gamma matrices.
There is also a contribution proportional to ri�rj� coming from �2:

 ��1�2 � ~x� � Tr�
Z
K

�0k0 � ~� 
 ~k�M� ~x�

k2
0 � E

2
k

�
riM� ~x�x̂

i
�
�0k0 � ~� 
 ~k�M� ~x�

k2
0 � E

2
k

��
2
: (A3)

Up to this order in derivatives, we can write

 �1 � �2 � g
Z d3k

�2��3
�qfr2M̂� ~x��F�Ek;�q; 	� � F�Ek;��q;	�� � � ~k 
 r�2M� ~x��G�Ek;�q; 	� �G�Ek;��q;	��g;

(A4)

where 	 � 1=T,
 

F�Ek;�q; 	� � �	
2

�
�

1

24

M2

E3
k

��
e2	�Ek��q� � e	�Ek��q�

�e	�Ek��q� � 1�3

�
� 	

�
1

22E2
k

�
3

24

M2

E4
K

��
e	�Ek��q�

�e	�Ek��q� � 1�2

�

�

�
1

23E3
k

�
3

24

M2

E5
K

��
1

�e	�Ek��q� � 1�

�
(A5)

and

 

G�Ek;�q; 	� � �	
4

�
1

22

M4

E5
k

��
e4	�Ek��q� � 11e3	�Ek��q� � 11e2	�Ek��q� � e	�Ek��q�

�e	�Ek��q� � 1�5

�

� 	3

�
1

23

M2

E4
K

�
5

2

M4

E6
K

��
e3	�Ek��q� � 4e2	�Ek��q� � e	�Ek��q�

�e	�Ek��q� � 1�4

�

� 	2

�
�

1

23E3
K

�
3

22

M2

E5
K

�
45

22

M4

E7
K

��
e2	�Ek��q� � e	�Ek��q�

�e	�Ek��q� � 1�3

�

� 	
3

22

�
�

1

2E4
K

�
5

2

M2

E6
K

� 35
M4

E8
K

��
e	�Ek��q�

�e	�Ek��q� � 1�2

�
�

3

22

�
�

1

2E5
K

�
5

2

M2

E7
K

� 35
M4

E9
K

��
1

�e	�Ek��q� � 1�

�
:

(A6)

Rewriting the term proportional to ~k 
 r in a more
convenient form, using E2

k �
~k2
�M2, and exploring

some symmetries in the integrands, it is straightforward
to arrive at the final form:

 �1 � �2 � r
2�� ~x�

g�q
2�2

Z
dk ~k2

�H�Ek;�q; 	�

�H�Ek;��q;	��; (A7)

where

 H�Ek;�q; 	� � F�Ek;�q; 	� �
1
3
~k2G�Ek;�q; 	�; (A8)

which gives the correction to the Laplacian.
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