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The influence of the gravity acceleration on the regularized energy-momentum tensor of the quantized
electromagnetic field between two plane-parallel conducting plates is derived. We use Fermi coordinates
and work to first order in the constant acceleration parameter. A perturbative expansion, to this order, of
the Green functions involved and of the energy-momentum tensor is derived by means of the covariant
geodesic point-splitting procedure. In correspondence to the Green functions satisfying mixed and gauge-
invariant boundary conditions, and Ward identities, the energy-momentum tensor is covariantly conserved
and satisfies the expected relation between gauge-breaking and ghost parts, while a new simple formula
for the trace anomaly is obtained to first order in the constant acceleration. A more systematic derivation is
therefore obtained of the theoretical prediction according to which the Casimir device in a weak
gravitational field will experience a tiny push in the upwards direction.
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I. INTRODUCTION

The use of Green-function methods in curved space-
time, and the theoretical analysis of the Casimir effect,
are two relevant branches of modern quantum field theory.
In the former case, some progress along the years can be
outlined as follows.

(i) In Ref. [1], the covariant geodesic point separation
is applied to evaluate the vacuum expectation value
of the energy-momentum tensor T�� for a massive
scalar field in an arbitrary gravitational field. In
Ref. [2], the same author performs regularization,
renormalization and covariant geodesic point sepa-
ration for spin 0; 1=2 and 1 fields, massive or mass-
less, on an arbitrary curved background; he also
finds which terms in the vacuum expectation value
of T�� vanish within this framework.

(ii) In Ref. [3], the authors obtain a momentum-space
representation of the Feynman propagator G�x; x0�
for scalar and spin- 1

2 fields propagating in arbitrary
curved spacetimes. Their construction uses
Riemann normal coordinates with origin at the
point x0 and is therefore only valid for points x
lying in a normal neighborhood of x0. The resulting
momentum-space representation is equivalent to
the Schwinger-DeWitt proper-time representation.

(iii) In Ref. [4], electromagnetic and scalar fields are
quantized in the region near an arbitrary smooth
boundary. The authors find that the components of
hT���x�iren generically diverge in a nonintegrable
manner as x approaches the boundary of the mani-
fold from the interior. They therefore conclude that
perfect conductor boundary conditions are patho-

logical, in that the distribution of energy-
momentum that they would entail if they were
actually to obtain for arbitrarily high frequencies
and short wavelengths would be such as to produce
an infinite physically observable gravitational field.

(iv) In Ref. [5], the authors derive the symmetric
Hadamard representation for scalar and photon
Green functions, and use these representations to
give a simple definition for their associated renor-
malized energy-momentum tensors.

(v) In Ref. [6], the full asymptotic expansion of the
Feynman photon Green function at small values of
the world function, as well as its explicit depen-
dence on the gauge parameter, are obtained without
adding by hand a mass term to the DeWitt-
Faddeev-Popov Lagrangian. Coincidence limits of
second covariant derivatives of the associated
Hadamard function are also evaluated.

On the other hand, an important property of quantum
electrodynamics is that suitable differences of zero-point
energies of the quantized electromagnetic field can be
made finite and produce measurable effects such as the
tiny attractive force among perfectly conducting parallel
plates known as the Casimir effect [7]. This is a remarkable
quantum mechanical effect that makes itself manifest on a
macroscopic scale. For perfect reflectors and metals the
Casimir force can be attractive or repulsive, depending on
the geometry of the cavity, whereas for dielectrics in the
weak-reflector approximation it is always attractive, inde-
pendently of the geometry [8]. The Casimir effect can be
studied within the framework of boundary effects in quan-
tum field theory, combined with zeta-function regulariza-
tion or Green-function methods, or in more physical terms,
i.e. on considering van der Waals forces [9] or scattering
problems [10]. Casimir energies are also relevant in the
attempt of building a quantum theory of gravity and of the
universe [11].

*Electronic address: giuseppe.bimonte@na.infn.it
†Electronic address: enrico.calloni@na.infn.it
‡Electronic address: giampiero.esposito@na.infn.it
xElectronic address: luigi.rosa@na.infn.it

PHYSICAL REVIEW D 74, 085011 (2006)

1550-7998=2006=74(8)=085011(11) 085011-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.085011


For these reasons, in Ref. [12] we evaluated the force
produced by a weak gravitational field on a rigid Casimir
cavity. Interestingly, the resulting force was found to have
opposite direction with respect to the gravitational accel-
eration; moreover, we found that the current experimental
sensitivity of small-force macroscopic detectors would
make it possible, at least in principle, to measure such an
effect [12]. More precisely, the gravitational force on the
Casimir cavity might be measured provided one were able
to use rigid cavities and find an efficient force modulation
method [12]. Rigid cavities, composed by metal layers
separated by a dielectric layer, make it possible to reach
separations as small as 5� 10 nm and allow to build
multicavity structures, made by a sequence of such alter-
nate layers. If an efficient modulation method could be
found, it would be possible to achieve a modulated force of
order 10�14 N in the earth’s gravitational field. The mea-
sure of such a force, already possible with current small-
force detectors on macroscopic bodies, might open the way
to the first test of the gravitational field influence on
vacuum energy [12]. In Ref. [12], calculations were based
on simple assumptions and the result can be viewed as a
reasonable ‘‘first order’’ generalization of T�� from
Minkowski to curved space-time. The present paper is
devoted to a deeper understanding and to more systematic
calculations of the interaction of a weak gravitational field
with a Casimir cavity. To first order in our approximation
the former value of the force exerted by the field on the
cavity is recovered. But here we also find a trace anomaly
for the energy-momentum tensor.

