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In the context of scalar field theories, both real and complex, we derive the cutting description at finite
temperature (with zero/finite chemical potential) from the cutting rules at zero temperature through the
action of a simple thermal operator. We give an alternative algebraic proof of the largest time equation
which brings out the underlying physics of such a relation. As an application of the cutting description, we
calculate the imaginary part of the one-loop retarded self-energy at zero/finite temperature and finite
chemical potential and show how this description can be used to calculate the dispersion relation as well as
the full physical self-energy of thermal particles.
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I. INTRODUCTION

The imaginary part of a thermal amplitude (with or
without a chemical potential) has been studied from vari-
ous points of view by several people both in the imaginary
time formalism [1,2] and in the real time formalisms of
thermofield dynamics [3] and closed time path [4–6]. In
particular, deriving the cutting rules for the imaginary part
of an amplitude is of great practical interest. In attempting
to derive these rules, two important ingredients are in-
volved. First, one should give a diagrammatic representa-
tion to the imaginary part of the amplitude, and, second
(which is crucial), one should show that these diagrams
allow for a cutting description. The earlier attempts at a
cutting description of thermal amplitudes, both in the
imaginary time formalism [2] and in thermofield dynamics
[3], succeeded in giving the imaginary part of an amplitude
a diagrammatic representation. However, they ran into the
difficulty of showing that these diagrams allow for a cut-
ting description at higher orders beyond one loop. This is
primarily due to the fact that, at higher orders at finite
temperature, graphs with internal isolated islands of
circled/uncircled vertices (circled/uncircled vertices and
propagators are explained in Sec. II) do not vanish indi-
vidually as a consequence of energy conservation, as they
do at zero temperature. A cutting description, on the other
hand, requires that such internal isolated islands should not
be present in the imaginary part of the amplitude so that the
only nonvanishing contributions come from diagrams
where circled/uncircled vertices form connected regions.
Subsequently, it has been shown [6] in the closed time path
formalism at finite temperature and zero chemical potential
that such internal isolated islands vanish when summed
over the internal thermal indices. As a result, a cutting
description holds for finite temperature amplitudes much
like at zero temperature [4–8]. There are, however, two
important differences at finite temperature in comparison

with the zero temperature analysis [9,10]. First, at finite
temperature, there is a doubling of fields (we follow the
notations and conventions in [7] and call these fields �).
Second, unlike at zero temperature where a cutting de-
scription holds graph by graph, at finite temperature such a
description holds only when we sum over classes of graphs
involving intermediate ‘‘�’’ vertices. The proof of such a
cutting description, even at zero chemical potential at finite
temperature, however, turns out to be rather involved [6,7].

On the other hand, in a series of papers [11–14] we have
shown recently that both in the real time as well as in the
imaginary time formalisms [7,15,16], a finite temperature
Feynman graph can be represented as a simple multiplica-
tive thermal operator acting on the corresponding zero
temperature Feynman graph (in the imaginary time formal-
ism the zero temperature graph is that of the corresponding
Euclidean field theory). Such a thermal operator represen-
tation holds even when the chemical potential is nonzero,
although in this case the thermal operator is a bit more
complicated [17,18]. The thermal operator has many nice
properties including the fact that it is real and the proof of
such a thermal operator representation of Feynman graphs
is most direct in mixed space (although the thermal opera-
tor representation holds even in momentum space).

While the thermal operator representation is useful from
various points of view, since the thermal operator is real, a
natural application of this relation will be in deriving the
cutting rules at finite temperature from those at zero tem-
perature. This may simplify the proof of the cutting de-
scription given in [6,7] and may allow us to extend a proof
of the cutting description for theories at finite temperature
and chemical potential. However, in trying to derive the
finite temperature cutting description from that at zero
temperature, one faces two difficulties. First, at zero tem-
perature classes of diagrams—those containing isolated
circled/uncircled internal vertices—vanish by energy con-
servation and it is known that the thermal operator acting
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on such terms can lead to nonvanishing contributions at
finite temperature. Therefore, it is not clear how to obtain a
proof for the cutting description of a general graph at any
arbitrary loop. The second difficulty is associated with the
fact that, at finite temperature, there is a doubling of fields
which is not present at zero temperature. The second
difficulty is easier to handle, as we have indicated in our
earlier papers. Namely, we simply take the zero tempera-
ture theory to correspond to the theory with the doubled
degrees of freedom obtained from finite temperature by
taking the zero temperature limit. Of course, the additional
degrees of freedom (in our notation the ‘‘�’’ fields) lead to
vanishing contribution at zero temperature. However, as
we will see, these additional vertices are quite essential in
giving a simpler derivation of the cutting description at
finite temperature. With this, the first difficulty may be
avoided if classes of diagrams containing isolated circled/
uncircled internal vertices add up to zero without the use of
explicit energy conservation. As we will show, this is
exactly what happens which leads to a simpler derivation
of the cutting description at finite temperature with and
without a chemical potential.

The paper is organized as follows. In Sec. II, we sys-
tematically study a real scalar field theory (without a
chemical potential) with doubled degrees of freedom at
zero temperature and derive the cutting description for
such a theory which then leads naturally to the cutting
description at finite temperature through the application
of the thermal operator. In this section, we give an alter-
native algebraic derivation of the largest/smallest time
equation which also brings out the physical meaning asso-
ciated with these. We derive various identities associated
with the relevant Green’s functions (and their physical
origin) which are quite crucial in proving the cutting
description. We also work out in this approach the imagi-
nary part of the one-loop retarded self-energy in the �3

theory. In Sec. III, we extend all of our analysis of Sec. II
and derive the cutting description for a complex scalar field
(interacting with a real scalar field) at finite temperature
and nonzero chemical potential. Such an analysis has not
been carried out earlier and our analysis shows that the
proof is no more difficult than in the case of a vanishing
chemical potential. As an example, we calculate the imagi-
nary part of the one-loop retarded self-energy for the real
scalar field interacting with a complex scalar field.
Furthermore, we show how one can use the circled dia-
grams to calculate the full retarded self-energy (and not
just the imaginary part) as well as the dispersion relations
at any temperature. We conclude with a brief summary in
Sec. IV. In Appendix A, we give a brief derivation of an
identity used in deriving the largest time equation. This
derivation also shows that the largest time equation holds
for any theory (with n-point interactions) and not just the
�3 theory that we deal with in the paper for simplicity. In
Appendix B, we give the spectral decomposition for the

components of the scalar propagator at finite temperature
and chemical potential.

II. CUTTING RULES AT FINITE T FOR � � 0

In this section, we will study the cutting rules for the �3

theory at finite temperature with a vanishing chemical
potential through the thermal operator representation.
The cutting description for such a theory has been studied
earlier in detail [6,7] where the derivation of the rules was
quite nontrivial and appeared to be quite distinct from
those at zero temperature. From the point of view of the
thermal operator representation, we will see that the deri-
vation of these rules at finite temperature is completely
parallel to that at zero temperature. We consider a real
scalar field with a cubic interaction for simplicity for which
the 2� 2 matrix propagators in the closed time path for-
malism are well known both in the momentum space
representation as well as in the mixed space representation.
Defining the propagator matrix as

 ��T� �
��T��� ��T���
��T��� ��T���

 !
; (1)

we note that in momentum space the components have the
explicit forms

 ��T����p� � lim
�!0

i

p2 �m2 � i�
� 2�n�jp0j���p

2 �m2�;

��T����p� � 2�����p0� � n�jp0j����p2 �m2�;

��T����p� � 2����p0� � n�jp0j����p2 �m2�;

��T����p� � lim
�!0
�

i

p2 �m2 � i�
� 2�n�jp0j���p2 �m2�;

(2)

with n�jp0j� denoting the bosonic distribution function,
while in mixed space they can be written as
 

��T����t; E� �
1

2E
���t�e�iEt � ���t�eiEt

� n�E��e�iEt � eiEt�	;

��T����t; E� �
1

2E
�n�E�e�iEt � �1� n�E��eiEt	;

��T����t; E� �
1

2E
��1� n�E��e�iEt � n�E�eiEt	;

��T����t; E� �
1

2E
���t�eiEt � ���t�e�iEt

� n�E��e�iEt � eiEt�	;

(3)

where E �
������������������
~p2 �m2

p
and we have dropped the i� factors

in the exponent for simplicity. For future use, we note from
the structures of the propagators in (3) that the KMS
condition (periodicity condition) [19,20] at finite tempera-
ture leads in mixed space to the relation
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 ��T����t; E� � ��T����t� i�; E�; (4)

where � denotes the inverse temperature in units of the
Boltzmann constant.

