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We generalize the �2� 1�-dimensional Yang-Mills theory to an anisotropic form with two gauge
coupling constants e and e0. In axial gauge, a regularized version of the Hamiltonian of this gauge theory
is H0 � e

02H1, where H0 is the Hamiltonian of a set of �1� 1�-dimensional principal chiral sigma
nonlinear models and H1 couples charge densities of these sigma models. We treat H1 as the interaction
Hamiltonian. For gauge group SU(2), we use form factors of the currents of the principal chiral sigma
models to compute the string tension for small e0, after reviewing exact S-matrix and form-factor methods.
In the anisotropic regime, the dependence of the string tension on the coupling constants is not in accord
with generally-accepted dimensional arguments.
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I. INTRODUCTION

In this paper we calculate the string tension of pure �2�
1�-dimensional Yang-Mills theory at weak coupling. This
is done in an anisotropic version of the theory, with two
different, but small, coupling constants. The result clearly
establishes that confinement is not restricted to the strong-
coupling region.

The method used is a development of the proposal of
Ref. [1], which in turn was inspired by Mandelstam’s
arguments for confinement in QCD [2]. The starting point
is a regularized Hamiltonian in an axial gauge, A1 � 0,
where Aj, j � 1, 2 is the Lie-algebra valued gauge field
(the component A0 is also set to zero). The Hamiltonian
may be written as a sum of two terms, namely

 H0 �
Z
d2x

�
e2

2
TrE2

2 �
1

2e2 TrB2

�
;

and

 H1 �
e2

2

Z
d2xTrE2

1;

where Ej, j � 1, 2 are the components of the electric field
and B is the magnetic field B � i�@1 � iA1;
@2 � iA2� � @1A2 Though we may write E2 � �i�=�A2,
in the Schrödinger representation, the formula for E1 is a
nonlocal expression, obtained from Gauss’s law [2]

 E 1�x� � �
Z x1

dy1�@2 � iA2�y
1; x2�; E2�y

1; x2��

� �
Z x1

dy1D2�y
1; x?� � E2�y

1; x2�; (1.1)

where D2 is the adjoint covariant derivative in the two-

direction. The local form of Gauss’s law is explicitly
satisfied with (1.1), provided a residual gauge invariance

 

Z
dx1D2E2� � 0; (1.2)

is satisfied by physical states � (this condition must be
modified slightly if quarks are present).

If the theory is regularized on a lattice, H0 is the
Hamiltonian for a set of decoupled SU�N� 	 SU�N� prin-
cipal chiral nonlinear sigma models. These sigma models
are coupled together by the interaction Hamiltonian H1.
We shall treat the coefficient of H1 as small, meaning that
we consider an anisotropic modification,

 H1 �
�e0�2

2

Z
d2xTrE2

1:

By assuming e0 
 e, simple arguments were made that
the theory is in a confining phase [1]. It was also suggested
that Rayleigh-Schrödinger perturbation theory in e0 was
infrared finite—but it is now clear to the author that this is
not the case. A better understanding is needed to obtain
quantitative results.

In this paper, we shall work with gauge group SU(2) and
exploit exact knowledge of the form factors of the �1�
1�-dimensional O�4� ’ SU�2� 	 SU�2� nonlinear sigma
model [3]. The expressions for the form factors are valid
for small e, as we shall show, so both gauge couplings must
be small. After reintroducing the component A0 of the
gauge field, we integrate out A2 using these form factors.
We determine the resulting effective action of A0 to leading
order. This effective action is infrared finite.

We shall find a result for the string tension in the
x1-direction which is different from that in Ref. [1] and
will discuss how the difference comes about. We do not
calculate the string tension in the x2-direction here, which
is still under investigation.*Electronic address: giantswing@gursey.baruch.cuny.edu
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In the course of these investigations, we discovered a
paper by Griffin which suggests a program very similar to
ours [4]. Evidently, his ideas were taken no further.
Griffin’s proposal was for the light-cone gauge, instead
of the axial gauge, but the two are very similar in certain
respects.

We should say a few words about other analytic ap-
proaches to Yang-Mills theories in �2� 1�-dimensions.
Probably the best known paper is that of Feynman [5].
Though some of the mathematical details of Feynman’s
paper are not correct, evidence for some of his conjectures
were found in Ref. [6], which utilized some methods
introduced in Ref. [7]. In particular, the low-magnetic-
energy region of configuration space was argued to be
bounded in �2� 1� dimensions (it is unbounded in �3�
1� dimensions [7]), which is indicative of a mass gap.

An approach, which at first appears rather different, was
developed by Karabali and Nair [8] in which new coordi-
nates for configuration space were devised. A rederivation
of one form of the Hamiltonian discussed in Ref. [8] was
done in [9] using a kind of non-Abelian exterior differen-
tiation; in this way a connection was made with the ideas of
Refs. [6,7].

The major achievement of Ref. [8] was the finding of a
mass gap at strong coupling and a resummation of the
strong-coupling expansion. This resummation was used
to obtain a string tension which is independent of the
ultraviolet cut-off. We should mention, however, that
very similar results can be obtained by analytic lattice
methods. The strong-coupling spectrum in the lattice
Hamiltonian formalism has the same dependence on the
continuum coupling as in Karabali and Nair’s formalism. A
different resummation method on the lattice, due to
Greensite [10] also yields the strong-coupling vacuum
wave functional. The form of Greensite’s vacuum wave
functional in the continuum limit in 2� 1 dimensions is

 �0 � exp�
1

4�N � 1=N�e4

Z
d2xTr�Fij�x��

2:

The wave functional that Karabali and Nair obtained has
the form, in the infrared limit,

 �0 � exp�
�

CAe4

Z
d2xTr�Fij�x��

2;

where CA is the quadratic Casimir for the adjoint repre-
sentation. Both vacua yield a string tension proportional to
e4. It does not seem to have been noticed before that the
essential features of Karabali and Nair’s strong-coupling
expansion and those of the lattice strong-coupling expan-
sion worked out by Greensite are the same.