We consider a plane-parallel Casimir cavity, made of
ideal metallic plates, at rest in the gravitational field of the
earth, with its plates lying in a horizontal plane. We evalu-
ate the influence of the gravity acceleration g on the
Casimir cavity but neglect any variation of the gravity
acceleration across the cavity, and therefore we do not
consider the influence of tidal forces. The separation a
between the plates is taken to be much smaller than the
extension of the plates, so that edge effects can be ne-
glected. We obtain a perturbative expansion of the energy-
momentum tensor of the electromagnetic field inside the
cavity, in terms of the small parameter � � 2ga=c2, to first
order in �. For this purpose, we use a Fermi [13,14]
coordinates system �t; x; y; z� rigidly connected to the cav-
ity. The construction of these coordinates involves only
invariant quantities such as the observer’s proper time,
geodesic distances from the worldline, and components
of tensors with respect to a tetrad [14]. This feature makes
it possible to obtain a clear identification of the various
terms occurring in the metric. In our analysis we adopt the
covariant point-splitting procedure [1,15] to compute the
perturbative expansion of the relevant Green functions.
Gauge invariance plays a crucial role and we check it up
to first order by means of the Ward identity. We also
evaluate the Casimir energy and pressure, and in this way

we obtain a sound derivation of the result in Ref. [12],
according to which the Casimir device in a weak gravita-
tional field will experience a tiny push in the upwards
direction. Use is here made of mixed boundary conditions
on the potential plus Dirichlet conditions on ghost fields.
Concluding remarks are presented in Sec. VI, while rele-
vant details are given in the Appendices.

II. SPIN-1 AND SPACE-TIME FORMALISM

The classical action functional for the Maxwell potential
A��x� reads

 S�A�� � �
1

4

Z
F��F��

�������
�g
p

d4x; (2.1)

where the field strength F�� � r�A� �r�A� � A�;� �

A�;�. By virtue of the gauge invariance of the action, the
differential operator �2S

�A��A�0
is singular (see Appendix A).

To take care of this problem one should add a gauge-
breaking term, which leads to a nonsingular wave operator
Û��0 on the potential. In the Lorenz (this is not Lorentz)
gauge [16], and with the Feynman choice for the gauge
parameter (see Appendix A), this is � 1

2 �r
�A��

2. Last, a
ghost term �;� ;� is necessary, where � and  are inde-
pendent ghost fields [17]. The full action is therefore
 

S�A�; �;  � �
Z �
�

1

4
F��F

�� �
1

2
�r�A��

2 	 �;� ;�

�



�������
�g
p

d4x; (2.2)

with field equations [2]

 

Z
Û��0A�0d4x0 � 0; (2.3)

 

Z
Û�x; x0� �x0�d4x0 � 0; (2.4)

having defined (here ���
0
� g����x; x0�)

 Û ��0 �
�2S

�A��A�0
�

�������
�g
p

����
0

;�
� � R���

��0 �; (2.5)

 Û�x; x0� �
�2S
��� 0

� �
�������
�g
p

�;�
��x; x0�: (2.6)

The energy-momentum tensor is obtained from functional
differentiation of the full action (2.2) according to

 T�� �
2�������
�g
p

�S
�g��

; (2.7)

and turns out to be the sum of three contributions TA, TB,
Tgh resulting from Maxwell action, gauge-breaking term
and ghost action, respectively [2] (no mass term occurs
since we do not add by hand any mass for photons or ghost
fields, unlike Ref. [2]). This leads eventually to the follow-
ing vacuum expectation value:
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 hT��i � hT��A i 	 hT
��
B i 	 hT

��
gh i; (2.8)

where, on defining the photon and ghost Hadamard func-
tions, respectively, as

 H���x; x
0� � h�A��x�; A��x

0��	i � H��0 ; (2.9)

 H�x; x0� � h���x�;  �x0��	i; (2.10)

jointly with
 

hF��F	�i � lim
x0!x

1
4�H��0;�	0 	H��0;	�0 �H�	0;��0 �H	�0;��0

�H��0;�	0 �H��0;	�0 	H�	0;��0 	H	�0;��0 �;

(2.11)

one has

 hT��A i � lim
x0!x
��1

4�g
��g�	 � 1

4g
��g	��g��hF��F	�i�;

(2.12)

 

hT��B i � lim
x0!x
��1

4g
���g��g�	 	 g�	g�� � g��g	��


 �H�	0;�� 	H	�0;��0 ��; (2.13)

 

hT��gh i � lim
x0!x
��1

4g
���g��g�� 	 g��g�� � g��g���


 �H;��0 	H;��0 ��: (2.14)

Following Christensen [2], we separate points symmetri-
cally, i.e.

 �A�;�; A�;	�	 � lim
x0!x

1
2f�A�0;�0 ; A�;	�	 	 �A�;�; A�0;	0 �	g:

(2.15)

In the applications considered in Sec. IV, the coincidence
limit will be taken in two separate steps: first with respect
to time and the coordinates spanning the plates, and even-
tually with respect to the z-coordinate (see Appendix B for
details).