At zero temperature, the components of the propagators
take the respective forms

 ��T�0�
�� �p� � lim

�!0

i

p2 �m2 � i�
;

��T�0�
�� �p� � 2����p0���p2 �m2�;

��T�0�
�� �p� � 2���p0���p2 �m2�;

��T�0�
�� �p� � lim

�!0
�

i

p2 �m2 � i�
;

(5)

and
 

��T�0�
�� �t; E� �

1

2E
���t�e�iEt � ���t�eiEt	;

��T�0�
�� �t; E� �

1

2E
eiEt;

��T�0�
�� �t; E� �

1

2E
e�iEt;

��T�0�
�� �t; E� �

1

2E
���t�eiEt � ���t�e�iEt	:

(6)

As we have noted in earlier papers [13,14], the finite
temperature propagator in mixed space (3) is easily seen
to be related to that at zero temperature (6) through the
thermal operator as

 ��T�ab �t; E� � O�T��E���T�0�
ab �t; E�; a; b � �; (7)

where the basic thermal operator is defined to be

 O �T��E� � 1� n�E��1� S�E��; (8)

with S�E� representing a reflection operator that changes
E! �E. The important thing to note here is that the basic

thermal operator is independent of the time coordinates
and as a result any Feynman graph at finite temperature
factorizes, leading to a thermal operator representation for
the graph [13,14].

Let us study the theory at zero temperature with doubled
degrees of freedom resulting from the zero temperature
limit of the finite temperature theory in the closed time path
formalism. We know that, at zero temperature, the ‘‘�’’
components of the fields define the dynamical variables
and there is no contribution of the ‘‘�’’ components of the
fields to the amplitudes of the dynamical fields. So, in some
sense, adding these extra components at zero temperature
corresponds to adding vanishing contributions. Never-
theless, we will see that, with these added (vanishing)
contributions at zero temperature, the proof of the cutting
rules at finite temperature becomes completely parallel to
that at zero temperature through the thermal operator
representation. We would like to emphasize here that, if
one were to calculate physical Green’s functions such as
the retarded and advanced propagators at zero temperature,
such a doubling of degrees of freedom is inevitable.

In order to determine the imaginary part of a Feynman
amplitude diagrammatically, we need to introduce a dia-
grammatic representation for the complex conjugate of a
graph. This can be done in the standard manner by enlarg-
ing the theory with circled vertices and propagators in the
following way. We note that the propagators are time-
ordered Green’s functions and, as usual, we can decompose
them into their positive and negative frequency compo-
nents as

 ��T�0�
ab �t; E� � ��t���T�0����

ab �t; E� � ���t���T�0����
ab �t; E�:

(9)

The positive and the negative frequency parts of the propa-
gators at zero temperature can be read out from (6).
Furthermore, given this decomposition, we can define a
set of circled propagators as
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Here a; b � � and we have followed the standard con-
vention that an underlined coordinate denotes a vertex that
is circled. We note that the propagator with both ends
circled is the anti-time-ordered propagator which is easily
seen to be the complex conjugate of the original propagator
in momentum space. (We note here that, for the ‘‘��’’ and
‘‘��’’ components, the anti-time-ordered propagators are
the complex conjugates of the time-ordered propagators
even in mixed space. However, for the ‘‘��’’ and the
‘‘��’’ components this is not true as they are not even
functions of momenta in momentum space.) Similarly, we
introduce a circled interaction vertex to be the complex
conjugate of the original vertex. For real coupling con-
stants, this corresponds to simply changing the sign of the
interaction vertex.

where a � �. With these, it is clear that a graph with all
vertices circled is the complex conjugate of the corre-
sponding graph of the original theory (graph with no vertex
circled) in momentum space, and, consequently, the imagi-
nary part of a graph of the original theory in momentum
space can be given a diagrammatic representation.

Let us note here that one can also decompose the finite
temperature propagators in (3) into positive and negative
frequency parts through the definition (9) (we note here
that at finite temperature each of these functions contains
both positive as well as negative frequency components,

but the nomenclature carries over from zero temperature)
and correspondingly define a set of circled propagators at
nonzero temperature. It is clear from their forms that all
such propagators are related to the zero temperature propa-
gators by the same basic thermal operator in (8), namely,

 ��T�ab �t1 � t2; E� � O�T��E���T�0�
ab �t1 � t2; E�;

��T�ab �t1 � t2; E� � O�T��E���T�0�
ab �t1 � t2; E�;

��T�ab �t1 � t2; E� � O�T��E���T�0�
ab �t1 � t2; E�;

��T�ab �t1 � t2; E� � O�T��E���T�0�
ab �t1 � t2; E�:

(12)

Such a relation, in turn, allows us to relate the imaginary
part of a Feynman graph at finite temperature to that at zero
temperature through the thermal operator. (We recall that
interaction vertices are not modified at finite temperature
and that the thermal operator is real.)

From the definition of the circled propagators, we can
derive an interesting relation, conventionally known as the
largest/smallest time equation. Here we give an algebraic
derivation of this relation that also brings out the physics
underlying such a relation. Let us note from the definition
of the circled propagators (10) that

 ��T�0�
ab �t1 � t2; E� � ��T�0�

ab �t1 � t2; E� � ��T�0�
ab �t1 � t2; E� � ��T�0�

ab �t1 � t2; E�

� ��t2 � t1���
�T�0����
ab �t1 � t2; E� � ��T�0����

ab �t1 � t2; E��: (13)

Namely, adding a propagator with an uncircled vertex to
another with the corresponding vertex circled makes the
time coordinate of this vertex advanced with respect to the
second time coordinate. As a result, it follows that

 ��t1 � t2���
�T�0�
ab �t1 � t2; E� � ��T�0�

ab �t1 � t2; E�� � 0;

��t1 � t2���
�T�0�
ab �t1 � t2; E� � ��T�0�

ab �t1 � t2; E�� � 0:

(14)

