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A Dirac electron field is quantized in the background of a Dirac magnetic monopole, and the
phenomenon of induced quantum numbers in this system is analyzed. We show that, in addition to
electric charge, also squares of orbital angular momentum, spin, and total angular momentum are induced.
The functional dependence of these quantities on the temperature and the CP-violating vacuum angle is
determined. Thermal quadratic fluctuations of charge and squared total angular momentum, as well as the
correlation between them and their correlations with squared orbital angular momentum and squared spin,
are examined. We find the conditions when charge and squared total angular momentum at zero
temperature are sharp quantum observables rather than mere quantum averages.
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I. INTRODUCTION

The interaction of quantized Dirac fields with classical
background fields of nontrivial topology can give rise to
quantum states with rather unusual eigenvalues [1–6]. In
particular, the ground state of a Dirac electron in the
background of a pointlike magnetic monopole acquires
nonzero electric charge, and this results in the monopole
becoming a CP symmetry violating dyon [7–9]. The effect
persists when thermal fluctuations of the quantized Dirac
electron field are taken into account, and this yields tem-
perature dependence of the induced charge [10,11].

The aim of the present paper is to show that, in addition
to charge, also other quantum numbers are induced in the
magnetic monopole background both at zero and nonzero
temperatures. We find relationships between all these
quantum numbers and discuss, which of them become
sharp quantum observables rather than quantum averages
and also when this happens. At nonzero temperature all
quantum numbers are not sharp observables, but, instead,
are thermal averages; and, appropriately, the thermal qua-
dratic fluctuations are nonvanishing. If a quadratic fluctua-
tion vanishes at zero temperature, then a corresponding
quantum number at zero temperature becomes a sharp
observable. We find out, in particular, that induced charge
and squared total angular momentum at zero temperature
are sharp observables for almost all values of the vacuum
angle with the exception of the one corresponding to zero
energy of the bound state in the one-particle electron
spectrum.

A configuration of a pointlike monopole with magnetic
charge g at the origin is given by the field strength in the
form

 B �r� � g
r
r3 ; @ � B�r� � 4�g�3�r�: (1)

Although in the space outside the monopole (i.e. the punc-
tured space that is characterized by the nontrivial second

homotopy group, �2 � Z, where Z is the set of integer
numbers), the magnetic field satisfies the usual sourceless
equation, due to some cohomological obstacles the gauge
vector potential can be defined only locally. When attempt-
ing to extend the local potential to a global single-valued
one, a singularity on a half line or otherwise (so-called
Dirac string) is inevitably encountered [12]. Namely, the
condition of unobservability of the Dirac string yields
quantization of monopole charge g.

It should be noted that the Dirac quantization was ob-
tained by Jackiw [13] in a different way, as a consequence
of associativity of spatial translations in quantum mechan-
ics. Thus, his derivation is completely gauge invariant,
dispensing with reference to a vector potential; moreover,
it demonstrates in addition that magnetic monopoles have
to be structureless point objects.

Following Wu and Yang [14], one can introduce the
patched gauge vector potential which is free of singular-
ities. The punctured space is divided into two overlapping
regions, Ra: 0<# < �

2 � �, and Rb: �
2 � � < # < �

(0 � # � � stands for the azimuthal angle in spherical
coordinates, x � r sin# cos�, y � r sin# sin�, z �
r cos#, and 0< �< �

2 ), and the vector potential is defined
for each of the regions:

 

�A�r� � dr � g�1� cos#�d�; r 2 Ra;

A�r� � dr � �g�1� cos#�d�; r 2 Rb;
(2)

then @�A � B, where B is given by Eq. (1). In the
overlap Rab: �

2 � � < # < �
2 � �, the two potentials are

related by gauge transformation

 A ja � Ajb �
i

e
Sab@S�1

ab ; (3)

with

 Sab � e2ieg�; (4)

e is the electron charge. Therefore, the vector potential
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serves as a connection on a nontrivial U�1� bundle, and the
electron wave function is a section of this bundle, i.e. wave
function ��r; t� is two valued with its values in the overlap
Rab related by gauge transformation

 �ja � Sab�jb: (5)

Generating function Sab (4) is existing (i.e. single valued)
only when

 eg � 1
2n; n 2 Z; (6)

which is the celebrated Dirac quantization condition [12]
that has already attained its 75-year anniversary.

Schwinger [15] and Zwanziger [16] generalized condi-
tion (6) to allow for the possibility of particles that carry
both electric and magnetic charges (dyons). A quantum-
mechanical theory can have two particles of electric and
magnetic charges �Q1; g1� and �Q2; g2� only if

 Q1g2 �Q2g1 �
1
2n: (7)

Since the electron has no magnetic charge, the quantization
condition says nothing about the electric charge of a dyon.
The quantization condition does say something about the
difference between the electric charges of two dyons.
Given, for instance, two dyons of minimally allowed mag-
netic charge g � �2e��1 and of electric chargesQ1 andQ2,
one gets

 Q1 �Q2 � ne; (8)

but there is no restriction on Q1 and Q2 separately. If,
however, the Dirac-Schwinger-Zwanziger quantization
condition, Eq. (7), is supplemented by CP conservation,
then the allowed values of the electric charge of a dyon are
quantized and restricted to be either integer or half-integer
in units of e. This is due to the fact that the electric charge
is odd and the magnetic charge is even under CP.