In the implementation of Eq. (2.15) one needs the geo-
desic parallel displacement bivector g��0 (in general, biten-
sors behave as a tensor both at x and at x0) which effects
parallel displacement of vectors along the geodesic from x0

to x. In general, it is defined by the differential equations

 
;�g��0;� � 
;	0g��0;	0 � 0; (2.16)


�x; x0� being the Ruse-Synge world function [18], equal to
half the geodesic distance between x and x0, jointly with the
coincidence limit (boundary condition)

 lim
x0!x

g��0 � �g
�
�0 � � ��� : (2.17)

The bivector g��0 , when acting on a vector B�
0

at x0, gives
the vector �B�, which is obtained by parallel transport ofB�

0

to x along the geodesic connecting x and x0, i.e.

 

�B� � g��0B
�0 : (2.18)

For the reasons described in the Introduction, we use
Fermi coordinates. With our choice, the z axis coincides
with the vertical upwards direction, while the �x; y� coor-
dinates span the plates, whose equations are z � 0 and z �
a, respectively. The resulting line element for a nonrotating
system is therefore [13]
 

ds2 � �c2

�
1	 �

z
a

�
dt2 	 dx2 	 dy2 	 dz2 	 O�jxj2�

� ���dx�dx� � �
z
a
c2dt2; (2.19)

where the perturbation parameter � � 2ga=c2, while ���
is the flat Minkowski metric diag��1; 1; 1; 1�.

III. GREEN FUNCTIONS

For any field theory, once that the invertible differential
operator Uij in the functional integral is given (see
Eq. (A4) in Appendix A), the corresponding Green func-
tions satisfy the condition

 UijG
jk � ��i

k; (3.1)

and are boundary values of holomorphic functions. The
choice of boundary conditions will determine whether we
deal with advanced Green functions G	jk, for which the
integration contour passes below the poles of the integrand
on the real axis, or retarded Green functions G�jk, for
which the contour passes instead above all poles on the
real axis, or yet other types of Green functions. Among
these, a key role is played by the Feynman Green function
Gjk
F , obtained by choosing a contour that passes below the

poles of the integrand that lie on the negative real axis and
above the poles on the positive real axis. If one further
defines the Green function [17]

 

�G jk � 1
2�G

	jk 	G�jk�; (3.2)

one finds in stationary backgrounds (for which the metric is
independent of the time coordinate, so that there exists a
timelike Killing vector field) that the Feynman Green
function has a real part equal to �Gjk, and an imaginary
part equal to the Hadamard function Hjk, i.e.

 Hjk�x; x0� � �2i�Gjk
F �x; x

0� � �Gjk�x; x0��: (3.3)

This relation can be retained as a definition when the
background is nonstationary; in such a case, however,
Hjk�x; x0� is generally no longer real [17].

In particular, the photon Green function G��0 in a curved
space-time with metric g�� solves the equation [6]

 

�������
�g
p

P���x�G��0 � g����x; x0�: (3.4)

The wave operator P�� results from the gauge-fixed action
(2.2) with Lorenz gauge-fixing functional �L�A� � r

�A�,
and having set to 1 the gauge parameter of the general
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theory, so that [cf. Eq. (2.5)]

 P���x� � �����x 	 R���x�; (3.5)

where �x � g��r�r��x�. Since we need the action of the
gauge-field operator P���x� on the photon Green func-
tions, it is worth noticing that

 D���0 � r�G��0 � @�G��0 � ����G��0 ; (3.6)

 Q����0 � r�r�G��0 � r�D���0

� @�D���0 � ����D���0 � ����D���0 : (3.7)

The Christoffel coefficients for our metric (2.19) read

 ��� �
1

2
g���g��; 	 g�;� � g�;��

� �
1

2

�
a
���0�0

��
3
 	 ��0�0

�
3
� � �

3��0
�

0
��: (3.8)

Since the connection coefficients, to first order in �, are
constant, we realize that the Ricci curvature tensor van-
ishes to this order. On expanding (this is, in general, only
an asymptotic expansion)

 G��0 �G
�0�
��0 	 �G

�1�
��0 	 O��2�; (3.9)

we get

 D���0 � @�G��0 � ����G��0 � @�G��0 � ����G
�0�
��0 ;

(3.10)

so that
 

Q����0 � @�@�G��0 � @���
�
��G

�0�
��0 � � ����@�G

�0�
��0

� ����@�G
�0�
��0 ; (3.11)

and finally
 

�xG��0 � g��r�r�G��0

�

�
��� 	 �

z
a
��0�

�
0

�
r�r��G

�0�
��0 	 �G

�1�
��0 �

� ����@�@�G
�0�
��0 	 �@�@�G

�1�
��0

� ����G
�0�
��0;� � ����G

�0�
��0;� � ����G

�0�
��0;��

� �
z
a
��0 �

�
0 @�@�G

�0�
��0 : (3.12)

We therefore get, to first order in �,

 �0G�0���0 � J�0���0 ; (3.13)

 �0G�1���0 � J�1���0 ; (3.14)

where

 J�0���0 � ������x; x
0�; (3.15)

 

�J�1���0 �
z
a
�
����

2
	 �0

��
0
�

�
��x; x0� 	 2��
�	
�G

�0�
	�0;�

	 ��
�	�
G
�0�
��0;	 �

z
a
�G�0���0;00; (3.16)

with �0 � ���@�@� � �@2
0 	 @

2
x 	 @2

y 	 @2
z .