These relations are really at the heart of the largest time

equation and from the above equations we note that the
vanishing of the relations in (14) holds independent of
whether the second vertex is circled or not. Thus, for
simplicity, in this �3 theory let us consider the sum of
the two diagrams shown in Fig. 1 with vertices �ti; ai�, i �
1, 2, 3, uncircled, where R � R�a1; a3� stands for the rest
of the graph (we will use the notation R throughout the
paper, but its dependence on the thermal indices a1, a3 is to
be understood). If we assume t to be the largest time
(namely, t > ti, i � 1, 2, 3), then the sum of the graphs
in Fig. 1 can be written as (recall that a circled vertex has an
additional negative sign)

t2 a, 2
t2 a, 2

t1 a, 1 t1 a, 1

t ,a33 t ,a33

,at ,at
R+R = 0

FIG. 1. Largest time equation.
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� � R
�Y3

i�1

��t� ti��
�T�0�
aai �t� ti; Ei� �

Y3

i�1

��t� ti��
�T�0�
aai �t� ti; Ei�

�

�
R
4

�X3

i�1

��t� ti���
�T�0�
aai �t� ti; Ei� � ��T�0�

aai �t� ti; Ei��
Y
j�i

��t� tj���
�T�0�
aaj �t� tj; Ej� � ��T�0�

aaj �t� tj; Ej��

�
Y3

i�1

��t� ti���
�T�0�
aai �t� ti; Ei� � ��T�0�

aai �t� ti; Ei��
�
� 0; (15)

which follows from (14). This is known as the largest time
equation; namely, if we take a Feynman graph with the
largest time vertex uncircled and add to it the same graph
where the largest time vertex is circled, then the sum
vanishes. (The largest time equation holds for any theory,
and a short derivation of the necessary identities in the case
of a theory with n-point interactions is given in
Appendix A.) Physically, this can be seen from the relation
(13) according to which summing over the two diagrams in
the above would make the time coordinate t advanced with
respect to at least one of the ti’s. On the other hand, this is
not possible if t happens to be the largest time and, con-
sequently, the sum must vanish. In a similar manner, one
can also derive the smallest time equation, which we will
not go into. We also note here that we can derive the
largest/smallest time equation where a circled vertex is
replaced by a ‘‘�’’ vertex, but we do not go into that for
simplicity. [We remark here parenthetically that if t de-
notes the largest time, namely, t > ti, i � 1, 2, 3, then
using (14) we note that

 ��t� ti��
�T�0�
aai �t� ti; Ei� � ��t� ti��

�T�0�
aai �t� ti; Ei�;

(16)

and the two factors in the first line of (15) cancel identi-
cally. This is the most direct way of deriving the largest
time equation in any theory. However, the above derivation
clarifies the underlying physics of such a relation.]

From (12) we see that the circled propagators at finite
temperature are related to those at zero temperature
through the basic thermal operator which is independent
of time. It follows, therefore, that the largest time equation
also holds at finite temperature as has been shown explic-
itly in [7]. A consequence of the largest time equation (both
at zero as well as at finite temperature) is that, if we
take any diagram with all possible circlings of the vertices,
then the sum of all such diagrams must vanish. This
follows from the fact that, for any given time ordering,
the sum would involve pairs of diagrams with the largest
time vertex uncircled and circled, which will cancel
pairwise. Thus, denoting a graph with n vertices by
F�T�0�
a1


an�t1; 
 
 
 ; tn� (where we are suppressing the energy

dependence), we have

 

X
circlings

F�T�0�
a1


an�t1; 
 
 
 ; tn� � 0: (17)

This, in turn, implies that

 F�T�0�
a1


an�t1; 
 
 
 ; tn� � F

�T�0�
a1


an�t1; 
 
 
 ; tn�

� �
X

circlings

0
F�T�0�
a1


an�t1; 
 
 
 ; tn�; (18)

where the prime refers to the sum of all circlings except
where no vertices/all vertices are circled. We note that the
left-hand side is 2 times the imaginary part of the diagram
(up to a factor of ‘‘i’’) in momentum space.

It is worth remembering that the internal vertices in a
diagram are, of course, integrated over the respective time
coordinates, but in addition the ‘‘thermal’’ indices of the
internal vertices also need to be summed over. As a result,
the number of diagrams on the right-hand side of (18) is, in
general, very large. However, a lot of them vanish and, to
determine the nontrivial ones that contribute to the imagi-
nary part of the diagram, we make use of some interesting
identities involving the circled propagators. By direct in-
spection of the propagators in (6) and their positive and
negative frequency parts, it can be easily seen that when
only one of the ends of the propagator is circled, it takes a
very simple form, namely,

 ��T�0�
ab �t1 � t2; E� � ��T�0�

a�a �t1 � t2; E�;

��T�0�
ab �t1 � t2; E� � ��T�0�

�bb �t1 � t2; E�:
(19)

Here we have introduced the notation�a � � for a � �.
As we will see, these relations are quite crucial in obtaining
a cutting description of graphs. Basically, they say that,
when one of the ends of a propagator is circled, the
propagator is independent of the thermal index of the
circled end. While this may seem surprising, it is easy to
see that this has a physical origin. Let us recall that the
retarded propagator of the theory is given by (this can be
obtained from the zero temperature limit of the definition
in [7])
 

��T�0�
R �t1� t2;E� ���T�0�

�� �t1� t2;E����T�0�
�� �t1� t2;E�

���T�0�
�� �t1� t2;E����T�0�

�� �t1� t2;E�:

(20)

Putting in the positive and the negative frequency decom-
positions, the two relations lead to
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��T�0�
R �t1 � t2; E� � ��t1 � t2���

�T�0����
�� �t1 � t2; E�

���T�0����
�� �t1 � t2; E��

� ��t2 � t1���
�T�0����
�� �t1 � t2; E�

���T�0����
�� �t1 � t2; E��;

��T�0�
R �t1 � t2; E� � ��t1 � t2���

�T�0����
�� �t1 � t2; E�

���T�0����
�� �t1 � t2; E��

� ��t2 � t1���
�T�0����
�� �t1 � t2; E�

���T�0����
�� �t1 � t2; E��: (21)

On the other hand, by definition the retarded propagator is
proportional to ��t1 � t2� and, therefore, we must have

 ��T�0����
�� � ��T�0����

�� � ��T�0�
�� ;

��T�0����
�� � ��T�0����

�� � ��T�0�
�� ;

(22)

where we have used the fact that the positive and the
negative frequency components of ��� coincide with the
respective propagators. This, in turn, implies that

 ��T�0����
ab �t1 � t2; E� � ��T�0�

a�a �t1 � t2; E�: (23)

On the other hand, by definition

 ��T�0����
ab �t1 � t2; E� � ��T�0�

ab �t1 � t2; E�; (24)

so that the first of (19) follows. Similarly, looking at the
advanced propagator we can show that

 ��T�0����
ab �t1 � t2; E� � ��T�0�

�bb �t1 � t2; E�

� ��T�0�
ab �t1 � t2; E�; (25)

which leads to the second of the relations in (19). It is clear,
therefore, that ��T�0�

�� represent the two basic propagators
at zero temperature (and through the thermal operator at
finite temperature as well). In fact, we note that we can
even express the uncircled and doubly circled propagators
in terms of them as
 

��T�0�
ab �t1 � t2; E� � ��t1 � t2��

�T�0�
�bb �t1 � t2; E�

� ��t2 � t1��
�T�0�
a�a �t1 � t2; E�;

��T�0�
ab �t1 � t2; E� � ��t1 � t2��

�T�0�
a�a �t1 � t2; E�

� ��t2 � t1��
�T�0�
�bb �t1 � t2; E�: (26)

Therefore, ��T�0�
�� truly denote the two basic propagators in

terms of which all other propagators (circled/uncircled)
can be expressed. For completeness, let us note from (6)
that we can compactly write

 ��T�0�
a�a �t1 � t2; E� �

1

2E
ei�a�E�t1�t2�: (27)

Let us also note some other interesting identities involving
the circled propagators. From the forms of various propa-

gators, we can easily verify that
 X

a;b��

�a��b���T�0�
ab �t1 � t2; E� � 0;