To obtain a genuine proof of confinement though strong-
coupling methods, it must be shown that the strong-
coupling expansion has a finite radius of convergence in
the 1=e or an infinte radius of convergence in the dimen-

sionless coupling 1=g0. This has not been accomplished
yet.

Recently a new approach has appeared [11], which uses
a scheme to improve a Gaussian Ansatz for the vacuum
and excited-state wave functionals in the variables of
reference [8].

What distinguishes the approach of [1] and this paper
from other work is that does not exploit strong-coupling
approximations or any Ansatz for wave functionals. We do
make assumptions, which are quite different from the
assumption of reference [11]. We assume that an aniso-
tropic weak-coupling expansion makes sense and that the
result for the SU�2� 	 SU�2� principal-chiral-sigma-model
exact form factor [3] (which has been checked in the 1=N
expansion for the O(4) formulation) is correct. We think
that our approach leaves no doubt that confinement occurs
at weak coupling, granting that the anisotropy is something
we would like to get beyond. Or perhaps not—the aniso-
tropic theory is asymptotically free and not finite like the
isotropic theory. In this respect it is more like real QCD in
3� 1 dimensions.

By treating the coefficient of TrE2
1 (instead of TrB2) as

small, our method is inherently a weak-coupling approach.
We think much insight can be gained by working system-
atically at small coupling. Furthermore, to solve the much
harder problem of QCD in (3� 1) dimensions, a weak-
coupling understanding is essential.

There is a well-accepted argument concerning how the
mass gap M and string tension � depend on the coupling
constant (see, for example, Refs. [8,12]). We find that such
an argument fails in the anisotropic weak-coupling regime.
The argument goes as follows: Yang-Mills theory is a
perturbatively-ultraviolet-finite field theory (there are se-
vere infrared divergences, but let us ignore these). Thus,
after being suitably regularized, the coupling has a nonzero
finite value, as the ultraviolet regulator is removed. Since
the coupling squared e2, has units of cm�1, the mass gap
must behave as M� e2 and the string tension must behave
as �� e4. In our anisotropic case, the same dimensional
reasoning implies

 M�
X
p

Cpe2�p�e0�p; ��
X
P

KPe4�P�e0�P; (1.3)

for some set of numbers p and P and dimensionless con-
stants Cp and KP. Our final answer for the string tension is
quite different from (1.3). We show in Sec. VI that for two
quarks separated in the x1-direction,

 ��
e2

a
exp�

4�

e2a
;

where a is a short-distance cutoff. We believe that for e �
e0 the dimensional argument does yield the right answer,
but that there is a crossover phenomenon between (1.3) to
the behavior we find in the anisotropic regime.
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Another application of exact form factors to the �2�
1�-dimensional SU(2) gauge theory has just appeared [13].
In this work, the form factors of the two-dimensional Ising
model are used to find the profile of the electric string, near
the high-temperature deconfining transition, assuming the
Svetitsky-Yaffe conjecture.

An interesting question is the value of k-string tensions
for gauge group SU�N� (see reference [14] for detailed
review of this matter). This is not discussed in this paper,
since the gauge group is SU(2). Thus the value of k is
always one. Another question is whether adjoint sources
are confined. Both of these issues are addressed in a new
paper [15]. The sine law is clearly seen for the vertical
string tensions. The situation is less clear for horizontal
string tensions; at zeroth order in g00 there is a Casimir law,
but there are corrections. We are unable to calculate these
corrections, because we do not know the form factors for
SU�N� 	 SU�N� principal chiral sigma models. Adjoint
sources are shown not to be confined.

In the next section, we discuss the regularized
Hamiltonian. In Section III, we go to the axial gauge and
split this Hamiltonian into the Hamiltonians of �1�
1�-dimensional O�4� ’ SU�2� 	 SU�2� nonlinear sigma
models H0 and a nonlocal term H1. We discuss how to
find the effective action of the temporal gauge field in
terms of correlators of the nonlinear sigma model in
Sec. IV. In Sec. V, we determine the leading-order effective
action using the exact form factors of the O�N� nonlinear
sigma model in �1� 1�-dimensions. The static potential is
then found between two quarks separated in the
x1-direction in Sec. VI. The physical picture of confine-
ment of glueball excitations and quarks separated in the
x2-direction is presented in Sec.VII. We discuss some
future endeavors in Sec. VIII. We give a review for non-
experts on the exact S-matrix [16] and form factors [3] of
the �1� 1�-dimensional O�N� nonlinear sigma model in
the appendix.

II. THE REGULARIZED HAMILTONIAN

We will quickly review the Kogut-Susskind Hamiltonian
formulation of lattice gauge theory. If the reader finds this
discussion incomplete, we refer him or her to the book by
Creutz [17].

Consider a lattice of sites x of size L1 	 L2, with sites x
whose coordinates are x1 and x2. We require that x1=a and
x2=a are integers, where a is the lattice spacing. There are
2 space directions, labeled j � 1, 2. Each link is a pair x, j,
and joins the site x to x� ĵa, where ĵ is a unit vector in the
jth direction.