To fix the boundary conditions we note that, on denoting
by ~Et and ~Hn the tangential and normal components of the
electric and magnetic fields, respectively, a sufficient con-
dition to obtain

 

~E tjS � 0; ~HnjS � 0; (3.17)

on the boundary S of the device, is to impose Dirichlet
boundary conditions on A0� ~x�, A1� ~x�, A2� ~x� [19] at the
boundary z � 0, z � a. The boundary condition on A3 is
determined by requiring that the gauge-fixing functional,
here chosen to be of the Lorenz type, should vanish on the
boundary (see Appendix A). This implies

 A�;�jS � 0) A3
;3jS � �g

33@3A3 � g
���3

��A3�jS � 0:

(3.18)

To first order in �, these conditions imply the following
equations for Green functions:

 G�0���0 jS � 0; � � 0; 1; 2; 8 �0; (3.19)

 @3G
�0�
3�0 jS � 0; 8 �0; (3.20)

 G�1���0 jS � 0; � � 0; 1; 2; 8 �0; (3.21)

 @3G
�1�
3�0

��������S
� �

1

2a
G�0�3�0

��������S
; 8 �0; (3.22)

hence we find that the third component of the potential A�
satisfies homogeneous Neumann boundary conditions to
zeroth order in � and inhomogeneous boundary conditions
to first order.

Since J�0���0 is diagonal, by virtue of the homogeneity of

the boundary conditions, G�0���0 turns out to be diagonal. On

the contrary, J�1���0 has two off-diagonal contributions: J�1�03

and J�1�30 , so that G�1���0 is nondiagonal. Let us write down
explicitly the expressions for the various components of
J�1���0 , i.e.

 aJ�1�000 �
z
2
��x; x0� � zG�0�000;00 	

1

2
G�0�000;3; (3.23)

 aJ�1�030 � �G
�0�
330;0; (3.24)

 aJ�1�110 �
z
2
��x; x0� � zG�0�110;00 �

1

2
G�0�110;3; (3.25)
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 aJ�1�220 �
z
2
��x; x0� � zG�0�220;00 �

1

2
G�0�220;3; (3.26)

 aJ�1�330 �
z
2
��x; x0� � zG�0�330;00 �

1

2
G�0�330;3; (3.27)

 aJ�1�300 � �G
�0�
000;0: (3.28)

Now we are in a position to evaluate, at least formally (see
below), the solutions to zeroth and first order, and we get

 G�0���0 � ���0
Z d!d2k

�2��3
e�i!�t�t

0�	i ~k?�� ~x?� ~x0?�gD;N�z; z0�;

(3.29)

having defined

 gD�z; z0;�� �
sin��az<� sin��a� z>�

� sin�a
; 0< z; z0 < a;

(3.30)

 

gN�z; z
0;�� ��

cos��az<�cos��a� z>�
� sin�a

; 0<z;z0<a;

(3.31)

where D, N stand for homogeneous Dirichlet or Neumann
boundary conditions, respectively, z>�z<� are the larger
(smaller) between z and z0, while ~k? has components
�kx; ky�, ~x? has components �x; y�, � �

�����������������
!2 � k2
p

, and

 G�1���0 �
Z d!d2k

�2��3
e�i!�t�t

0�	i ~k?�� ~x?� ~x0?����0 ; (3.32)

where the � components different from zero are written in
Appendix B. A scalar field satisfies the same equations of
the 22 component of the gauge field, hence we do not write
it explicitly. In the following we will write simplyG��0 and
G for the Green function of the gauge and ghost field,
respectively.

We should stress at this stage that, in general, the inte-
grals defining the Green functions are divergent. They are
well defined until x � x0, hence we will perform all our
calculations maintaining the points separated and only in
the very end shall we take the coincidence limit as x0 ! x
[20]. We have decided to write the divergent terms explic-
itly so as to bear them in mind and remove them only in the
final calculations by hand, instead of making the subtrac-
tion at an earlier stage.

Incidentally, we note that these Green functions satisfy
the Ward identity (see Appendix A)

 G�
�0;� 	G;�0 � 0; G�

�0
;�0 	G;� � 0; (3.33)

to first order in � so that, to this order, gauge invariance is

explicitly preserved (the check being simple but
nontrivial).