X
a;b��

�a��b���T�0�
ab �t1 � t2; E� � 0;

X
a;b��

�a��b���T�0�
ab �t1 � t1; E� � 0;

X
a;b��

�a��b���T�0�
ab �t1 � t2; E� � 0:

(28)

With these relations, we are now ready to derive the
cutting description for this theory at zero temperature with
doubled degrees of freedom. First, let us note that, in this
theory, if we have a diagram with an isolated internal
circled vertex, then its contribution identically vanishes.
In fact, for any value of the thermal index a, the contribu-
tion (we are ignoring combinatoric factors as well as the
coupling constants) in the integrand corresponding to the
diagram shown in Fig. 2 has the form (we are suppressing
the energy dependence of the propagators for simplicity)
 

� �a�R�3�k1 � k2 � k3�
Y3

i�1

���T�0�
ai�ai �ti � t��

���T�0�
a1a2
�t1 � t2��

�T�0�
a2a3
�t2 � t3�; (29)

where R � R�a1; a3� denotes the contribution from the rest
of the graph and we have used the relations in (19) in
simplifying the integrand. In this case we see that the
integrand depends linearly on �a� and, consequently, if
we were to sum the contributions of two graphs corre-
sponding to the two values of this index, the sum would
vanish. However, in this theory even the individual graphs
for any fixed value of the thermal index lead to a vanishing
contribution which can be seen as follows. We note that t
represents an internal time coordinate which needs to be

k ,E1 1

t2 a, 2

,E2 2k
t ,a33

t ,a11

,E 3k3

t, a

R

FIG. 2. A typical diagram with a single isolated internal
circled vertex.
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integrated over. Using the form of the propagators in (27)
and integrating over t, the contribution of the graph for any
value of the thermal indices becomes proportional to

 � �3�k1 � k2 � k3���a1E1 � a2E2 � a3E3� � 0: (30)

The vanishing of this graph follows from the fact that there
cannot be a decay involving three on-shell massive parti-

cles. (Remember that Ei �
�����������������
k2
i �m

2
q

.) Through the appli-
cation of the thermal operator, it follows then that such a
graph with an isolated circled internal vertex will vanish at
finite temperature for any value of the thermal index.

We can now show using the relation (26) that, if we have
a diagram with an island of internal circled vertices, then
its contribution identically vanishes (without the use of any
energy conservation) when summed over the thermal in-
dices of all the circled vertices. This can be seen from the
graph shown in Fig. 3 as follows. Let us assume that the
vertex �t; a� has the smallest time among the internal
circled vertices. Then, using (26) we see that the integrand
of the graph would have the form (29) (with the last two
propagators doubly circled) and will be linear in the factor
�a�. As a result, when summed over the thermal index a,
the integrand vanishes (as in the case of a single, isolated,
circled, internal vertex). We note that the time coordinates
of internal vertices need to be integrated over. Therefore,
there will be time configurations for which the vertex
�t1; a1�, for example, will have the shortest time among
the circled vertices. In this case, the above argument can be
repeated and it will follow that the diagram vanishes when
summed over the index a1. In this way, it is clear that the
contribution of the diagram will totally vanish when we
sum over the thermal indices of all the internal circled
vertices. Once again, since these contributions vanish iden-
tically without the use of any relation of energy conserva-
tion, through the thermal operator, we see that such
diagrams must also vanish at finite temperature. An ex-

ample of such a diagram that can be explicitly checked to
vanish when summed over the indices of the circled verti-
ces is the following two-loop self-energy diagram shown in
Fig. 4.

Let us next consider a generic diagram in �3 theory
shown in Fig. 5, where there is an isolated internal vertex
that is uncircled and is connected only to circled vertices
that are internal with the integrand given by (we suppress
the energy dependence in the propagator for simplicity of
notation)
 

� �3�k1 � k2 � k3�
X
a��

�a�
Y3

i�1

��a�a�t� ti��

�

�X
ai

R�a1��a2��a3��a1a2
�t1 � t2��a2a3

�t2 � t3�
�
:

(31)

The coordinate t is internal and needs to be integrated over.
As in the case of an isolated circled internal vertex, if we
integrate over t, the factor inside the product of propagators
leads to

 � �3�k1 � k2 � k3���E1 � E2 � E3� � 0; (32)

much like in (30). This shows that an isolated internal

FIG. 4. A two-loop self-energy graph with two internal circled
vertices.

k ,E1 1

,E2 2k

R

t ,a33t2 a, 2t1 a, 1

,E 3k3

t, a

FIG. 5. A typical diagram with an isolated internal uncircled
vertex.

t a,

R

t ,a33
t ,a11 t2 a, 2

FIG. 3. A typical diagram with an isolated island of internal
circled vertices.
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uncircled vertex connected to internal circled vertices van-
ishes for any value of the internal thermal index of the
uncircled vertex. Since this graph vanishes identically at
zero temperature, through the use of the thermal operator,
it follows that such a graph will also vanish at finite
temperature.

From the discussion above, it is clear that, if in a diagram
we have an internal uncircled vertex connected to three
circled vertices, then the diagram vanishes by energy con-
servation, both at zero and at finite temperature, when we
integrate over the time coordinate of the internal uncircled
vertex. Furthermore, this happens for any distribution of
the thermal indices. Let us next consider the diagram
shown in Fig. 6, where an isolated island of uncircled
internal vertices is connected to internal circled vertices.
A general proof for the vanishing of such a graph is rather
involved at finite temperature and we refer the reader to [7]
for details. Here we summarize in a simple manner what
goes into such a proof through the application of the
thermal operator.

If the island of uncircled vertices contains at least one
vertex that is connected only to the circled vertices, then
such a diagram will again vanish, both at zero as well as at
finite temperature, because of arguments of energy conser-
vation given above. However, if the island of uncircled
internal vertices does not contain any vertex that is not
connected only to circled vertices, the vanishing of such a
graph at finite temperature (under the action of a thermal
operator) does not follow from arguments of energy con-
servation as given above for any distribution of thermal
indices. For example, let us consider for simplicity the case
where all the vertices in the island of uncircled vertices are
of ‘‘�’’ type and are connected among themselves (as well

as to the internal circled vertices). Integrating over all
except one of the internal time coordinates, the island of
internal uncircled vertices can be thought of as an n-point
vertex correction connected to internal circled vertices as
shown in Fig. 7.

In this case, integrating over the internal time coordinate
t leads to

 � ��E1 � E2 � 
 
 
 � En�; (33)

for any given distribution of thermal indices. This vanishes
at zero temperature. However, under the action of the
thermal operator, some of the Ei’s inside the delta function
will change sign and, therefore, the vanishing does not hold
for individual graphs. On the other hand, if we sum over the
complete set of thermal indices of the internal uncircled
vertices, then the contribution is annihilated by the thermal
operator as we will show in detail in the following
example.

Let us consider a typical diagram in �3 theory with an
insertion of the two-loop self-energy correction graph as

t2 a, 2
t1 a, 1

E1 E2

t a,n n

En

t
+

+
+

FIG. 7. An n-point vertex correction arising from uncircled
vertices connected to internal circled vertices.

t2 a, 2
t1 a, 1

E1
E2

t, a

t, a
R

E

EE
43

5

~~

FIG. 8. A two-loop self-energy insertion in a generic diagram.
FIG. 6. A typical diagram of an isolated island of uncircled
internal vertices connected to internal circled vertices.