We use generators tb, b � 1, 2, 3, of the Lie algebra of
SU(2), which are related to the Pauli matrices by tb �
�b=

���
2
p

. The identity matrix will be denoted by 1.
For now, the Hamiltonian lattice gauge theory will be in

the temporal gauge A0 � 0. The basic degrees of freedom,
before any further gauge fixing, are elements of the group

SU(2) in the fundamental �2	 2�-dimensional matrix rep-
resentation Uj�x� 2 SU�2� at each link x, j. The relation
between these variables and the continuum gauge field is
Uj�x� � e�iaAj�x�. There are three self-adjoint electric-field
operators at each link lj�x�b, b � 1, 2, 3. The commutation
relations on the lattice are

 �lj�x�b; lk�y�c� � i
���
2
p
�xy�jk�

bcdlj�x�d;

�lj�x�b; Uk�y�� � ��xy�jktbUj�x�;
(2.1)

all others zero.
The Hamiltonian is

 

H �
X
x

X2

j�1

X3

b�1

g2
0

2a
�lj�x�b�

2

�
X
x

1

2g2
0a
�TrU12�x� � TrU21�x��; (2.2)

where

 Ujk�x� � Uj�x�Uk�x� ĵa�Uj�x� k̂a�
yUk�x�

y;

where ĵ and k̂ are the unit vectors in the j- and k-directions,
respectively, and the bare coupling constant g0 is dimen-
sionless. The coefficient of the kinetic term is just half the
square of the continuum coupling constant e, namely
g2

0=�2a� � e2=2. This is why the mass gap in (2� 1)
dimensions is proportional to e2 in strong-coupling
expansions.

We denote the adjoint representation of the SU(2) gauge
field by Rj�x�. The precise definition is Rj�x�b

ctc �
Uj�x�tbUj�x�

y. The matrix Rj lies in the group SO(3).
Color charge operators q�x�b, may be placed at lattice

sites. These obey

 �q�x�b; q�y�c� � i
���
2
p
�bca�xyq�x�a: (2.3)

In the presence of static charges, Gauss’s law is the con-
dition on physical wave functions

 ��D � l��x�b � q�x�b���fUg� � 0: (2.4)

where

 �Djlj�x��b � lj�x�b �Rj�x� ĵa�b
clj�x� ĵa�c: (2.5)

III. THE AXIAL GAUGE; SPLITTING THE
HAMILTONIAN

Next we discuss the axial-gauge-fixing procedure. This
is most easily done on a cylinder of dimensions L1 	 L2,
with open boundary conditions in the x1-direction and
periodic boundary conditions in the x2-direction [1]. For
any function f�x1; x2�, we require that f�x1; x2 � L2� �
f�x1; x2�. The range of coordinates is x1 � 0; a; 2a; . . . ; L1,
x2 � 0; a; 2a; . . . ; L2 � a. For any physical state �,
Gauss’s law implies that
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l1�x
1; x2�� � �R1�x

1 � a; x2�l1�x
1 � a; x2�

� �D2l2��x1 � a; x2� � q�x���;

so the operators on each side of this expression may be
identified. Taking the gauge condition U1�x

1; x2� � 1,
which is possible everywhere on a cylinder, we sum over
the 1-coordinate to obtain

 l1�x
1; x2� �

Xx1

y1�0

q�y1; x2� �
Xx1

y1�0

�D2l2��y
1; x2�; (3.1)

which is the lattice analogue of (1.1). There is a remnant of
Gauss’s law not determined by (3.1), which is the condition

 

"XL1

x1�0

�D2l2��x1; x2� �
XL1

x1�0

q�x1; x2�

#
� � 0 (3.2)

on physical states �. The condition (3.2) is the lattice
analogue of (1.2).

In the axial gauge, using the nonlocal expression (3.1)
for the electric field in the x1-direction (which henceforth
will be called the horizontal direction), the Hamiltonian
(2.2) becomes H � H0 �H1, where

 H0 �
XL2�a

x2�0

H0�x
2�; (3.3)

with

 H0�x2� �
XL1

x1�0

g2
0

2a
�l2�x1; x2��2 �

XL1�a

x�0

1

2g2
0a

	�TrU2�x�
yU2�x

1 � a; x2� � c:c:�; (3.4)

and
 

H1 � �
�g00�

2

2a

XL2�a

x2�0

XL1

x1;y1�0

jx1 � y1j�l2�x1; x2�

�R2�x1; x2 � a�l2�x1; x2 � a� � q�x1; x2��

	 �l2�y1; x2� �R2�y1; x2 � a�l2�y1; x2 � a�

� q�y1; x2��; (3.5)

and where we have now introduced the second dimension-
less coupling constant g00, defined by �e0�2 � �g00�

2=a. The
only interaction in the x2-direction (which from now on
will be called the vertical direction) is due to H1.

If g00 vanishes, the cylindrical lattice splits apart as
shown in Fig. 1. The dashed line at the top of the unsplit
lattice on the left in this figure indicates that this line is
identified with the bottom line. No such identification is
made in the split lattice on the right.

The operators H0�x
2� are Hamiltonians of SU�2� 	

SU�2� principal chiral nonlinear sigma models, as noted
in Ref. [1] (see also Ref. [4]). Each sigma model is repre-
sented by a horizontal ladder of plaquettes on the right-

hand side of Fig. 1. We see that there is a ladder for each
value of x2. Setting g00 to zero results in decoupled layers of
�1� 1�-dimensional sigma models. Increasing g00 leads to
an interaction between the vertically-separated layers. This
fact was used to give a set of simple arguments for con-
finement for g00 
 g0. The expression for H1, acting on
physical states, with q � 0, is identical to the expression
on the right-hand side of Eq. (6) in Ref. [1], by virtue of
(3.2).