The effect of CP violation was analyzed by Witten [7] in
the framework of a spontaneously broken gauge theory at
nonzero vacuum angle �. By introducing the �-term
which causes CP violation in the Lagrangian,

 �L � �
e2

�8��2
"���

0�0F��F�0�0 (9)

(here F�� is the gauge field strength and "���
0�0 is the

totally antisymmetric tensor), he got the expression for the
dyon charge:

 Q � ne�
e�

2�
: (10)

On the other hand, the naive Dirac Hamiltonian for the
electron in the background of a pointlike magnetic mono-
pole appears to be non-self-adjoint, and an extra boundary
condition at the location of the monopole is required for the
lowest partial wave in order to implement a self-adjoint
extension. The boundary condition depends on self-adjoint
extension parameter � which violates CP invariance. By

quantizing the electron field in the monopole background
and considering the appropriate vacuum polarization ef-
fects, Grossman [8] and Yamagishi [9] got the expression
for the induced vacuum charge:

 Q � �2ejegj
1

�
arctan

�
tan

�

2

�
; (11)

which in the case of the minimal monopole strength, g �
	�2e��1 agrees with Eq. (10). Thus, in this approach the
self-adjoint extension parameter plays the role of the vac-
uum angle in Witten’s approach and the monopole be-
comes a dyon owing to the vacuum polarization effects.

In the present paper we proceed further and find other
quantum numbers of the fermionic vacuum and of the
fermionic system in thermal bath in the monopole back-
ground. Similar problems were considered for planar fer-
mionic systems in the background of a pointlike magnetic
vortex in Refs. [17,18].

II. OPERATORS OF PHYSICAL OBSERVABLES
AND THEIR VACUUM AND THERMAL

EXPECTATION VALUES

For a given classical static background field configura-
tion, the second-quantized fermion field operator � can be
expanded in a complete set of eigenstates of the Dirac
(one-particle) Hamiltonian H, see, e.g., Ref. [19],

 ��r; t� �
ZX

�E�>0�

e�iE�thrj�ia� �
ZX

�E�<0�

e�iE�thrj�iby�; (12)

where

 Hhrj�i � E�hrj�i (13)

is the stationary Dirac equation with eigenvalues of H
denoted by E�, � stands for the set of parameters (quantum
numbers) specifying a one-particle state, and symbol

RP
means the summation over discrete and the integration
(with an appropriate measure) over continuous values of
�; ay� and a� (by� and b�) are the fermion (antifermion)
creation and destruction operators obeying the anticommu-
tation relations

 
a�; a
y
�0 �� � 
b�; b

y
�0 �� � h�j�

0i; (14)

and ground state jvaci of the second-quantized theory is
defined as

 a�jvaci � b�jvaci � 0: (15)

In the second-quantized theory, the operator of a dy-
namical variable (physical observable) is given by the
integrated commutator,

 Ô � �
1

2

Z
d3r tr
���r; t�;���r; t���; (16)

where � is the appropriate one-particle operator in the
first-quantized theory, and tr denotes the trace over spinor
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indices; in particular, ÔH is the operator of energy, and ÔI
is the operator of fermion number, where I is the unity
matrix in spinor indices. The vacuum expectation value of
the observable corresponding to Eq. (16) can be presented
as

 hvacjÔ�jvaci � �1
2 Tr� sgn�H�; (17)

where

 sgn �u� � f
1; u > 0
�1; u < 0

g;

and Tr is the trace of an integrodifferential operator in the
functional space: TrU �

R
d3r trhrjUjri. The thermal ex-

pectation value of the observable is conventionally defined
as (see, e.g., Ref. [20])

 O��T� � hÔ�i� �
SpÔ� exp���ÔH�

Sp exp���ÔH�
; �� �kBT�

�1;

(18)

where T is the equilibrium temperature, kB is the
Boltzmann constant, and Sp is the trace or the sum over
the expectation values in the Fock state basis in the second-
quantized theory. Evidently, the zero-temperature limit of
Eq. (18) coincides with Eq. (17):

 O��0� � hvacjÔ�jvaci: (19)

Thus, Eq. (18) can be presented in a way similar to that of
Eq. (17), i.e., through the functional trace of operators in
the first-quantized theory, see, e.g., Ref. [21],

 O��T� � �
1
2 Tr� tanh�12�H�: (20)

The self-adjointness of the Dirac Hamiltonian ensures the
conservation of energy in the second-quantized theory, and
the corresponding operator is diagonal in creation and
destruction operators,

 Ô H �
ZX
E�

�
a�� a� � b

�
� b� �

1

2
sgn�E��

�
; (21)

the operator of any other conserved observable is diagonal
as well.

If at least one of two observables is conserved, then their
thermal correlation,

 ��T; Ô�1
; Ô�2

� � hÔ�1
Ô�2
i� � hÔ�1

i�hÔ�2
i�; (22)

takes the form

 ��T; Ô�1
; Ô�2

� � 1
4 Tr�1�2sech2�12�H�: (23)

In particular, the thermal quadratic fluctuation of a con-
served observable takes form

 ��T; Ô�; Ô�� �
1
4 Tr�2sech2�12�H�: (24)

It is instructive to present Eqs. (20) and (23) in terms of
contour integrals involving the resolvent of the Dirac

Hamiltonian:

 O��T� � �
1

2

Z
C

d!
2�i

tanh
�
1

2
�!

�
Tr��H �!��1 (25)

and
 

��T;Ô�1
;Ô�2

��
1

4

Z
C

d!
2�i

sech2

�
1

2
�!