BRANDT et al. PHYSICAL REVIEW D 74, 085006 (2006)

085006-8



shown in Fig. 8. In this case, we note that there are two
isolated uncircled internal vertices connected among them-
selves as well as to internal circled vertices (there is no
internal uncircled vertex that is connected only to circled
vertices). In this case, the contribution of the diagram can
be written as

 �
X
a1;a2

�a1��a2�R�a1; a2�
X
a;~a

��T�0�
a~a ; (34)

where we have identified

 

��T�0�
a~a � �a��~a�

Z
dtd~t��T�0�

a~a �t� ~t; E5�

�
Y2

��1

��T�0�
�aa �t� � t; E���

�T�0�
�~a ~a �t� � ~t; E��2�:

(35)

Using the relation (27), the integration over t, ~t can be done
and, for various combinations of the thermal indices, the
results are

 ��T�0�
�� � ��2�i�

�Y5

i�1

1

2Ei

�
��E1 � E2 � E3 � E4�e�i�E1�E3��t1�t2�

�
1

E3 � E4 � E5 � i�
�

1

E3 � E4 � E5 � i�

�
;

��T�0�
�� � ��2��2

�Y5

i�1

1

2Ei

�
��E1 � E2 � E3 � E4�e

�i�E1�E3��t1�t2���E3 � E4 � E5�;

��T�0�
�� � ��2��2

�Y5

i�1

1

2Ei

�
��E1 � E2 � E3 � E4�ei�E1�E3��t1�t2���E3 � E4 � E5�;

��T�0�
�� � �2�i�

�Y5

i�1

1

2Ei

�
��E1 � E2 � E3 � E4�e

i�E1�E3��t1�t2�
�

1

E3 � E4 � E5 � i�
�

1

E3 � E4 � E5 � i�

�
:

(36)

It is clear from the structures in (36) that every single component vanishes at zero temperature as a consequence of an
energy conserving delta function. We can now apply the thermal operator to these components and explicitly verify that at
finite temperature the components no longer vanish individually. On the other hand, if we sum over the thermal indices of
the internal uncircled vertices (namely, sum over all the components in (36) after applying the thermal operator), then the
sum identically vanishes without the use of energy conservation. We have checked this directly, which is tedious, but there
is a simpler and more elegant way of seeing this cancellation as follows.

Let us recall [see (7)] that applying the thermal operator simply changes a zero temperature propagator to a finite
temperature one. Thus, applying the thermal operator to (35) we can write

 ��T��� �
Z
dtd~t

Y2

��1

��T����t� � t; E���
�T�
���t� � ~t; E��2��

�T�
���t� ~t; E5�;

��T��� � �
Z
dtd~t

Y2

��1

��T����t� � t; E���
�T�
���t� � ~t; E��2��

�T�
���t� ~t; E5�;

��T��� � �
Z
dtd~t

Y2

��1

��T����t� � t; E���
�T�
���t� � ~t; E��2��

�T�
���t� ~t; E5�;

��T��� �
Z
dtd~t

Y2

��1

��T����t� � t; E���
�T�
���t� � ~t; E��2��

�T�
���t� ~t; E5�:

(37)

We can now use the KMS condition (4),

 ��T����t; E� � ��T����t� i�; E�;

��T����t; E� � ��T����t� i�; E�;
(38)

in the first three terms to change all the prefactors to be
products of ��T��� (we also change the last factor in the
middle two terms using these relations). Furthermore,
since t, ~t are internal coordinates that are being integrated
over, in the first three terms we can make the shifts

 t! t� i�; ~t! ~t� i�; (39)

as is necessary to write the sum over the internal thermal
indices of the uncircled vertices as
 X
a;~a

��T�a~a �
Z
dtd~t

Y2

��1

��T����t� � t; E���
�T�
���t� � ~t; E��2�

�

�X
a;~a

�a��~a���T�a~a �t� ~t; E5�

�
: (40)

THERMAL OPERATOR AND CUTTING RULES AT . . . PHYSICAL REVIEW D 74, 085006 (2006)

085006-9



The last sum is easily seen to vanish using (28). Thus, we
see that, even though individual diagrams vanish at zero
temperature because of energy conservation, at finite tem-
perature the vanishing holds only when we sum over the
thermal indices of the internal uncircled vertices.

In deriving these relations, we have assumed that the
internal uncircled vertex or the island of uncircled vertices
are connected to internal circled vertices. If any of the
circled vertices is external, then our argument does not
go through and, in fact, such diagrams would not, in
general, vanish since they are needed to give a cutting
description to the diagrams. However, some such diagrams
where the internal uncircled vertex is connected to an
external circled vertex may identically vanish from con-
servation laws. For example, let us consider the following
two-loop self-energy diagram in the �3 theory, shown in
Fig. 9.

In this case, we note that, for any value of the thermal
index a, the integrand has the form

 � R�3�k1 � k2 � k3�
Y
i

�a�a�t� ti; Ei�

� R�3�k1 � k2 � k3�
Y
i

ei�a�Ei�t�ti�

2Ei
: (41)

When integrated over the internal time coordinate, the
result has the form

 � �3�k1 � k2 � k3���E1 � E2 � E3� � 0: (42)

As we have noted earlier, the vanishing of this graph
follows from the fact that there cannot be a decay involving
three on-shell massive particles. This conclusion holds

even if one of the Ei’s changes sign in the delta function
and so the vanishing of these individual graphs continues to
hold at finite temperature (as can be easily seen from the
action of the thermal operator).

Thus, we see that in this doubled theory at zero tem-
perature, when the internal thermal indices are summed,
the nontrivial graphs contributing to the imaginary part in
momentum space consist of diagrams where there are
regions of circled and uncircled vertices connected to the
external vertices in a continuous manner such that a cutting
description holds. Furthermore, through the application of
the thermal operator (since every propagator factors into
the same thermal operator that is independent of time), it
follows that a cutting description of the graphs holds even
at finite temperature in a completely parallel manner. The
cutting rules for this theory at finite temperature and� � 0
are already well known. However, this gives a simpler
derivation of the cutting description through the applica-
tion of the thermal operator.

Example

As an example of the cutting description through the
thermal operator, let us calculate the imaginary part of the
one-loop retarded self-energy at finite temperature for the
�3 theory. This imaginary part has been calculated from
various points of view. Here we merely give a brief deri-
vation of this to illustrate the application of the thermal
operator representation.

In the case of the self-energy, Eq. (18) graphically takes
the form shown in Fig. 10. Furthermore, if we are inter-
ested only in the retarded self-energy, the second diagram
with the circled vertex on the right can be shown to add up
to zero. Consequently, the nontrivial diagram that would
contribute to the imaginary part of the retarded self-energy
at one loop has the form shown in Fig. 11.

Ignoring the momentum integration (namely,R
��d3k1d3k2�=�2��6	�2��3�3�k1 � k2 � p�), the diagram

leads to

 � i ���T�0�
ab �

��ig��ig��a��b�
2

Y2

i�1

��bb�t1 � t2; Ei�

�
�a��b�g2

2

1

4E1E2
e�i�b��E1�E2��t1�t2�; (43)

where we have used the compact representation of the
propagators in (27) as well as the fact that the two-point

t a,

a1

k ,E1 1

Ek2, 2

k3 ,E3

t ,a33

t ,1

t2 a, 2

FIG. 9. A two-loop self-energy diagram with an internal un-
circled vertex connected to external circled vertices.