For readers who are not familiar with Hamiltonian
strong-coupling expansions, we remark that they start by
neglecting the second term of (2.2) or (3.4). This term is
reintroduced by Rayleigh-Schrödinger perturbation theory,
yielding the strong-coupling expansion in 1=g2

0.
In a strong-coupling expansion, the magnetic flux is

allowed to flow through space unconstrained. By including
the ‘‘magnetic’’ or ‘‘plaquette’’ term of order 1=g2

0, per-
turbatively, this unphysical assumption is corrected for. In
contrast, we start by allowing the 1-component of the
electric field to flow through space unconstrained. By
including H1 (we shall discuss how, at the end of the
next section) we correct for this assumption.

At this point, the reader has noticed that our aim is to
exploit a type of dimensional reduction from (2� 1) to
(1� 1) dimensions. This reduction is very different from
‘‘compactification,’’ that is, making L2 small. It is in some
sense the opposite of Fu and Nielsen’s idea of a ‘‘layer
phase’’ [18], in which the coupling between lattice layers
is made strong instead of weak. The reduction is similar
to the ‘‘deconstruction’’ of Arkani-Hamed, Cohen, and
Georgi [19] in that the difference between the �1� 1�-
dimensional Hamiltonians and the �2� 1�-dimensional
Hamiltonians in that the sigma models can be regarded
as gauged and coupled together through the external gauge
field.

IV. THE EFFECTIVE ACTION FOR THE
ELECTROSTATIC POTENTIAL

Before we can make much use of the axial-gauge for-
mulation, we need to examine H0 and H1 in more detail.

------------------------------

→

0 a 2a · · · · · · · L 1

x 1

0
a
2a
·
·
·
·
·
·
·

L2
x 2

FIG. 1. The splitting of the lattice at g00 � 0.

PETER ORLAND PHYSICAL REVIEW D 74, 085001 (2006)

085001-4



First we consider H0. If we adopt the interaction represen-
tation, time derivatives of operators A are given by @0A �
i�H0;A�. By working out the time derivative of U2�x1; x2�,
we find
 

l�x1; x2�b �
ia

g2
0

Trtb@0U�x
1; x2�U�x1; x2�y;

R�x1; x2�b
cl�x1; x2�c �

ia

g2
0

TrtbU�x1; x2�y@0U�x1; x2�;

(4.1)

where we have dropped the subscript 2, since there is only
one spatial component of the gauge field. The time depen-
dence of operators is implicit in these expressions. The
�1� 1�-dimensional SU�2� 	 SU�2� principal chiral sigma
model of the field U 2 SU�2� has the Lagrangian

 L PCSM �
1

2g2
0

��� Tr@�Uy@�U; �; � � 0; 1: (4.2)

The left-handed and right-handed currents are, respec-
tively,

 jL
��x�b � iTr tb@�U�x�U�x�

y;

jR
��x�b � iTr tbU�x�y@�U�x�:

(4.3)

The Hamiltonian obtained from (4.2) is

 HPCSM �
Z
dx1 1

2g2
0

f�jL
0 �x�b�

2 � �jL
1 �x�b�

2g

�
Z
dx1 1

2g2
0

f�jR
0 �x�b�

2 � �jR
1 �x�b�

2g: (4.4)

By comparing (4.1) with (4.3), we can see that HPCSM in
(4.4) is the continuum limit of H0�x2� in (3.4).

Next we turn to H1. This interaction Hamiltonian is
nonlocal, but can be made local by reintroducing the
temporal component of the gauge field. In one continuous
infinite dimension R, the function g�x1 � y1� �
jx1 � y1j=2 is the Green’s function of the ‘‘Laplacian’’;
in other words

 � @2
1g�x

1 � y1� � ��x1 � y1�:

On our lattice, with x1 and y1 taking values 0; a; 2a; . . . ; L1,
the same function g�x1 � y1� � jx1 � y1j=2 is the Green’s
function of an �L1=a� 1�-dimensional operator �L1;a, by
which it is meant

 �L1;ag�x
1 � y1� �

XL1

z1�0

��L1;a�x1z1g�z1 � y1� �
1

a
�x1y1 :

In the continuum limit a! 0 and thermodynamic limit
L1 ! 1, �L1;a ! �@

2
1. We use this operator to introduce

an auxiliary field ��x1; x2�b to replace (3.5) by

 

H1 �
XL2�a

x2�0

XL2

x1�0

�
�g00�

2a
4

��x1; x2��L1;a��x1; x2�

� �g00�
2�l2�x

1; x2� �R2�x
1; x2 � a�l2�x

1; x2 � a�

� q�x1; x2����x1; x2�

�
: (4.5)

Let us assume that there are only two color charges—a
quark with charge q at site u and another quark with charge
q0 at site v (note: the gauge group is SU(2), so it makes no
difference if we have a pair of heavy quarks or a heavy
quark and antiquark). For small lattice spacing, we ap-
proximate the sum over x1 only as an integral to obtain

 

H1 �
XL2�a

x2�0

Z
dx1 �g

0
0�

2a2

4
@1��x1; x2�@1��x1; x2�

�

�
g00
g0

�
2 XL2�a

x2�0

Z
dx1�jL

0 �x
1; x2���x1; x2�

� jR
0 �x

1; x2���x1; x2 � a�� � �g00�
2qb��u1; u2�b

� �g00�
2q0b��v1; v2�b: (4.6)

We wish to stress that we are not really taking a! 0, but
only assuming that a is small. Though the expression (4.5)
makes the physical meaning of the interaction clearer than
(4.5), we shall keep the regulator, at least implicitly. From
the coupling to charges, we see that �b is proportional to
the temporal component of the gauge field A0b. We will call
�b the electrostatic potential for this reason.