IV. ENERGY-MOMENTUM TENSOR

By virtue of the formulae of Sec. III we get, from the
asymptotic expansion T��0 � T

�0�
��0 	

�
a T
�1�
��0 	 O��2� (here

we present only the final results for brevity, while the
complete calculation is reproduced in Appendix B),
 

hT�0���
0
i �

1

16a4�2

�
�H

�
4;

2a	 z� z0

2a

�
	 �H

�
4;
z0 � z

2a

��


 diag��1; 1; 1;�3�; (4.1)

where �H is the Hurwitz �-function �H�x;�� �
P
1
n�0�n	

���x. On taking the limit z0 ! z	 we get
 

lim
z0!z	

hT�0���
0
i �

�
�2

720a4 	 lim
z0!z	

1

�2�z� z0�4

�


 diag��1; 1; 1;�3�; (4.2)

where the divergent term as z0 ! z can be removed by
subtracting the contribution of infinite space without
bounding surfaces [7], and in our analysis we therefore
discard it hereafter. The renormalization of the energy-
momentum tensor in curved space-time is usually per-
formed by subtracting the hT��i constructed with an
Hadamard or Schwinger-DeWitt two-point function up to
the fourth adiabatic order [1,2]. In our problem, however,
as we work to first order in �, we are neglecting tidal forces
and therefore the geometry of space-time in between the
plates is flat. Thus, we need only subtract the contribution
to the energy-momentum tensor that is independent of a,
which is the standard subtraction in the context of the
Casimir effect in flat space-time.

In the same way (see Appendix B) we get, to first order
in �:

 lim
z0!z	

hT�1���
0
i � diag�T�1�00; T�1�11; T�1�22; T�1�33�

	 lim
z0!z	

diag��z0=�2�z� z0�4; 0; 0; 0�;

(4.3)

where

 T�1�00 � �
�2

1200a3 	
�2z

3600a4 	
� cot��za �csc2��za �

240a3 ; (4.4)

 T�1�11 �
�2

3600a3 �
�2z

1800a4 �
� cot��za �csc2��za �

120a3 ; (4.5)

 T�1�22 � T�1�11; (4.6)

 T�1�33 � �
��2�a� 2z��

720a4 : (4.7)
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By virtue of the Ward identities (3.33), here checked up
to first order in �, the gauge-breaking part of the energy-
momentum tensor is found to be minus the ghost part,
hence we compute the second only, and the result is written
in Appendix B.

V. CASIMIR ENERGY AND FORCE

To compute the Casimir energy we must project the
energy-momentum tensor along the unit timelike vector
u with covariant components u� � �

�����������
�g00
p

; 0; 0; 0� to ob-
tain � � hT��iu�u�, so that
 

� �
�
1	 �

z
a

��
�

�2

720a4 	
�
a

�
�

�2

1200a3 	
�2z

3600a4

	
� cot��za �csc2��za �

240a3

��

� �
�2

720a4 	 2
g

c2

�
�

�2

1200a3 �
�2z

900a4

	
� cot��za �csc2��za �

240a3

�
	 O�g2�; (5.1)

where in the second line we have substituted � by its
expression in terms of g. Thus, the energy stored in the
Casimir device is found to be

 E �
Z
d3�

�������
�g
p

hT��iu�u� � �
@c�2

720

A

a3

�
1	

5

2

ga

c2

�
;

(5.2)

where A is the area of the plates, d3� is the three-volume
element of an observer with four-velocity u�, Eq. (5.2) is
expressed through a principal-value integral, and we have
reintroduced @ and c.

In the same way, the pressure on the plates is given by

 P�z � 0� �
�2

240

@c

a4

�
1	

2

3

ga

c2

�
;

P�z � a� � �
�2

240

@c

a4

�
1�

2

3

ga

c2

�
;

(5.3)

so that a net force pointing upwards along the z-axis is
obtained, in full agreement with Eq. (8) in Ref. [12], with
magnitude

 F �
�2

180

A@g

ca3 : (5.4)

The reader may wonder whether the pressure on the outer
faces of the cavity may alter this result. A simple way to
answer this question is to imagine that our cavity is in-
cluded into a surrounding cavity on both sides. On denot-
ing by b the common separation between either plates of
the original cavity and the nearest plate of the surrounding
cavity, and assuming that b is such that a=b 1, but still
small enough so as to obtain gb=c2  1, we see from
Sec. IV that the outer pressure on both plates of the original

cavity includes the same divergent contribution which acts
from within plus a finite contribution that becomes negli-
gible for a=b 1. To sum up, the divergent contributions
to the pressure from the inside and the outside of either
plate cancel each other exactly, and one is left just with the
finite contribution from the inside, as given in Eq. (5.3).

As a check of th e result, it can be verified that the
energy-momentum tensor is covariantly conserved to first
order in �. To this order, the covariant conservation law
implies the following conditions

 �0: hT�0���i;� � 0; (5.5)

 �:
�
hT�1�iji;j � 0 �i � 0; 1; 2�;
1
2�hT

�0�00i 	 hT�0�33i� 	 hT�1�33i;3 � 0;
(5.6)

that are indeed satisfied. Moreover, from the previous
expressions of the energy-momentum tensor the following
trace anomaly 	 is obtained:

 	 �
@g

ca3

�
�2z
160a

�
�
24

cot
�
�z
a

�
csc2

�
�z
a

��
: (5.7)

The volume integral of this density exists as a principal-
value integral and is given by

 

Z
	d3� �

�2

360

@g

ca2 A: (5.8)

The global, integrated form (5.8) of the trace anomaly
Eq. (5.7) is the new result with respect to the analysis in
Ref. [12]. It tends to zero at large separation a between the
plates. This trace anomaly is therefore caused by the
presence of the boundaries, and then is of a different nature
from the usual trace anomaly which is encountered in
curved spacetimes without boundaries, which depends on
the Riemann curvature [17,20].