�
Tr�1�2�H�!�

�1;

(26)

where C is the contour consisting of two collinear straight
lines, ��1� i0;�1� i0� and ��1� i0;�1� i0�, in
the complex !-plane. Note that only the even part of
Tr��H �!��1 contributes to thermal average O��T�,
and only the odd part of Tr�1�2�H �!�

�1 contributes
to thermal correlation ��T; Ô�1

; Ô�2
�. By deforming con-

tour C to encircle poles of the tanh�12�!� and sech2�12�!�
functions, which occur along the imaginary axis, one gets

 O��T� � �
1

�

X
n2Z

Tr��H� i!n�
�1 (27)

and

 ��T; Ô�1
; Ô�2

� � �
1

�2

X
n2Z

Tr�1�2�H � i!n�
�2; (28)

where !n � �2n� 1��=�. Alternatively, by deforming
contour C around poles and cuts of the spectrum of H,
which lie on the real axis, one gets

 O��T� � �
1

2

Z 1
�1

dE���E� tanh
�
1

2
�E

�
(29)

and

 ��T; Ô�1
; Ô�2

� �
1

4

Z 1
�1

dE��1�2
�E�sech2

�
1

2
�E

�
; (30)

where

 ���E� � 	
1

�
Im Tr��H � E
 i0��1 (31)

and

 ��1�2
�E� � 	

1

�
Im Tr�1�2�H� E
 i0�

�1 (32)

are the appropriate spectral densities. Expressions (29) and
(30) can be regarded as the Sommerfeld-Watson trans-
forms of the infinite sum expressions, Eqs. (27) and (28).
Note that only the odd part of ���E� contributes to O��T�
and only the even part of ��1�2

�E� contributes to
��T; Ô�1

; Ô�2
�.

The Dirac Hamiltonian in the background of a static
magnetic monopole takes the form

 H � �� � �i@� eA� � 	0M; (33)

where � � 	0�, and 	0, � are the Dirac matrices, M is the
electron mass, and A is given by Eq. (2). The magnetic
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monopole background is rotationally invariant and three
generators of rotations are identified with the components
of vector J—the operator of total angular momentum in
the first-quantized theory,

 J � ���; (34)

where

 � � �r� �i@� eA� � eg
r
r

(35)

is its orbital part, and

 � �
1

4i
��� (36)

is its spin part; note that the last term in Eq. (35) is
necessary in order to ensure the correct commutation rela-
tions:

 
Jj; Jk�� � i"jklJl:

The nonvanishing of any component of the vector vac-
uum expectation value in the second-quantized theory,

 OJ�0� � �
1
2 TrJ sgn�H�;

would point at spontaneous breaking of the rotational
invariance (nonuniqueness of the ground state). Even if
OJ�0� is vanishing, it may happen that quantity

 OJ2�0� � �1
2 TrJ2 sgn�H� (37)

is nonvanishing, which is compatible with the uniqueness
of the ground state preserving the rotational invariance in
the second-quantized theory. Note also that in the first-
quantized theory operators H, J2, and any component of
vector J are commuting, therefore the corresponding op-
erators in the second-quantized theory can be diagonalized.
On the contrary, operators Ô�2 and Ô�2 are not diagonal-
izable, and, consequently, quantities

 O�2�0� � �1
2 Tr�2sgn�H� (38)

and

 O�2�0� � �1
2 Tr�2sgn�H� (39)

have to be regarded as vacuum averages rather than sharp
quantum observables. As to quantity OJ2�0� (37), one
might anticipate that it is a sharp observable, which is
substantiated by the fact that its thermal quadratic fluctua-
tion,

 ��T; ÔJ2 ; ÔJ2� � 1
4 TrJ4sech�14�H�; (40)

tends to zero in the limit T ! 0 (�! 1). However, we
shall find out special circumstances when the fluctuation is
nonzero at zero temperature and squared total angular
momentum is not a sharp observable even at zero
temperature.

III. SOLUTIONS TO THE DIRAC EQUATION IN
THE MONOPOLE BACKGROUND

The usual spherical harmonics Ylm�#;�� are replaced
by the (two-valued with two different values in Ra and
Rb—see Sec. I) monopole harmonics Yq;l;m�#;�� [22],
since orbital angular momentum, see Eq. (35), differs
from the usual one:

 Yq;l;m�#;�� � Mqlm�1� cos#�
=2

� �1� cos#��=2P
;�l�m�cos#�ei�m	q��;

q � eg; 
 � �q�m; � � q�m;

Mqlm � 2m
���������������������������������������������������
�2l� 1��l�m�!�l�m�!

4��l� q�!�l� q�!

s
;

l � jqj; jqj � 1; . . . ; m � �l;�l� 1; . . . ; l;

(41)

where
 

P
;�n �u� �
��1�n

2nn!
�1� u��
�1� u���

dn

dun

� 
�1� u�
�n�1� u���n�

are the Jacobi polynomials, see, e.g., Ref. [23]. The plus
sign is chosen inRa and the minus sign is chosen inRb. The
nontrivial nature of wave functions is completely em-
bedded in the monopole harmonics.

The eigensections of J2 and Jz with eigenvalues equal to
j�j� 1� and m correspondingly are [24]

 ’�1�jm�#;�� �

��������
j�m

2j

q
Yq;j��1=2�;m��1=2��#;����������

j�m
2j

q
Yq;j��1=2�;m��1=2��#;��

0
B@

1
CA;

’�2�jm�#;�� �
�

������������
j�m�1

2j�2

q
Yq;j��1=2�;m��1=2��#;��������������

j�m�1
2j�2

q
Yq;j��1=2�;m��1=2��#;��

0
B@

1
CA;

(42)

where j � jqj � 1
2 for ’�1�jm, and j � jqj � 1

2 for ’�2�jm. One
chooses the following linear combinations in the case of
j � jqj � 1

2 :
 

��1�jm�#;�� � cj’
�1�
jm�#;�� � sj’

�2�
jm�#;��;