From (4.6) we see that the left-handed charge of the
sigma model at x2 is coupled to the electrostatic potential at
x2. The right-handed charge of the sigma model is coupled
to the electrostatic potential at x2 � a.

We now state the mathematical problem we wish to
solve. In the presence of a quark at u and an antiquark at
v, what is the effective action S���, after integrating out
U? If u2 � v2, that is, the quarks are only separated
horizontally, the effective action is given by

 eiS��� � h0jT e�i
R
dx0H1 j0i; (4.7)

where the state j0i is the tensor product of sigma-model
vacua (in other words, it is the vacuum ofH0) and where T
denotes time (x0) ordering. If u2 � v2, the expression (4.7)
is no longer correct. In that case, the expectation value
needs to be taken with respect to different eigenstates of
H0, as we shall discuss in Sec. VII.

The effective action may be expanded in terms of vac-
uum expectation values of products of currents:
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iS��� � �i
XL2�a

x2�0

Z
d2x�g00�

2a2@1��x0; x1; x2�@1��x0; x1; x2�

�
1

2

�
g00
g0

�
4 XL2�a

x2�0

Z
d2x

Z
d2y�h0jT jL

0 �x
0; x1; x2�bj

L
0 �y

0; y1; x2�cj0i � h0jT jR
0 �x

0; x1; x2�bj
R
0 �y

0; y1; x2�cj0i�

	��x0; x1; x2�b��y0; y1; x2�c �O��4� � i
Z
dx0��g00�

2q�x0�b��x0; u1; u2�b � �g00�
2q0�x0�b��x0; v1; u2�b�

� iSWZWN�q� � iSWZWN�q
0�; (4.8)

where d2x � dx0dx1, d2y � dy0dy1, and SWZWN�q� is the
Wess-Zumino-Witten-Novikov action of a single SU(2)
quark charge (see, for example, Refs. [20]) the details of
which are not important for our purposes. We will deter-
mine the two-point correlators of currents in (4.8) at large
separations.

If we ignore the quantum corrections in (4.8), the po-
tential between the quark and the antiquark is
 

V�u1 � v1� � �ju1 � v1j;

� � q2 �g
0
0�

4

�g00�
2a2 �

3

2

�g00�
2

a2 :

This is the result of Section 6 of Ref. [1]. In the next
section, we show the quantum corrections from the
current-current correlators will drastically change this re-
sult. Physically, these correlators correspond to transverse
(that is, vertical) fluctuations of the electric string, as we
discuss in Sec. VII.

V. THE LEADING-ORDER CORRECTIONS TO
THE EFFECTIVE ACTION

From the exact result for the two-point form factor
(A35), discussed in the appendix, we will determine the
correlation functions

 D�x; y�bc � h0jT jL
0 �x

0; x1; x2�bjL
0 �y

0; y1; x2�cj0i

� h0jT jR
0 �x

0; x1; x2�bjR
0 �y

0; y1; x2�cj0i; (5.1)

in (4.8) for the SU�2� 	 SU�2� ’ O�4� sigma model. We
will then use this result to find the string tension for
horizontally-separated color charges.

The exact correlation functions will also have contribu-
tions from two- as well as all higher-point form factors.
The complete formula for the Wightman (non-time-
ordered) expectation value of two operators in terms of
form factors is

 h0jB�x�C�y�j0i � h0jB�x�j0ih0jC�y�j0i

�
X1
M�1

Z d�1 � � � d�M
�2��MM!

	h0jB�x�j�M; jM . . . ; �1; j1i

	 h�1; j1; . . . ; �M; jMjC�y�j0i: (5.2)

To obtain this result, we used the resolution of the identity
(A3). Time-ordered expectation values can be written in
terms of Wightman functions. In a field theory with a mass
gap m, the largest contribution to (5.2) for large mjx� yj
comes from the terms with the smallest number of particle
exchanges M. For our problem, with two-sigma-model
charge densities, the first term, i.e. the vacuum channel,
gives no contribution; therefore we can consider just the
case of M � 2. We will evaluate (5.1) in this way. Viewing
the two-point form factor as a vertex between the electro-
static potential � and two excitations of the sigma model,
called Faddeev-Zamolodchikov (FZ) particles, we con-
sider the one-loop diagram:

Φ(x) Φ(y)

This diagram is infrared and ultraviolet finite. A scale is set
by the sigma-model mass gap m. We will expand this
diagram in derivatives of �. Lowest order in derivatives
means lowest order in momentum, in the Fourier transform
of this amplitude. The two-particle form factors should
therefore be sufficient. If we wanted many higher-
derivative terms in the effective action of the electrostatic
potential S���, this would no longer be the case.