FIG. 10. Graphical representation of Eq. (17) for a one-loop self-energy diagram.
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function is identified with �i �� where �� denotes the
appropriate self-energy. Since the retarded self-energy at
zero temperature is given by

 ��T�0�
R � ��T�0�

�� ���T�0�
�� ; (44)

using (43) and taking the Fourier transform with respect to
the time coordinate, we obtain the imaginary part of the
retarded self-energy in momentum space to be

 

Im��T�0�
R �p� � �

1

2

�
�i ���T�0�

R �p�
�
�
i
2

���T�0�
R �p�

� �
1

2

Z
dt

g2

8E1E2

� �ei�p0�E1�E2�t � ei�p0�E1�E2�t�

� �
�2��g2

16E1E2

�
��p0 � E1 � E2�

� ��p0 � E1 � E2�

�
: (45)

Applying the relevant thermal operator for the graph
[13,14],

 O �T� �
Y2

i�1

�1� n�Ei��1� S�Ei���; (46)

we obtain the imaginary part of the retarded self-energy at
one loop at finite temperature to be

 

Im��T�
R �p� � �

�2��g2

16E1E2
��1� n�E1� � n�E2��

� ���p0 � E1 � E2� � ��p0 � E1 � E2��

� �n�E1� � n�E2�����p0 � E1 � E2�

� ��p0 � E1 � E2��	; (47)

which is well known in the literature.

III. CUTTING RULES AT FINITE TEMPERATURE
AND � � 0

The cutting rules at finite temperature in the absence of a
chemical potential are well known in the closed time path
formalism. In the previous section, we have given a simple
derivation of these rules through the application of the
thermal operator on the cutting description of a zero tem-
perature theory with doubled degrees of freedom. In this
section we will derive the cutting rules for a theory at finite
temperature with a nonzero chemical potential through the
application of the thermal operator (which we have also
verified directly) and, to the best of our knowledge, this has
not been done in the closed time path formalism. As we
will see, the proof of a cutting description in this case will
be quite parallel to that discussed in the last section.
Therefore, instead of repeating arguments, we will give
only the essential details in this section.

Let us consider for simplicity a toy model of an interact-
ing theory of a real scalar field and a complex scalar field
described by the Lagrangian density

 

L �
1

2
@�	@

�	�
m2

2
	2 � ��@t � i����

�@t � i���

� � ~r�� 
 ~r��M2��� g	��; (48)

where � stands for the chemical potential of the complex
scalar field and is assumed to have a value �<M. For the
real scalar field, there is no chemical potential and the
components of the thermal propagator in the closed time
path formalism factorize through a thermal operator as
discussed in Eqs. (7) and (8). For the complex scalar field
with a chemical potential, however, the components of the
propagator in the closed time path formalism are more
complicated. In momentum space, they can be written as

 

G�T;���� �p� �
i

�p0���
2�E2� i�

� 2�n����p0����p0���2�E2�;

G�T;���� �p� � 2�����p0���

�n����p0�����p0���
2�E2�;

G�T;���� �p� � 2����p0���� n����p0�����po���2�E2�;

G�T;���� �p� ��
i

�p0���2�E2� i�

� 2�n����p0����p0���2�E2�; (49)

where

 E �
�������������������
~p2 �M2

q
; n����p0� � n�p0 sgn�p0 ����:

(50)

In mixed space, they take the forms [13]

k ,E1 1

t2 ,

k ,E2 2

bt1 , a

pp

FIG. 11. The one-loop self-energy graph leading to the imagi-
nary part.
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G�T;���� �t; E� �
1

2E
����t� � n��E��e�iE�t

� ����t� � n��E��e
iE�t�;

G�T;���� �t; E� �
1

2E
�n��E�e�iE�t � �1� n��E��eiE�t�;

G�T;���� �t; E� �
1

2E
��1� n��e

�iE�t � n��E�e
iE�t�;

G�T;���� �t; E� �
1

2E
����t� � n��E��eiE�t

� ����t� � n��e�iE�t�; (51)

where we have defined

 E� � E��; n��E� � n�E��� �
1

e��E��� � 1
:

(52)

In the zero temperature limit, the components of the propa-
gator take the form

 G�T�0;��
�� �t; E� �

1

2E
���t�e�iE�t � ���t�eiE�t�;

G�T�0;��
�� �t; E� �

1

2E
eiE�t;

G�T�0;��
�� �t; E� �

1

2E
e�iE�t;

G�T�0;��
�� �t; E� �

1

2E
���t�eiE�t � ���t�e�iE�t�:

(53)

As is clear from (51), in the presence of a chemical
potential, the components of the thermal propagator are
more complicated mainly because the distribution func-
tions for the positive and the negative frequency terms in
the propagator are different. In this case, a simple factori-
zation as in (7) and (8) in terms of the simple reflection
operator S�E� alone does not work. Rather, a time inde-
pendent factorization of the propagator and, therefore, a
thermal representation for any finite temperature graph can
be obtained if we introduce an additional operator
N̂�T;���E� such that

 N̂ �T;���E�f�E�� � n��E�f�E��: (54)

In this case, we can write the components of the thermal
propagator in a factorized manner as

 G�T;��ab �t; E� � O�T;���E�G�T�0;��
ab �E�; (55)

where

 O �T;���E� � 1� N̂�T;���E��1� S�E��: (56)

The action of this additional operator has already been

discussed in [17,18] to which we refer the readers for
more details.

Given the mixed space propagators of the zero tempera-
ture theory with doubled degrees of freedom, one looks at
their positive and negative frequency decomposition as in
(9). This leads to the set of circled propagators as in (10)
both at zero as well as finite temperatures. (We give the
spectral representation for the components of the propa-
gator at finite temperature in Appendix B.) It is easy to see
from the definition of the circled propagators that the set of
circled propagators at finite temperature factorizes into that
at zero temperature and the thermal operator (56), namely,

 G�T;��ab �t1 � t2; E� � O�T;���E�G�T�0;��
ab �t1 � t2; E�;

G�T;��ab �t1 � t2; E� � O�T;���E�G�T�0;��
ab �t1 � t2; E�;

G�T;��ab �t1 � t2; E� � O�T;���E�G�T�0;��
ab �t1 � t2; E�;

G�T;��ab �t1 � t2; E� � O�T;���E�G�T�0;��
ab �t1 � t2; E�:

(57)

We note here that the propagator where both ends are
circled corresponds to the anti-time-ordered propagator
which can be easily seen to be the complex conjugate of
the original propagator in momentum space. (It is interest-
ing to point out here that, in the presence of the chemical
potential, the doubly circled propagator is not the complex
conjugate even for the ‘‘��’’ components in mixed space
unlike the case when � � 0.) We can also introduce the
circled vertices as in (11) in this theory.

From the definition of the set of circled propagators,
identities such as (13) and (14) can be easily seen to hold in
the presence of a chemical potential and, therefore, it
follows that the largest time equation [see (15)] also holds
in this case. Through the application of the thermal opera-
tor, the largest time equation also holds at finite tempera-
ture in the presence of a chemical potential. Namely, if we
add to a graph with the largest time coordinate uncircled a
corresponding graph with the largest time coordinate
circled, the sum identically vanishes. Incidentally, since
identities such as (13) and (14) can be checked directly to
hold for the components of the propagator at finite tem-
perature with � � 0, the largest time equation can also be
checked to hold directly (independent of the proof through
the application of the thermal operator). From the largest
time equation, it then follows that the diagrams still satisfy
the identity (18) so that the imaginary part of a diagram
in momentum space can be given a diagrammatic
representation.