VI. CONCLUDING REMARKS

The Casimir effect for scalar fields in curved space-time
[21] has been previously considered by various authors, in
a number of different geometries [22–30]. More precisely,
Refs. [22,23] focus on a massless scalar field in half of the
Einstein static universe, while Ref. [24] studies the same
field in a Friedmann background geometry with spherical
boundary, and the associated nonintegrable divergence in
the renormalized energy density. Massless scalar fields in
spherical or cylindrical shells are studied also in Refs. [25–
29], with local boundary conditions of the Dirichlet or
Robin type. Moreover, the work in Ref. [30] deals with
the more complicated problem of a massive nonminimally
coupled scalar field in between two infinite parallel plates
moving by uniform proper acceleration. Such a scalar field
is taken to obey Robin boundary conditions on the plates,
and the interaction forces between the plates are investi-
gated as functions of the proper accelerations and coeffi-
cients in the boundary conditions. Interestingly, for some
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values of these parameters the interaction forces are found
to be repulsive at small distances and attractive at large
distances [30].

To the best of our knowledge, the analysis presented in
this paper represents the first study of the energy-
momentum tensor for the electromagnetic field in a
Casimir cavity placed in a weak gravitational field. The
resulting calculations are considerably harder than in the
case of scalar fields. By using Green-function techniques,
we have evaluated the influence of the gravity acceleration
on the regularized energy-momentum tensor of the quan-
tized electromagnetic field between two plane-parallel
ideal metallic plates, at rest in the gravitational field of
the earth, and lying in a horizontal plane. In particular, we
have obtained a detailed derivation of the theoretical pre-
diction according to which a Casimir device in a weak
gravitational field will experience a tiny push in the up-
wards direction [12]. This result is consistent with the
picture that the negative Casimir energy in a gravitational
field will behave like a negative mass. Furthermore, we
find a trace anomaly in Eq. (5.8) proportional to the gravi-
tational acceleration and vanishing for infinite plates’ sepa-
ration, not previously worked out for a Casimir device in a
gravitational field. Our original results are relevant both for
quantum field theory in curved space-time, and for the
theoretical investigation of vacuum energy effects (see
below).

We stress that in our computation we do not add by hand
a mass term for photons, unlike the work in Ref. [2], since
this regularization procedure breaks gauge invariance even
prior to adding a gauge-fixing term, and is therefore neither
fundamental nor desirable [6,20]. In agreement with the
findings of Deutsch and Candelas for conformally invariant
fields [4], we find that on approaching either wall, the
energy density of the electromagnetic field diverges as
the third inverse power of the distance from the wall. It is
interesting to point out that, in the intermediate stages of
the computation, quartic divergences appear in the contri-
butions from the ghost and the gauge-breaking terms,
which however cancel each other exactly. The occurrence
of these higher divergences in such terms is also consistent
with the results of Deutsch and Candelas, in view of the
obvious fact that ghost fields are not ruled by conformally
invariant operators. Unfortunately, a quantitative compari-
son with their results is not possible because they assume a
traceless tensor, which is not the case in our problem where
a trace anomaly is found to arise.

Our results, jointly with the work in Refs. [12,31], are
part of a research program aimed at studying the Casimir
effect in a weak gravitational field, with possible correc-
tions (albeit small) to the attractive force on the plates
resulting from space-time curvature [32] (cf. the recent
theoretical analysis of quantum vacuum engineering pro-
pulsion in Ref. [33]). Hopefully, these efforts represent a
first step towards an experimental verification of the valid-
ity of the Equivalence Principle for virtual photons.
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APPENDIX A: ON WARD IDENTITIES AND
BOUNDARY CONDITIONS FOR GAUGE FIELDS

In the case of gauge theories there exists, on the space �
of field histories, a set of vector fields Q� that leave the
action S invariant, i.e. [17]

 Q�S � 0: (A1)

On denoting by Qi
� the components of such vector fields,

and by S;i the functional derivatives of the action with
respect to field variables ’i, Eq. (A1) implies that

 S;iQ
i
� � 0: (A2)

By virtue of Eq. (A2), the operator S;ij is not invertible, and
an invertible operator Uij is obtained upon adding to S the
gauge-breaking term

 

1

2
P�!��P

� �
1

2

Z
d4x

Z
d4x0P��x�!���x; x

0�P��x0�;

(A3)

where P� is the gauge-fixing functional and !���x; x0� �
!��0 is a nonsingular, symmetric continuous matrix, pos-
sibly depending on field variables to achieve full covari-
ance of the formalism [34]. The desired invertible gauge-
field operator Uij reads therefore

 Uij � S;ij 	 P�;i!��P�;j; (A4)

which should be considered jointly with the ghost operator

 Û �
� � Q�P� � P�;iQ

i
�; (A5)

since the full action in the functional integral for the
houtjini amplitude is given by

 S	 1
2P

�!��P� 	 ��Û
�
� 

�;

with �� and  � independent ghost fields [17], which obey
Fermi statistics if the gauge fields ’i are bosonic.