Taking the complex conjugate of the expression for the
form factor (A36), in the appendix, with x replaced by y,
applying (5.2), truncating M> 2, and finally ordering in
the time coordinates x0 and y0, yields the following for the
current-current correlation functions (5.1)

 

D�x; y�bc �
4m2�bc
2!�2��2

Z
d�1d�2�cosh�1 � cosh�2�

2jF��2 � �1�j
2 expf�im sgn�x0 � y0���x0 � y0��cosh�1 � cosh�2�

� �x1 � y1��sinh�1 � sinh�2��g; (5.3)

where sgn�x0 � y0� is defined as 1 if x0 > y0 and �1 if x0 < y0.
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The integration in (5.3) can be made somewhat easier by introducing new parameters � � ��1 � �2�=2 and ! �
��1 � �2�=2:

 D�x; y�bc �
4m2�bc
�2

Z
d�d!sinh2�sinh2! expf�2im cosh� sgn�x0 � y0���x0 � y0� cosh!� �x1 � y1� sinh!�g

	 exp�
Z 1

0

d	
	

e�	

cosh2 	
2

�
1� cosh	 cos

2	!
�

�
: (5.4)

The action S��� is nonlocal, but the excitations of the
sigma model are massive particles. Hence we expect that
S��� is dominated by local terms, obtained from the
derivative expansion. Let us introduce the new coordinates
X� and r� by x� � X� � r�=2 and y� � X� � r�=2. We
expand ��x� and ��y� in powers of r�, in the standard way
as

 ��x� � ��X� �
r�

2
@���X� �

r�r�

8
@�@���X� � � � � ;

��y� � ��X� �
r�

2
@���X� �

r�r�

8
@�@���X� � � � � ;

(5.5)

where @� now denotes @=@X�.
Taking care to sum over L and R, the term we want to

evaluate in the effective action, which is quadratic in the
fields, is given by
 

iS�2���� � �
�
g00
g0

�
4 XL2�a

x2�0

Z
d2Xd2rD

�
X�

r
2
; X�

r
2

�
bc

	�
�
X�

r
2
; x2

�
b
�
�
X�

r
2
; x2

�
c
: (5.6)

At the risk of overemphasizing a point, we remark that
the truncation of (5.2) to M � 2 and the use of the deriva-
tive expansion (5.5) have the same justification. Both are
valid approximations in a massive theory. Though we
expand in r in (5.5), it is not a short-distance expansion
in the usual sense. We can integrate over r precisely
because largemjrj contributions are suppressed. The result
of substituting (5.5) into (5.6) is really a small-momentum
expansion.

After substituting (5.4) and (5.5) into (5.6) we integrate
over r�. The integrals over r� are are of the form

 I�Q0; Q1; A� �
Z
d2re�iQ0jr0j�iQ1r1 sgn�r0�A�r0; r1�;

for some polynomial A�r0; r1�, where

 Q0 � 2m cosh� cosh!; Q1 � 2m cosh� sinh!:

We therefore need to evaluate I�Q0; Q1; A�, for a few
choices of A�r0; r1�.

Suppose that A�r0; r1� has no dependence on r1. Then
the r1-integration will produce a term proportional to
��Q1�, which, in turn, is proportional to ��sinh!�. From
the factor sinh2! in the integral expression (5.4), this will
give no contribution to iS�1���� in (5.6). Since we are
working to quadratic order in r0 and r1, we therefore
need only consider A�r0; r1� � r1; r0r1; �r1�2.

It is elementary to show that I�Q0; Q1; r1� � 0.
The integral I�Q0; Q1; r0r1� is proportional to �0�sinh!�.

Again, the factor sinh2! in the integral expression (5.4)
insures that this will give no contribution to iS�2���� in
(5.6).

The only integral remaining is

 I�Q0; Q1; �r1�2� � �
2i�00�Q1�

Q0 � i"

� �P:V:
2i�00�Q1�

Q0
� 2���Q0��00�Q1�:

Only the principal value contributes to the effective action,
which is

 

iS�2���� � �
2mi

�2

�
g00
g0

�
4 XL2�a

x2�0

Z
d2X

Z
d�d!

sinh2�sinh2!
cosh� cosh!

�00�2m cosh� sinh!�

	 exp�
Z 1

0

d	
	

e�	

cosh2 	
2

�
1� cosh	 cos

2	!
�

�
�@1��X; x2�b�

2 � higher derivative terms:

The integration over � and ! can now be done. After some work, we find

 iS�2���� � �
i

3m2�2

�
g00
g0

�
4

exp
�
�2

Z 1
0

d	
	
e�	tanh2 	

2

� XL2�a

x2�0

Z
d2X�@1��X; x2�b�

2 � h:d:t:; (5.7)
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which is the central result of this paper.
The correction to S��� which is cubic in � can be

shown to vanish by symmetry considerations, S�3���� �
0. The quartic correction S�4����, does not vanish. This
can also be obtained using form-factor methods, though the
calculation will be longer than that above. An interesting
aspect of S�4���� is that it couples fields together at
neighboring values of the vertical coordinate, e.g. x2 and
x2 � a. It may lead to interesting nonlinear dynamics of
electric strings. At this order in g00 the form factors and the
mass spectrum will be altered [21], which will also need to
be implemented.

VI. THE HORIZONTAL STRING TENSION

With our result (5.7) serving as the second term of the
expression (4.8) for the effective action S���, we find
 

S��� � �K
XL2�a

x2�0

Z
d2x�@1��x; x2�b�

2 � h:d:t:� O��4�

�
Z
dx0��g00�

2q�x0�b��x0; u1; u2�b

� �g00�
2q0�x0�b��x0; v1; u2�b� � SWZWN�q�

� SWZWN�q
0�; (6.1)

Where the factor K is given by

 K �
�g00�

2a2

4
�

1

3m2�2

�
g00
g0

�
4

	 exp
�
�2

Z 1
0

d	
	
e�	tanh2 	

2

�
: (6.2)

Notice that there is no induced mass term in �. This is not
hard to understand; it is due to the fact that the FZ particles
of the principal chiral sigma model are adjoint charges,
hence do not screen quarks.