��2�jm�#;�� � sj’
�1�
jm�#;�� � cj’

�2�
jm�#;��;

cj �
sgn�q��

��������������������������
2j� 1� 2q
p

�
��������������������������
2j� 1� 2q
p

�

2
��������������
2j� 1
p ;

sj �
sgn�q��

��������������������������
2j� 1� 2q
p

�
��������������������������
2j� 1� 2q
p

�

2
��������������
2j� 1
p ;

(43)

which satisfy the system of equations

 � ��i@� eA�h�r���1�jm � i�@r � r�1 ��r�1�h�r���2�jm

� ��i@� eA�h�r���2�jm � i�@r � r
�1 ��r�1�h�r���1�jm

(44)
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for an arbitrary h�r�; here and in the following �j are the
Pauli matrices and

 � �
���������������������������
�j� 1

2�
2 � q2

q
: (45)

In the case of j � jqj � 1
2 one defines

 
m�#;�� � ’�2�jm�#;��; (46)

which satisfies

 � �i@� eA�h�r�
m � i sgn�q��@r � r�1�h�r�
m: (47)

In the standard representation for the Dirac matrices,

 	0 �
1 0
0 �1

� �
; � �

0 �
� 0

� �
;

the spin part of angular momentum (36) is of the block-
diagonal form,

 � �
1

2
� 0
0 �

� �
; (48)

and the solutions to the Dirac equation (13) in the mono-
pole background are constructed as follows:

type 1 (j � jqj � 1
2 ):

 hrjE; j;mi�1�

�

�������������
1� M

E

q ����
k
2r

q
J���1=2��kr��

�1�
jm�#;��

�i sgn�E�
�������������
1� M

E

q ����
k
2r

q
J���1=2��kr��

�2�
jm�#;��

0B@
1CA;

(49)

type 2 (j � jqj � 1
2 ):

 hrjE; j;mi�2�

�

�������������
1� M

E

q ����
k
2r

q
J���1=2��kr��

�2�
jm�#;��

i sgn�E�
�������������
1� M

E

q ����
k
2r

q
J���1=2��kr��

�1�
jm�#;��

0
B@

1
CA;
(50)

type 3 (j � jqj � 1
2 ):

 hrjE;mi� �
f�r�
m�#;��
g�r�
m�#;��

� �
; (51)

where k �
������������������
E2 �m2
p

, J��u� is the Bessel function of order
�, and radial functions f�r� and g�r� are divergent,
although square integrable, at the origin. That is why the
type 3 solution is called irregular, in contrast to types 1 and
2 solutions which are regular at the origin. The procedure
of the self-adjoint extension is implemented for the partial
Hamiltonian with j � jqj � 1

2 , yielding the boundary con-

dition for the corresponding partial mode [25]:

 cos
�

�
2 �

�
4

�
lim
r!0

rf�r� � i sgn�q� sin
�

�
2 �

�
4

�
lim
r!0

rg�r�;

(52)

where � is the self-adjoint extension parameter. This gives
the explicit form for the radial functions in Eq. (51) [9]
 

f�r� �
i sgn�q�

r
������������������������������������
�E�E�M sin��

p �
�E�M� sinkr cos

�
�

2
�
�
4

�

� k coskr sin
�
�

2
�
�
4

��
;

g�r� �
1

r
������������������������������������
�E�E�M sin��

p �
k coskr cos

�
�

2
�
�
4

�

� �E�M� sinkr sin
�
�

2
�
�
4

��
: (53)

If cos�< 0, then there exists in addition a bound state with
energy EBS � M sin�:

 hrjEBS; mi� �
1

r

i sgn�q� sin
�

�
2 �

�
4

�

m�#;��

cos
�

�
2 �

�
4

�

m�#;��

0
BB@

1
CCA

�
������������������������
�2M cos�
p

eMr cos�: (54)

These solutions form a complete orthonormalized set, i.e.,
 

�i�hE; j;mjE0; j0; m0i�i
0� � �ii0�jj0�mm0�sgn�E�;sgn�E0�

� ��k� k0�;

i; i0 � 1; 2;

�hE;mjE
0; m0i� � �mm0�sgn�E�;sgn�E0���k� k

0�;

�hEBS;mjEBS;m
0i� � �mm0 : (55)

IV. INDUCED QUANTUM NUMBERS AT ZERO
TEMPERATURE

The vacuum expectation values are calculated using
formula (17) and the classical solutions from the previous
section. Let us consider an observable which corresponds
to an operator in the first-quantized theory of the block-
diagonal form,

 � �
� 0
0 �

� �
; (56)

and containing no derivatives in r:

 �h�r�’�#;�� � h�r��’�#;��: (57)

For the contribution of the type 1 solutions, one gets
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�1�hE; j;mjri�hrjE; j;mi�1� �
k
2r

��
1�

M
E

�
J2
���1=2��kr��

�1�y
jm ���1�jm �

�
1�

M
E

�
J2
���1=2��kr��

�2�y
jm ���2�jm

�
; (58)

for that of the type 2 solutions, one gets

 

�2�hE; j;mjri�hrjE; j;mi�2� �
k
2r

��
1�

M
E

�
J2
���1=2��kr��

�2�y
jm ���2�jm �

�
1�

M
E

�
J2
���1=2��kr��

�1�y
jm ���1�jm

�
: (59)

Summing Eqs. (58) and (59), one gets

 

X2

i�1

�i�hE; j;mjri�hrjE; j;mi�i�

�
k
r

J2
���1=2��kr��

�1�y
jm ���1�jm � J

2
���1=2��kr��

�2�y
jm ���2�jm�;