Repeated functional differentiation of Eq. (A2) yields
the classical Ward identities of the theory, which can be
used to derive remarkable identities among the gauge-field
and ghost Green functions. For example, the first func-
tional derivative of Eq. (A2) yields

 S;ijQi
� 	 S;iQ

i
�;j � 0: (A6)

We now reexpress S;ij from Eq. (A4) and bear in mind the
definition (A5) to find

 UijQj
� � Û

�
�!��P�;j 	 S;iQ

i
�;j � 0: (A7)
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Restriction to the dynamical subspace, where S;i vanishes,
and composition with the ghost Green function Ĝ�, for
which

 Û �
�Ĝ� � ���; (A8)

yields

 UijQi
�Ĝ

� 	!
�P

�
;j � 0: (A9)

Now we act on Eq. (A9) with the gauge-field Green func-
tion Gjk [see Eq. (3.1)], finding therefore [34]

 Qk
�Ĝ

� � !
�P

�
;jG

jk: (A10)

This equation holds for all type-I theories, i.e. all gauge
theories for which the Lie bracket of the vector fields in
Eq. (A1) is a linear combination of such fields with struc-
ture constants, i.e.

 �Q�;Q�� � C��Q; (A11)

with C��;i � 0. For the case of Maxwell theory in curved
space-time, the ghost Green function has no explicit group
indices, Qk

� reduces to covariant derivatives with respect
to the Levi-Civita connection, and !

�P
�
;jG

jk yields the
covariant derivative of the photon Green function. Thus,
the Ward identity (3.33) is eventually obtained. For the
sake of completness we write down the expansion to first
order in � of the first of Eqs. (3.33):

 �0����H�0���0;� 	H
�0�
;�0 � 0)

�
�H�0�000;0 	H

�0�
;00 � 0;

H�0�ii0;i 	H
�0�
;i0 � 0;

(A12)

 

�����H�1���0;��a�
������

�
H�0���0 	 z�

�
0 �

�
0H
�0�
��0;�	H

�1�
;�0 � 0

)

8>>>><
>>>>:

�H�1�000;0�H
�1�
300;3	 zH

�0�
000;0	H

�1�
;00 � 0;

H�1�ii0;i	H
�0�
;i0 � 0�i� 1;2�;

�H�1�030;0�H
�1�
330;3	

1
2H
�0�
330 	H

�1�
;30 � 0:

(A13)

A recipe for writing gauge-invariant boundary condi-
tions [35] in field theory is expressed by the equations

 ��ij’
j�@M � 0; (A14)

 �P��’��@M � 0; (A15)

 � ��@M � 0; (A16)

where �ij is a tangential projection operator. In the case of
Maxwell theory, considered in our paper, Eqs. (A14)–
(A16) become

 �Ak�@M � 0; (A17)

 ���A��@M � 0; (A18)

 ���@M � 0: (A19)

On performing the familiar gauge transformation

 

�A� � A� 	r��; (A20)

Equation (A17) is preserved under (A20) if and only if �
vanishes on the boundary [see (A19)], since tangential
derivatives and restriction to the boundary are commuting
operations [35]. Moreover, under (A20), the gauge-fixing
functional changes according to

 ��A� ����A� � Û�; (A21)

where Û is a linear differential operator. Now if � is
expanded according to a complete orthonormal set of
eigenfunctions of Û, i.e.

 Ûui � �iui; (A22)

 � �
X
i

Ciui; (A23)

the gauge invariance of the boundary condition (A18) is
again guaranteed by (A19), because

 ��A� ����A� � Û� �
X
i

Ci�iui: (A24)

The vanishing of ui on the boundary implies therefore that
both � and ���A� vanish therein, if ��A� was already
satisfying Eq. (A18). In the full quantum theory, � should
be replaced by two fermionic ghost fields [17,19].

APPENDIX B: GREEN FUNCTIONS AND ENERGY-
MOMENTUM TENSORS

1. The Fourier transform of G�1�
��0

In the following, for the sake of simplicity, we always
assume z0 � z, hence we have to be careful when comput-
ing integrals and limits, but the resulting formulae become
relatively less cumbersome. With the notation in Eq. (3.32)
we find (hereafter for the sake of brevity we define � � a�,
s��� � z� � z�

a and s0��� � z0� � z0�
a )

 

�000 �
asin�2���

8�4 ��a2!2 cos�2�� s� s0�s2

	 a2!2 cos�s� cos�s0�s2

	 sin�s��a2!2��s2 � s02� sin�2�� s0�

	 �2�2 � s02� sin�s0�� � 2��2 	 a2!2��s	 s0�


 sin��� sin��� s0���; (B1)

 �030 � �
ia2

2�3 !sin�1��� sin�s���s� s0� cos��� s0�

� sin��� s0��; (B2)
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�110 �
asin�2���

8�4 �a2!2 cos�2�� s� s0�s2 � a2!2 cos�s�


 cos�s0�s2 	 sin�s��a2!2��s02 � s2� sin�2�� s0�

	 �s02 � 2�2� sin�s0�� � 2��2 � a2!2��s	 s0�


 sin��� sin��� s0���; (B3)

 �220 � �110 ; (B4)

 

�300 � �
ia2!sin�1���

2�3 ��s0 � s� cos�s� 	 sin�s��


 sin��� s0�; (B5)

 

�330 �
asin�1���

8�4 �2��2�a2!2�s2� 1��cos��� s0� sin�s�

	 cos�s��csc������2� a2!2�s02� 1��


 cos�2�� s0� 	 cos�s0����2a2!2	 1��2

	 a2!2�s02� 1�	 ��2�a2!2��s	 s0�


 sin�2����	 2��2� a2!2��s	 s0� sin��� sin�s0���:

(B6)

2. The energy-momentum tensors

In our analysis we deal with
 

hT�0���
0
i � 2i

Z d!d2k

�2��3
e�i!�t�t

0�	i ~k?�� ~x� ~x0�?