Notice that at leading order, there are no time derivatives
of � in S���. The effective Hamiltonian is

 E � K
XL2�a

x2�0

Z
dx1�@1��x; x2�b�

2 � h:d:t:� O��4�

� �g00�
2qb��u1; u2�b � �g00�

2q0b��v1; u2�b: (6.3)

Thus the horizontal string tension is

 �H �
1

4
�qb�

2 �g
0
0�

4

K
�

3�g00�
4

8K
;

where we used, as before, q2 � �q0�2 � 3
2 for our normal-

ization of SU(2) charges.
Let us look a bit more closely at the factor K. In the

asymptotically-free SU�2� 	 SU�2� nonlinear sigma
model, the mass of the FZ particles depends on the cou-
pling g0 as

 m �
C
a
�g�1

0 e�2�=g2
0 � � � ��;

where C is a nonuniversal constant, which depends on the
cut-off method. Thus the second term in K according to
(6.2) is significant. Our result for the horizontal string
tension is therefore

 �H �
3

2

�
g00
a

�
2
�

1�
4

3

0:7296

C2�2

�g00�
2

g2
0

e4�=g2
0

�
�1
: (6.4)

Notice that for very small g0, the exponential dominates
the denominator, even if g00 
 g0. Thus (6.4) depends on
the couplings as

 �H 
9C2�2

�0:7296�8

g2
0

a2 e
�4�=g2

0 : (6.5)

This expression is unusual in that all g00-dependence has
disappeared.

If we rewrite our expression for the string tension (6.4) in
terms of the continuum couplings e � g0

���
a
p

and e0 �
g00

���
a
p

, we see an expression which is different than (1.3).
In terms of these constants and the lattice spacing, that

 �H �
3

2

�e0�2

a

�
1�

4

3

0:7296

C2�2

�e0�2

e2 e4�=�e2a�
�
�1


9C2�2

�0:7296�8

e2

a
e�4�=�e2a�; (6.6)

where the approximation is valid for small a. We cannot
take a continuum limit of our string tension, holding e and
e0 fixed. The reason the naive argument leading to (1.3)
fails is in the assumption of no ultraviolet divergences.
What our method shows is that, at least for the anisotropic
range of couplings we consider, there are such divergences.
The resulting dependence of the string tension on the
couplings is not analytic.

We believe that (6.4) cannot be extended to the isotropic
regime g00 � g0. To see why, imagine that we generalize the
regularized theory to one with three couplings. In the
Euclidean Wilson lattice gauge theory, with lattice spacing
a and link fields U��x� 2 SU�2�, where x lies on a three-
dimensional lattice, this means an action of the form

 S �
X
���

1

4g2
��

TrU��x�U��x� �̂a�U��x� �̂a�U��x�;

(6.7)

where �̂ denotes the unit vector in the �-direction and
g�� � g��. There are three distinct couplings in this
model. The regime analogous to that we consider is g01 

g02 � g12. There are other regimes, we could apply our
result (6.4) to, namely g02 
 g01 � g12 and g12 
 g01 �
g02. Clearly there must be a crossover phenomenon be-
tween different behaviors of the string tension. It seems
plausible that there is other crossover behavior between
these regimes to g01 � g02 � g12 in which (1.3) takes
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place. Since the string tension does not depend on g00 to our
order of approximation, it may be that the crossover occurs
at a value of g00=g0 which is not extremely small.

VII. PHYSICAL ASPECTS OF EXCITATIONS

In this section, we complete the picture of the confining
phase by discussing the vertical string and the nature of the
pure-glue excitations.

We already presented the basic mechanisms of linear
potential between vertically-separated quarks and the area
decay of spacelike Wilson loops in Ref. [1]. We will show
how these mechanisms fit into a general picture of the
excitations.

Let us begin by asking what the excitations are if g0 > 0
and g00 � 0. As we discussed in Sec. III, the system splits
up into decoupled layers of nonlinear sigma models. The
possible excitations are massive FZ particles which can
travel horizontally, but not vertically. There is, however a
restriction on the these excitations, which is that the resid-
ual gauge-invariance condition (3.2) must be satisfied. If
we approximate the sum over x1 as an integral, this con-
dition states that for each x2

 �Z
dx1�jL0 �x

1; x2�b � j
R
0 �x

1; x2 � a�b� � g
2
0Q�x

2�b

�
� � 0;

(7.1)

whereQ�x2�b is the total color charge from quarks at x2 and
� is any physical state. If there are no quarks, the total
right-handed charge of FZ particles in the sigma model at
x2 � a is equal to the total left-handed charge of FZ
particles in the sigma model at x2.

Let us picture two-dimensional space partitioned into a
set of parallel horizontal layers. Each layer contains a
sigma model. The FZ particles move within a layer, as in
the left-hand side of Fig. 2. Now suppose we increase g00
from zero to a small value. Since an FZ particles at x2 has
left-SU(2) charge at x2 and right-SU(2) charge at x2 � a,
horizontal electric strings must join the FZ particles to-
gether. The strings lie between the layers. Because the
constraint (7.1) is satisfied, these strings can be consistently
introduced. We now have a similar picture of excitations,
but now with strings with the tension calculated in the last

section. This is shown in the right-hand side of Fig. 2. We
see now that the vertical electric flux is carried by the FZ
particles themselves—they are short segments of vertical
electric flux. In fact, if we introduce a quark and antiquark
with a vertical separation, there will simply be a line of FZ
particles and horizontal strings joining them together.