(60)

which is independent of the sign of E; thus, the overall
contribution of the types 1 and 2 solutions to Eq. (17) is
zero. For the contribution of the type 3 solution (continu-
ous spectrum) to Eq. (17), one gets a nonzero result:

 �
1

2

X
sgn�E�

�hE;mjri�hrjE;mi�sgn�E�

�
2
ym�
mkM sin�

�r2jEj�k2 �M2cos2��
�k cos2kr�M sin2kr cos��:

(61)

In order to perform integration over k, one can take parity
into account and extend integration from �0;1� to
��1;1�, replacing k sinkr! �ikeikr, coskr! eikr.
Adding the contribution of the bound state and summing
over m, one gets
 

�
1

2
trhrj�sgn�H�jri��

M

2r2

Xjqj
m��jqj


ym�
m

�

�
cos�
sgn�sin2��

�sgn�sin���e2Mrcos��
sin�

�

�
Z 1
�1
dk

ke2ikr�����������������
k2�M2
p

�k� iMcos��

�
:

(62)

The contour of integration can be deformed to the upper
half-plane of complex k to enclose a cut along the imagi-
nary axis at Imk >M and encircle a pole occurring in the
case of cos�< 0 at Imk � �M cos�. The contribution of
the pole cancels that of the bound state, and only the
contribution from the cut survives. Averaging over the
angular variables yields

 

���r� �
1

4�

Z 2�

0
d�

Z �

0
d# sin#

�
�

1

2

�
trhrj�sgn�H�jri

� �
Xjqj

m��jqj

Z 2�

0
d�

Z �

0
d# sin#
ym�
m

M sin�

�2��2r2

�
Z 1
M
d�

�e�2�r�������������������
�2 �M2
p

���M cos��
; (63)

and the vacuum expectation value takes the form
 

O��0� � 4�
Z 1

0
drr2���r�

� �
Xjqj

m��jqj

Z 2�

0
d�

Z �

0
d# sin#
ym�
m

�
1

�
arctan

�
tan

�

2

�
: (64)

In the case of � � I, where I is the 2� 2 unity matrix,
using the orthonormality of 
m’s, one gets

 

Xjqj
m��jqj

Z 2�

0
d�

Z �

0
d# sin#
ym
m � 2jqj; (65)

and the vacuum expectation value of fermion number takes
the form [8,9]

 OI�0� � �2jegj
1

�
arctan

�
tan

�

2

�
; (66)

where we have recalled relation q � eg. Multiplying
Eq. (66) by e, one gets the induced vacuum charge (11).
Note that Eq. (66) at jegj � 1

2 coincides with the expression
for the fermion number which is induced in 2�
1-dimensional space-time in the vacuum by a pointlike
magnetic vortex with flux �mod 2� [17].

It is straightforward to prove that angular momentum, as
well as its spin and orbital parts separately, is not induced
in the vacuum, and, consequently, rotational invariance is
not spontaneously broken. Indeed, since Jz
m � m
m,
one gets

 OJz�0� � 0 (67)

due to summation overm. As to the z-component of orbital
angular momentum, this issue is more intricate. Using
Eqs. (42) and (46) and relation �zYq;l;m � mYq;l;m, one
gets
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ym�z
m � �2jqj � 1��1
�jqj � 1
2�m�

� �m� 1
2�jYq;jqj;m��1=2�j

2

� �jqj � 1
2�m��m�

1
2�jYq;jqj;m��1=2�j

2�:

Integating over angular variables yields

 

Z 2�

0
d�

Z �

0
d# sin#
ym�z
m �

2�jqj � 1�

2jqj � 1
m;

where the orthonormality of the monopole harmonics has
been used. Summation overm results in zero, and the same
considerations apply to the z-component of spin:

 O�z
�0� � O�z

�0� � 0: (68)

Similarly, one can show that components OJx	iJy�0�,
O�x	i�y

�0�, O�x	i�y
�0� vanish. Here again the orthonor-

mality is crucial: roughly speaking, the diagonal matrix
elements of raising and lowering operators are equal to
zero.

Let us turn now to the vacuum expectation values of the
squares of orbital angular momentum, spin, and total an-
gular momentum. Using relation �2Yq;l;m � l�l� 1�Yq;l;m,
where l � jqj, one gets

 

Xjqj
m��jqj

Z 2�

0
d�

Z �

0
d# sin#
ym�2
m � 2q2�jqj � 1�:

(69)

Taking account for relation 1
4�

2 � 3
4 I, one gets immedi-

ately

 

Xjqj
m��jqj

Z 2�

0
d�

Z �

0
d# sin#
ym

1

4
�2
m �

3

2
jqj: (70)

Using relation J2
m � j�j� 1�
m, where j � jqj � 1
2 ,

one gets

 

Xjqj
m��jqj

Z 2�

0
d�

Z �

0
d# sin#
ymJ2
m � 2jqj

�
q2 �

1

4

�
:

(71)

Thus, we get the following expressions for the vacuum
expectation values:

 O�2�0� � jegj�jegj � 1�OI�0�; (72)

 O�2�0� � 3
4OI�0�; (73)

 OJ2�0� � 
�eg�2 � 1
4�OI�0�; (74)

where induced vacuum fermion number OI�0� is given by
Eq. (66).