 ~T�0���
0

�!; ~k; z; z0�; (B7)

where the 2i factor results from the relation (3.3) between
the Hadamard and Feynman Green functions, and ~T�0���

0

is
a symmetric tensor whose components are

 

~T�0�000 � �
a!2

2�
cos��	 s� s0� csc���;

~T�0�010 � �
akx!

2�
cos��	 s� s0� csc���;

~T�0�020 � �
aky!

2�
cos��	 s� s0� csc���;

~T�0�030 � �
i
2
! csc��� sin��	 s� s0�;

~T�0�110 �
�2 	 a2�k2

y �!
2�

2a�
cos��	 s� s0� csc���;

~T�0�120 � �
akxky

2�
cos��	 s� s0� csc���;

~T�0�130 � �
i
2
kx sin��	 s� s0� csc���;

~T�0�220 � �
ak2

y

2�
cos��	 s� s0� csc���;

~T�0�230 � �
i
2
ky sin��	 s� s0� csc���;

~T�0�330 � �
�
2a

cos��	 s� s0� csc���:

Now we first take the limit as t0 ! t and ~x0? ! ~x?. At that
stage, on taking z � z0 we pass the limit under the integral,
then sending !! i!, ��! i��, and going to spherical
coordinates: !2 ! ��2cos2�, k2

y ! �2sin2�sin2�, angu-
lar integration yields eventually
 

hT�0���
0
i�z; z0� �

1

6�2

1

a4

Z
d��3 
 cosh��� s� s0�


 csch���diag��1; 1; 1;�3�: (B8)

After integrating over the � variables we obtain Eq. (4.1).
Analogously, upon integrating over the solid angle we get,
to first order in momentum space,

 

hT�1�000 i�z; z0� �
1

120�2

Z
d��2sinh�1����60��s	 s0�cosh��� s� s0� 	 4�3s� 2s0�cosh��	 s� s0�

	 3�s2� s02� sinh��	 s� s0�	 �cosh�2�� s� s0� � 3�2 cosh�s� s0� � cosh�s	 s0��sinh�1����; (B9)

 

hT�1�110 i�z; z0� �
1

120�2

Z
d��2sinh�1�����4�s	 s0� cosh��	 s� s0� 	 ��2 cosh�2�� s� s0� 	 �2 cosh�s� s0�

	 2 cosh�s	 s0��sinh�1��� 	 ��s2 	 s02� sinh��	 s� s0��; (B10)

 hT�1�220 i�z; z0� � T�1�110 ; (B11)

 

hT�1�330 i�z; z0� �
1

24�2

Z
d��2sinh�1�������2 cosh�s� s0�sinh�1���� 	 �s	 s0��4 cosh��	 s� s0� 	 �s� s0�


 sinh��	 s� s0���; (B12)

where we have written explicitly only nonvanishing components. Integration over � finally yields Eqs. (4.4), (4.5), (4.6),
and (4.7).
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For completeness we write also the ghost energy-momentum tensor hT��igh for Dirichlet boundary conditions, i.e.

 hT�0�00igh �
�2

720a4 	
�2�2	 cos�2�za ��csc4��za �

24a4 	 lim
z0�>z	

1

�2�z� z0�4
; (B13)

 hT�0�11igh � �
�2

720a4 �
�2�2	 cos�2�za ��csc4��za �

24a4 � lim
z0�>z	

1

�2�z� z0�4
; (B14)

 hT�0�22igh � hT�0�11igh; (B15)

 hT�0�33igh �
�2

240a4 	 lim
z0�>z	

3

�2�z� z0�4
; (B16)

and
 

hT�1�00igh �
�2�3a� 11z�

3600a4 	
�2

40a5

�
a�a� 7z� � �z�a� z� cot

�
�z
a

��
csc4

�
�z
a

�

	
�

240a5
csc2

�
�z
a

��
�5a2 	 2�2z�a� z�� cot

�
�z
a

�
� 4a��a� 7z�

�
� lim

z0�>z	

z

�2�z� z0�4
; (B17)

 

hT�1�11igh � �
��2�a� 2z��

3600a4 �
�2

160a6

�
a�8a2 � 15az� 9z2� � 8�z�a2 � az� z2� cot

�
�z
a

��
csc4

�
�z
a

�

�
�

480a6

�
�10a3 	 a2�3	 8�2�z� 8�2z2�a	 z�� cot

�
�z
a

�
	 2a���8a2 	 15az	 9z2�

�
csc2

�
�z
a

�
; (B18)

 hT�1�22igh � hT�1�11igh; (B19)

 

hT�1�33igh �
�2�a� 2z�

720a4 �
�csc2��za �

96a4 cot
�
�z
a

�
�

1

64�2a4 �4a� 
�1��1=2� z=a� �  �1���1=2	 z=a��

	 �a� 2z�� �2��1=2� z=a� 	  �2���1=2	 z=a���; (B20)

where  �n��z� is the n-th derivative of the logarithmic derivative  �z� of the �-function.
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