To obtain a cutting description, we proceed as in the last
section. First, it can be checked as in the case of� � 0 that
there are only two basic independent components of the
propagator, namely, G�T�0;��

�� , G�T�0;��
�� such that we can

express all the components of the propagators including the
circled ones as �a; b � ��,
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 G�T�0;��
ab �t1 � t2; E� � G�T�0;��

a�a �t1 � t2; E�;

G�T�0;��
ab �t1 � t2; E� � G�T�0;��

�bb �t1 � t2; E�;

G�T�0;��
ab �t1 � t2; E� � ��t1 � t2�G

�T�0;��
�bb �t1 � t2; E�

� ��t2 � t1�G
�T�0;��
a�a �t1 � t2; E�;

G�T�0;��
ab �t1 � t2; E� � ��t1 � t2�G

�T�0;��
a�a �t1 � t2; E�

� ��t2 � t1�G
�T�0;��
�bb �t1 � t2; E�:

(58)

From this relation it follows that, much like (28), for any
circling of the time coordinates t1, t2, we have

 

X
a;b��

�a��b�G�T�0;��
ab �t1 � t2; E� � 0: (59)

Let us also note for completeness that the basic compo-
nents of the propagator G�T�0;��

�� can be written in a com-
pact form [see (27)] as

 G�T�0;��
a�a �t1 � t2; E� �

1

2E
ei�a�E�a��t1�t2�: (60)

Since all the basic identities one needs to prove a cutting
description of the imaginary part of a diagram (in momen-
tum space) in the case � � 0 also hold for � � 0, we can
go through the discussions of the last section. However,
without repeating the arguments, we simply conclude that,
in the presence of a chemical potential, a cutting descrip-
tion for the imaginary part of a graph holds in the zero
temperature theory with doubled degrees of freedom, when
summed over the thermal indices of the internal vertices in
a graph. Through the application of the thermal operator,
we then conclude that such a description also holds at finite
temperature with� � 0. We note here that, independent of
the thermal operator argument, one can directly verify that
all the relevant identities hold for the components of the
propagator at finite temperature and � � 0 so that one can
also prove a cutting description for any graph at finite
temperature directly (which we have done). However, the
power of the thermal operator representation is that, once
the cutting description is shown to hold at zero temperature
in the theory with doubled degrees of freedom, it automati-
cally holds at finite temperature.

Example

As an application of the cutting rules in the presence of a
chemical potential, let us again calculate the imaginary
part of the self-energy for the real scalar particle at one
loop in this theory. Let us note that, in mixed space, the
two-point function shown in Fig. 12 has a very simple form
[we follow the same notation as in (43)],

 

�i ���T�0;��
ab �

g2�a��b�
2

G�T�0;��
b�b �t2 � t1; E1�

�G�T�0;��
�bb �t1 � t2; E2�

�
g2�a��b�
8E1E2

e�i�b��E1�b��E2��b���t1�t2�; (61)

where we have used the representation given in (60). Since
the retarded self-energy is defined as [see (44)]

 ��T�0;��
R � ��T�0;��

�� ���T�0;��
�� ; (62)

we obtain from (61)

 � i ���T�0;��
R �t1 � t2� �

g2

8E1E2
�e�i�E1��E2���t1�t2�

� ei�E1��E2���t1�t2��: (63)

Taking the Fourier transform of this, we obtain the imagi-
nary part of the retarded self-energy to be (as in the
earlier example, we are ignoring the momentum integra-
tion and the factors associated with them, namely,R
��d3k1d

3k2�=�2��
6	�2��3�3�k1 � k2 � p�)

 Im ��T�0;��
R �p� �

i
2

���T�0;��
R �p�

� �
�2��g2

16E1E2
���p0 � E1� � E2��

� ��p0 � E1� � E2���: (64)

We note that the chemical potential in a loop cancels out
completely which is also reflected in the fact that, if we are
to substitute the expressions for Ei� inside the delta func-
tions, there will be no � dependence in the retarded self-
energy. This is, in fact, the correct result and is what we
should do if we are interested in the imaginary part of the
retarded self-energy at zero temperature. However, as ex-
plained in [17,18], to obtain the temperature dependent
terms through the application of the thermal operator in
(56) using the relation (54), we should use the explicit
expressions for Ei� only after the application of the ther-
mal operator. Using the thermal operator, we obtain the
imaginary part of the retarded self-energy to be

t2 , bt1 , a

FIG. 12. One-loop diagram leading to the imaginary part of the
self-energy. The dashed lines represent the neutral scalar field
and the solid lines the complex scalar field with the arrow
representing the direction of the charge flow.
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Im��T;��
R �p� � O�T;���E1�O

�T;���E2� Im��T�0;��
R �p�

� �
�2��g2

16E1E2
��1� n��E1� � n��E2����p0 � E1 � E2� � �1� n��E1� � n��E2����p0 � E1 � E2�

� �n��E1� � n��E2����p0 � E1 � E2� � �n��E1� � n��E2����p0 � E1 � E2�	: (65)

This is easily seen to reduce to (47) when � � 0 and has all the symmetry properties of a retarded self-energy.
We would like to point out here that, with the use of the circled propagators and vertices, one can not only calculate the

imaginary part of the retarded self-energy, but also the complete retarded self-energy as well as the appropriate dispersion
relation at any temperature (including zero temperature). Let us note using the largest time equation [analogous to (14) for
the self-energy] that

 ��t1 � t2���
�T�0;��
ab �t1 � t2� ���T�0;��

ab �t1 � t2�� � 0; (66)

which can also be represented graphically as

From the definition of the retarded self-energy in (62) as well as the fact that the retarded self-energy (by definition) is
proportional to ��t1 � t2�, it follows that

 ��T�0;��
R �t1 � t2� � ��t1 � t2��

�T�0;��
R �t1 � t2� � ��t1 � t2���

�T�0;��
�� �t1 � t2� ���T�0;��

�� �t1 � t2��

� ���t1 � t2���
�T�0;��
�� �t1 � t2� ���T�0;��

�� �t1 � t2�� � ���t1 � t2� ���T�0;��
R �t1 � t2�: (68)

Here we have used (66) in the intermediate step and have
identified the appropriate graphs with ��i ���T�0;��� de-
fined earlier. We recall that the Fourier transform of
��i ��� is related to the imaginary part of the retarded
self-energy in momentum space [see (45) or (64)].
Therefore, (68) gives a method for calculating the com-
plete retarded self-energy using the circled propagators and
vertices at zero temperature which can then be extended to
finite temperature through the application of the thermal
operator. In fact, using the integral representation for the
theta function,

 ��t1 � t2� �
1

2�i

Z
dq0

eiq0�t1�t2�

q0 � i�
; (69)

and taking the Fourier transform of (68), we obtain

 ��T�0;��
R �p� � �

1

2�i

Z
dq0

���T�0;��
R �q0 � p0; ~p�

q0 � i�

�
1

�

Z
dq0

Im��T�0;��
R �q0 � p0; ~p�
q0 � i�

: (70)

This, therefore, leads to the dispersion relation for the
retarded self-energy at zero temperature and, through the

application of the thermal operator, it follows that the
dispersion relation holds even at finite temperature,
namely,

 ��T;��
R �p� �

1

�

Z
dq0

Im��T;��
R �q0 � p0; ~p�
q0 � i�

: (71)

Using the imaginary part of the retarded self-energy from
(65) and carrying out the delta function integrations, we
obtain the complete one-loop retarded self-energy in mo-
mentum space at finite temperature and chemical potential
to be (of course, we must still perform the momentum
integrations alluded to earlier)

 ��T;��
R �p� � �

g2

8E1E2

�
1� n��E1� � n��E2�

E1 � E2 � p0 � i�

�
1� n��E1� � n��E2�

E1 � E2 � p0 � i�

�
n��E1� � n��E2�

E1 � E2 � p0 � i�

�
n��E1� � n��E2�

E1 � E2 � p0 � i�

�
: (72)
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This expression is exact and can be used to compute
��T;��

R �p� in various limits of physical interest.