V. SPECTRAL DENSITIES

An alternative and more refined way of treating the
induced quantum numbers, which is especially adapted
to the case of nonzero temperature, involves the use of
spectral densities, see Eqs. (31) and (32). In general, the
spectral density is decomposed as

 ���E� � ��0�� �E� � �
ren
� �E�; (75)

where

 ��0�� �E� � 	
1

�
Im Tr��0��H�0� � E
 i0��1 (76)

is the spectral density in the absence of interaction (the
operators in the free first-quantized theory are denoted by
H�0� and ��0�), and

 �ren
� �E� � 	

1

�
Im
Tr��H � E
 i0��1�ren (77)

is the addition which is due to interaction with the back-
ground field; the subscript ren in the right-hand side of
Eq. (77) denotes the renormalization of the functional trace
by subtraction:
 


Tr��H�!��1�ren�Tr��H�!��1�Tr��0��H�0��!��1:

(78)

To compute ��0�� �E�, let us consider matrix element
 

hrj��0��H�0� �!��1jr0i � ��0�
Z d3p

�2��3
eip�r�r0�

�
� � p� 	0M�!

p2 �!2 �M2 :

Although the integral in the right-hand side of the last
equation is divergent, its imaginary part at ! � E	 i0
in the case of r0 � r is finite:
 

	Imhrj��0��H�0� � E
 i0��1jri

� � sgn�E�
Z d3p

�2��3
��p2 � E2 �M2�

���0��� � p� 	0M� E�: (79)

Taking � (36) and ��0� � �ir� @ in the capacity of ��0�,
one gets immediately

 	 Im trhrj��H�0� � E
 i0��1jri

� 	Im trhrj��0��H�0� � E
 i0��1jri � 0;

and, consequently,

 ��0�� �E� � ��0�� �E� � ��0�J �E� � 0: (80)

Taking �2 and ���0��2, one gets nonzero results
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 	 Im trhrj�2�H�0� � E
 i0��1jri

� 4� sgn�E�
Z d3p

�2��3
��p2 � E2 �M2�

3

4
E

�
3

4�
jEj�E2 �M2�1=2��E2 �M2�;

 	 Im trhrj���0��2�H�0� � E
 i0��1jri

� 4� sgn�E�
Z d3p

�2��3
��p2 � E2 �M2��r� p�2E

�
2

3�
jEjr2�E2 �M2�3=2��E2 �M2�;

where ��u� � 1
2 
1� sgn�u��. Consequently, we get

 ��0��2�E� �
3

4�2 VjEj�E
2 �M2�1=2��E2 �M2�; (81)

 ��0��2�E� �
2

5�2

�
3

4�

�
2=3
V5=3jEj�E2 �M2�3=2��E2 �M2�;

(82)

 

��0�J2 �E� �
V

�2

�
2

5

�
3V
4�

�
2=3
�E2 �M2� �

3

4

�
� jEj�E2 �M2�1=2��E2 �M2�; (83)

where V �
R

2�
0 d�

R
�
0 d# sin#

R
R
0 drr

2 is the volume of
the spherical box of radius R. In a similar way, one can get

 ��0�I �E� �
V

�2 jEj�E
2 �M2�1=2��E2 �M2�; (84)

 

��0��2J2�E� �
3V

4�2

�
2

5

�
3V
4�

�
2=3
�E2 �M2� �

3

4

�
� jEj�E2 �M2�1=2��E2 �M2�; (85)

 

��0��2J2�E� �
V

5�2

�
8

7

�
3V
4�

�
4=3
�E2 �M2� �

3

2

�
3V
4�

�
2=3
�

� jEj�E2 �M2�3=2��E2 �M2�; (86)

 

��0�J4 �E� �
V

�2

�
8

35

�
3V
4�

�
4=3
�E2 �M2�2

�

�
3V
4�

�
2=3
�E2 �M2� �

9

16

�
� jEj�E2 �M2�1=2��E2 �M2�: (87)

It should be noted that Eqs. (81)–(87) are even in E, and,
thus, they do not contribute to the expectation values, while
contributing to the appropriate correlations and quadratic
fluctuations.

Let us turn now to the part of the spectral density,
Eq. (77), which is due to interaction with the monopole
background, and decompose it in the following way:

 �ren
� �E� � �ren0

� �E� � �
�3�
� �E�; (88)

where ��3�� �E� is taking account of only the contribution of
the type 3 solutions, Eqs. (51), (53), and (54), while �ren0

� �E�
is including the contribution of the types 1 and 2 solutions
and subtracted plane wave solutions. In the case of � in the
block-diagonal form (56) with no derivatives in r (57), the
total contribution of the types 1 and 2 solutions is even in
E, see Eq. (60), and, thus, one gets

 �ren0
� �E� � �ren0

� ��E�: (89)

As to the contribution of the type 3 solutions, one, follow-
ing Ref. [11], obtains their contribution to the trace of
resolvent
 


Tr��H�!��1��3� � �
1

2

Xjqj
m��jqj

Z 2�

0
d�

Z �

0
d#

� sin#
ym�
mM

�
! sin��M� i

�������������������
!2�M2
p

cos�

�!2�M2��!�M sin��
;

(90)

where a physical sheet for square root is chosen as 0<
arg

�������������������
!2 �m2
p

<� (Im
�������������������
!2 �m2
p

> 0). Consequently, we
get
 

��3�� �E� �
Xjqj

m��jqj

Z 2�

0
d�

Z �

0
d# sin#
ym�
m

�
��� cos��

� ��E�M sin�� �
1

4
��E�M� �

1

4
��E�M�

�
cos�

2�
sgn�E�

E�M sin�

M�������������������
E2 �M2
p ��E2 �M2�

�
:

(91)

One can conclude that irregular modes contribute both to
expectation values and to correlations and fluctuations, and
their contribution is finite in the infinite volume limit. On
the contrary, the ideal gas (i.e. plane waves) contribution to
correlations and fluctuations diverges by power law as
V ! 1, see Eqs. (81)–(87).

Using Eq. (91), one gets the following expression for the
vacuum expectation value:
 

O��0� � �
1

2

Xjqj
m��jqj

Z 2�

0
d�

Z �

0
d# sin#
ym�
m

�

�
��� cos��sgn�sin�� �

sin2�

2�

Z 1
1

dw���������������
w2 � 1
p

�
1

w2 � sin2�

�
; (92)
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which, after performing integration, yields Eq. (64), as it
should be expected.

VI. INDUCED QUANTUM NUMBERS AT
NONZERO TEMPERATURE, THERMAL

CORRELATIONS, AND QUADRATIC
FLUCTUATIONS

Using the results of the preceding section, we get the
following expression for the thermal expectation value
(29), compare with Eq. (92):
 

O��T� � �
1

2

Xjqj
m��jqj

Z 2�

0
d�

Z �

0
d# sin#
ym�
m

�

�
��� cos�� tanh

�
1

2
�M sin�

�

�
sin2�

2�

Z 1
1

dw���������������
w2 � 1
p

tanh�12�Mw�

w2 � sin2�

�
: (93)

Taking the inverse Sommerfeld-Watson transformation,
see Eq. (27), we get the infinite sum representation of
Eq. (93):
 

O��T� � �
Xjqj

m��jqj

Z 2�

0
d�

Z �

0
d# sin#
ym�
m�M

� sin�
X1
n�0


�2n� 1�2�2 � �2M2

� �M cos�
��������������������������������������������
�2n� 1�2�2 � �2M2

q
��1: (94)

In the case of � � I, one gets induced fermion number
[10,11]
 

OI�T� � �jegj
�
��� cos�� tanh

�
1

2
�M sin�

�

�
sin2�

2�

Z 1
1

dw���������������
w2 � 1
p

tanh�12�Mw�

w2 � sin2�

�

� �2jegj�M sin�
X1
n�0


�2n� 1�2�2 � �2M2

� �M cos�
��������������������������������������������
�2n� 1�2�2 � �2M2

q
��1; (95)

note that Eq. (95) at jegj � 1
2 coincides with the expression

for fermion number which is induced in 2� 1-dimensional
space-time at nonzero temperature by a pointlike magnetic
vortex with flux �mod 2� [18].

All other quantum numbers are related to Eq. (95):
squared orbital angular momentum

 O�2�T� � jegj�jegj � 1�OI�T�; (96)

squared spin

 O�2�T� � 3
4OI�T�; (97)

and squared total angular momentum

 OJ2�T� � 
�eg�2 � 1
4�OI�T�; (98)

incidentally, one gets

 O��T� � O��T� � OJ�T� � 0: (99)

Let us turn now to thermal correlations and quadratic
fluctuations of observables. As it was shown in the pre-
vious section, the ideal gas contribution (denoted by super-
script �0�) is prevailing over the contribution (denoted by
superscript ren) which is due to interaction with the mono-
pole background, since the former is increasing, while the
latter is constant as the volume of the system increases.
Using Eqs. (81)–(87), one gets:

quadratic fluctuation of fermion number

 ��T; ÔI; ÔI� �
1

4�2

V

�3

Z 1
�2M2

ds
�s� �2M2�1=2

cosh2�12
���
s
p
�
;

(100)

correlation of fermion number and squared spin

 ��T; Ô�2 ; ÔI� �
3

16�2

V

�3

Z 1
�2M2

ds
�s� �2M2�1=2

cosh2�12
���
s
p
�
;

(101)

correlation of fermion number and squared orbital an-
gular momentum

 ��T; Ô�2 ; ÔI� �
1

10�2

�
3

4�

�
2=3 V5=3

�5

�
Z 1
�2M2

ds
�s� �2M2�3=2

cosh2�12
���
s
p
�
; (102)

correlation of fermion number and squared total angular
momentum

 ��T; ÔJ2 ; ÔI� �
1

10�2

�
3

4�

�
2=3 V5=3

�5

�
Z 1
�2M2

ds
�s� �2M2�3=2

cosh2�12
���
s
p
�
; (103)

correlation of squared total angular momentum and
squared spin

 ��T; Ô�2 ; ÔJ2� �
3

40�2

�
3

4�

�
2=3 V5=3

�5

�
Z 1
�2M2

ds
�s� �2M2�3=2

cosh2�12
���
s
p
�
; (104)

correlation of squared total angular momentum and
squared orbital angular momentum
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 ��T; Ô�2 ; ÔJ2� �
2

35�2

�
3

4�

�
4=3 V7=3

�7

�
Z 1
�2M2

ds
�s� �2M2�5=2

cosh2�12
���
s
p
�
; (105)

quadratic fluctuation of squared total angular momen-
tum

 ��T; ÔJ2 ; ÔJ2� �
2

35�2

�
3

4�

�
4=3 V7=3

�7

�
Z 1
�2M2

ds
�s� �2M2�5=2

cosh2�12
���
s
p
�
; (106)

where only the leading powers of volume in the large
volume limit are retained.
In the high-temperature limit induced quantum numbers

tend to zero as inverse temperature:
 

O��T ! 1� � �
1

8
�M sin�

Xjqj
m��jqj

Z 2�

0
d�

�
Z �

0
d# sin#
ym�
m; (107)

whereas fluctuations and correlations increase as powers of
temperature:

 ��T ! 1; ÔI; ÔI� �
4

3
��T ! 1; Ô�2 ; ÔI� �

1

3

V

�3 ;

(108)
 