IV. SUMMARY

In this paper, we have systematically studied the inter-
esting question of cutting rules at finite temperature as an
application of the thermal operator representation. The
thermal operator relates in a direct manner the finite tem-
perature graphs to those of the zero temperature theory.
Thus, we have studied first a zero temperature scalar theory
with doubled degrees of freedom (that can be obtained
from the zero temperature limit of the finite temperature
theory in the closed time path formalism). We have given
an alternative algebraic derivation of the largest time equa-
tion for this theory. We have derived the cutting description
at zero temperature and then, through the action of the
thermal operator, we have shown that the cutting descrip-
tion also holds at finite temperature and zero/finite chemi-
cal potential. As an example, we have calculated the
imaginary part of the one-loop retarded self-energy at finite
temperature and zero/finite chemical potential. We have
also shown how the circled propagators and vertices can be
used to obtain the dispersion relation as well as the full
retarded self-energy of thermal particles.
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APPENDIX A: DERIVATION OF IDENTITIES FOR
THE LARGEST TIME EQUATION

In this appendix, we give a brief derivation of the
identity used in (15) with a generalization to theories
with n-point interactions. Let us consider expressions con-
sisting of products of n factors of the forms

 In �
Yn
i�1

Ai �
Yn
i�1

Bi; ~In �
Yn
i�1

Ai �
Yn
i�1

Bi; (A1)

where Ai, Bi are arbitrary. It follows from this that

 

Yn
i�1

Ai �
1

2
�In � ~In�;

Yn
i�1

Bi �
1

2
��In � ~In�: (A2)

In turn, this leads recursively to

 In�1 � An�1

Yn
i�1

Ai � Bn�1

Yn
i�1

Bi

�
1

2
�An�1 � Bn�1�In �

1

2
�An�1 � Bn�1�~In;

~In�1 � An�1

Yn
i�1

Ai � Bn�1

Yn
i�1

Bi

�
1

2
�An�1 � Bn�1�In �

1

2
�An�1 � Bn�1�~In:

(A3)

These relations can be written in a matrix form as

 

In�1
~In�1

� �
�

1

2
An�1 � Bn�1 An�1 � Bn�1

An�1 � Bn�1 An�1 � Bn�1

� �
In
~In

� �
:

(A4)

Iterating this, we obtain (we only note the forms of In
which are relevant for our discussion)
 

I1 � A1 � B1;

I2 �
1
2��A1 � B1��A2 � B2� � �A2 � B2��A1 � B1�	;

I3 �
1
4��A1 � B1��A2 � B2��A3 � B3�

� �A2 � B2��A3 � B3��A1 � B1�

� �A3 � B3��A1 � B1��A2 � B2�

� �A1 � B1��A2 � B2��A3 � B3�	; (A5)

and so on. Identifying

 Ai � ��t� ti��
�T�0�
aai �t� ti; Ei�;

Bi � ��t� ti��
�T�0�
aai �t� ti; Ei�;

(A6)

the identity in (15) follows. If we had a theory with an
n-point interaction, we could iterate the above relation n
times to obtain the particular identity. The important thing
to note is that, in this difference of products, there will
always be a factor of the form �A� B� in every term and,
with the identification in (A6), such a factor will always
vanish because of (14). As a result, the largest time equa-
tion holds for any theory.

APPENDIX B: SPECTRAL REPRESENTATION
FOR THE PROPAGATOR AT FINITE

TEMPERATURE AND � � 0

In our discussions in this paper, we have worked in a
mixed space representation for the propagator and, as a
result, we have been able to read out the positive and the
negative frequency components of the propagator directly
from the definition in (9). However, when one works in
momentum space, there is no time coordinate and, there-
fore, no direct notion of time ordering. In this case, the
positive and the negative frequency components of a
propagator are obtained from a spectral decomposition of
the propagator. In this appendix, we describe briefly the
spectral decomposition for a scalar propagator at finite
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temperature in the presence of a chemical potential. The
corresponding analysis for� � 0 was already discussed in
[7] and can be obtained from this discussion in the limit of
a vanishing chemical potential.

Let us note that, since the components of the propagator
at finite temperature depend on both positive and negative
frequency components, one can write a general spectral
decomposition for the propagator as

 

G�T;��ab �x� �
Z d4p

�2��4
G�T;��ab �p�e

�ip
x

� i
Z 1

0
ds
Z d4p

�2��4

�

�T;��ab �s; p�

�p0 ���2 � ~p2 � s� i�

�
~
�T;��ab �s; p�

�p0 ���2 � ~p2 � s� i�

�
e�ip
x: (B1)

From the structure of the components of the momentum
space propagator in (49), we can read out the spectral
functions in (B1) to be

 


�T;���� �s; p� � �1� n
����p0����s�M

2� � �~
�T;���� �s; p�;


�T;���� �s; p� � ����p0 ��� � n
����p0����s�M

2�

� �~
�T;���� �s; p�;


�T;���� �s; p� � ���p0 ��� � n
����p0����s�M

2�

� �~
�T;���� �s; p�;


�T;���� �s; p� � n����p0���s�M2� � �~
�T;���� �s; p�:

(B2)

We note that, when � � 0, these reduce to the spectral
functions already described in [7]. For T � 0, the spectral
functions are given by

 


�T�0;��
�� �s; p� � ��s�M2� � �~
�T�0;��

�� �s; p�;


�T�0;��
�� �s; p� � ���p0 �����s�M2�

� �~
�T�0;��
�� �s; p�;


�T�0;��
�� �s; p� � ��p0 �����s�M2� � �~
�T�0;��

�� �s; p�;


�T�0;��
�� �s; p� � 0 � ~
�T�0;��

�� �s; p�: (B3)

The components of the propagator are time ordered, and
carrying out the integration in (B1) over the p0 variable
would, in fact, show this and lead to the frequency decom-
position

 G�T;��ab �x� � ��x0�G�T;�����ab �x� � ���x0�G�T;�����ab �x�:

(B4)

In fact, comparing with (B1), we can now determine
 

G�T;�����ab �x� �
Z 1

0
ds
Z d4p

�2��4
�2�����p0 ���

2 � ~p2 � s�

� e�ip
x�����p0 ����

�T;��
ab �s; p�

� ����p0 ����~

�T;��
ab �s; p�	: (B5)

The positive and the negative frequency components in
mixed space can be related to the spectral functions as
 

G�T;���ab �t;E� �
Z 1

0
ds
Z
dp0���p0���2�E2� s�M2�

� e�ip0t�����p0����

�T;��
ab �s;p�

� ����p0����~

�T;��
ab �s;p�	: (B6)

Recalling that all the spectral functions in (B2) are propor-
tional to ��s�M2� and that the remaining factor depends
only on p0, let us define

 
�T;��ab �s; p� � ��s�M2�
�T;��ab �p0�;

~
�T;��ab �s; p� � ��s�M2�~
�T;��ab �p0�:
(B7)

Then, the positive and the negative frequency components
in mixed space can also be written as (doing the s integra-
tion)
 

G�T;���ab �t; E� �
Z
dp0���p0 ���2 � E2�

� e�ip0t�����p0 ����

�T;��
ab �p0�

� ����p0 ����~

�T;��
ab �p0�	; (B8)

which are the expressions used in the text (although we
have derived these directly from the expressions of the
components of the propagators in mixed space).
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