��T ! 1; Ô�2 ; ÔI� � ��T ! 1; ÔJ2 ; ÔI�

�
4

3
��T ! 1; Ô�2 ; ÔJ2�

�
7�

52

�
�
6

�
1=3 V5=3

�5
; (109)

 

��T ! 1; Ô�2 ; ÔJ2� � ��T ! 1; ÔJ2 ; ÔJ2�

�
31�3

5� 72

�
6

�

�
1=3 V7=3

�7 : (110)

Thermal expectation value (93) can be presented as

 O��T� � O��0� �O
���
� �T�; (111)

where O��0� is given by Eq. (64), and
 

O���� �T� �
Xjqj

m��jqj

Z 2�

0
d�

Z �

0
d# sin#
m�
m

�

�
��� cos�� sgn0�sin��

exp��Mj sin�j� � 1
�
�M
4�

�
Z 1

1
dw

arctan
�1� w�2�1=2 tan��

cosh2�12�Mw�

�
; (112)

where

 sgn 0�u� �
�

sgn�u�; u � 0
0; u � 0

�
:

One can verify that relation O���� �T�j��� mod 2� � 0 holds,
and, thus, Eq. (112) vanishes exponentially in the zero-
temperature limit (as e��M at �! 1) for all values of �.

At a first glance, one may anticipate that also thermal
correlations and quadratic fluctuations vanish exponen-
tially in this limit for all values of �, since the prevailing
ideal gas contribution is �-independent. However, the
bound state with zero energy [EBS � 0, i.e., � �
�mod 2�, see Eq. (54)] in the one-particle spectrum re-
veals itself in a completely different manner, as compared
to Eq. (112). In the zero-temperature limit, both the ideal
gas contribution and the renormalized contribution of the
types 1 and 2 solutions to correlations and fluctuations
vanish exponentially, whereas the contribution of the
type 3 solutions behaves otherwise: the bound state pole
in spectral density (91) is not exponentially damped in this
limit if the bound state energy is zero. In general, we get
 

��T ! 0; Ô�1
; Ô�2

� �
Xjqj

m��jqj

Z 2�

0
d�

Z �

0
d#

� sin#
ym�1�2
m

�

� 0; � � �mod 2�
1
4; � � �mod 2�:

(113)

In particular, the zero-temperature limits of the quadratic
fluctuations of fermion number and squared total angular
momentum are

 ��T ! 0; ÔI; ÔI� �

�
0; � � �mod 2�
1
2jegj; � � �mod 2�

(114)

and
 ��T ! 0; ÔJ2 ; ÔJ2�

�

�
0; �;� �mod 2�
1
2jegj
�eg�

2 � 1
4�

2; � � �mod 2�
: (115)

VII. SUMMARY

It is well known [7–11] that the vacuum and thermal
fluctuations of the quantized Dirac electron field in the
background of a pointlike magnetic monopole result in
the monopole becoming a dyon with electric charge eOI
depending on the CP violating vacuum angle, see Eqs. (66)
and (95). In the present study we find out that, in addition to
charge, also other quantum numbers are induced in the
monopole background. These comprise squares of orbital
angular momentum, spin, and total angular momentum,
and we show that they are related to charge, see Eqs. (72)–
(74) and (96)–(98). The density of induced quantum num-
bers is considerable around a monopole in the region of
order of the Compton size of the electron, decreasing
exponentially at larger distances (as r�5=2e�2Mr at r!
1), see Eq. (63).
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The conserved observables are charge and squared total
angular momentum; note that the latter vanishes in the case
of the minimal monopole strength, jegj � 1

2 . We analyze
thermal correlations between conserved and nonconserved
observables and thermal quadratic fluctuations of con-
served observables, and find out that these quantities at
nonzero temperature are given by the ideal gas expressions,
see Eqs. (100)–(106), and, thus, are �-independent and
proportional to the powers of spatial volume. The interac-
tion with the monopole background reveals itself at zero
temperature, yielding a �-dependence of a specific type,
which is due to a possibility of appearance of a bound state
with zero energy in the one-particle electron spectrum, see
Eq. (113). This fact has immediate consequences when we
turn to a question: whether the values of charge and
squared total angular momentum at zero temperature are
observed in a single quantum measurement, or whether
they are to be regarded as expected averages of many such
measurements.

We recall that CP invariance is violated, unless

 � � n�: (116)

Induced vacuum quantum numbers, as functions of the
vacuum angle, are discontinuous at points � �
�mod 2� (i.e. when the bound state with zero energy
appears in the one-particle electron spectrum), otherwise
they are continuous, vanishing at points � � 0 mod 2�.
Since the electric charge of a dyon in the case of CP
conservation can be either integer or half-integer in units
of e, this dictates that the induced charge and all other

quantum numbers in the case of Eq. (116) have to take the
same, i.e. equal to zero, values. In other reasoning, it is
sufficient to choose range j�j � �, where end points � �
� and � � �� have to be equivalent, and the equivalence
obliges to choose the mean between the right and left
limiting values, i.e. zero value for the induced quantum
number. Also, if we start from nonzero temperatures, when
the induced quantum numbers are continuous in � every-
where, see Eq. (93) or (94), and tend temperature to zero,
then we get the induced vacuum quantum numbers which
are vanishing at � � �mod 2�. However, as it follows
from the expressions for quadratic fluctuations at zero
temperature, Eqs. (114) and (115), charge and squared
total angular momentum are sharp observables (quantum-
mechanical eigenvalues), unless � � �mod 2�. Thus,CP
conserving values of the vacuum angle, Eq. (116), differ
significantly: in contrast to the case of � � 0 mod 2�,
charge and squared total angular momentum in the case
of � � �mod 2� are expected average values, not
eigenvalues.
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