The term in the effective action of the electrostatic
potential we calculated in Sec. V is due to charge fluctua-
tions in the sigma model. According to the picture we have
just outlined, this means it is due to transverse (that is,
vertical) fluctuations of the string joining a quark-antiquark
pair.

The reader should not be misled by the right side of
Fig. 2 into thinking that there is no 1-component of the
electric field if g00 � 0. There is electric field produced by
the FZ particles in this case, but this field carries no energy.

Naively, the vertical string tension is simply [1]

 �V �
m
a


C

g0a2 e
�2�=g2

0 : (7.2)

This result follows from assuming that the energy in each
layer ism. Strictly speaking, the right-hand side of (7.2) is a
lower bound to the vertical string tension, �V � m=a. We
expect that there will be corrections to this formula. These
can be found, in principle, just as we did as for the
horizontal string tension. There is a subtle difference how-
ever. In the expression for the effective action. Instead of
(4.7), we must calculate

 eiS��� � lim
T!1
h�jT e�i

R
T

0
dx0H1 j�i: (7.3)

The state � is not the vacuum. We must now have an FZ
particle in every layer between the quark and antiquark.
This problem is under study.

VIII. CONCLUSIONS

By spitting �2� 1�-dimensional SU(2) Yang-Mills the-
ory anisotropically into integrable models, with an inter-
action between these models, we obtained an expression
for the string tension (in one direction only) at small values
of the couplings.

Two problems yet to be solved for this gauge theory are
finding a more precise result for the vertical string tension
(discussed in the last section) and the mass gap of the
gauge theory. The latter problem is not straightforward,
as the glueball excitations are collections of many FZ
particles. Furthermore, we do not expect the number of
these FZ particles is fixed. The right approach may be to
obtain a better understanding of the vacuum state first, then
examine gauge-invariant correlators in this state.

The effective action we used to find the horizontal string
tension contains further nonlinear terms, as we mentioned
at the end of Sec. V. The quartic term contains mixed
correlators of left-handed and right-handed charges of the
sigma model. It is necessary to use (A38), as well as (A36)

FIG. 2. The circles represent FZ particles in the layers between
the dashed lines. On the right, electric strings connect the FZ
particles.
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There is no reason why this term cannot be determined; all
that is needed is sufficient effort. Perhaps this term could
shed light on the crossover phenomenon discussed at the
end of Sec. VI. It will also be important to include correc-
tions to the mass spectrum and the form factors at this order
[21].

We could extend our methods to SU�N� gauge theories,
if we knew the form factors for the SU�N� 	 SU�N� sigma
model with N > 2. Our basic idea can be formulated for
any value of N [1]. The form-factor problem for N > 2 is
tough, in part because of the presence of bound states of the
fundamental FZ particles. The S-matrix was worked out
some time ago [22], and agrees with the Bethe Ansatz
approach for an equivalent Fermionic model [23]. The S-
matrix becomes unity in the ’t Hooft limit N ! 1, g2

0N
fixed, and the form factors should simplify in this limit
(note: there is a large-N limit of the SU�N� 	 SU�N� sigma
model, whose S-matrix is nontrivial [24]. This is a different
model, because the limit is not the standard ’t Hooft limit).

The picture of confinement and excitations described in
Sec. VII suggests that the non-Abelian gauge theory may
be dual to another field theory. The weak-coupling dia-
grams would correspond to the strong-coupling terms of
the dual theory.

A splitting similar to the one we have used can be done
in (3� 1) dimensions. There is an important difference,
however. As in (2� 1) dimensions, some electric-field
components squared are included in the interaction
Hamiltonian. The new feature is that the interaction
Hamiltonian also contains a magnetic-field component
squared. Our methods would therefore not yield, strictly
speaking, a weak-coupling result. Investigations in this
direction may be of some value, nonetheless.
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APPENDIX A: EXACT S-MATRICES AND FORM
FACTORS

We now present an introduction to how S-matrices and
form factors are exactly determined for the O�N� nonlinear
sigma model in (1� 1) dimensions. Though not a com-
prehensive treatment of �1� 1�-dimensional S-matrices
and form factors, this review is self-contained. Since
most people who might find this paper of interest are not

experts on these subjects, we felt it was necessary to
provide complete explanations of their less obvious as-
pects, which are not abundantly available. We hope this
appendix is sufficiently complete for the reader to under-
stand the results used in the remainder of the paper.

Integrability of the �1� 1�-dimensional quantized
asymptotically-free O�N� nonlinear classical sigma model
[25] became of interest, after it was first established by
Pohlmeyer for the classical case [26]. Then general argu-
ments were made that the infinite set of dynamical charges
can be generalized to the quantized theory [27]. The gen-
eration of a mass gap in the 1=N-expansion was discovered
considerably earlier [28].

The Lagrangian of the O�N� sigma model depends on an
N-component vector field field n � �n1; . . . ; nN�, of unit
length n � n � 1:

 L NLS �
1

2g2
0

���@�n � @�n: (A1)

For N � 4, the identification between (A1) and the
SU�2� 	 SU�2� Lagrangian (4.2) is made by U � n41�
inb�b.

From the 1=N-expansion, we know that there are N
basic species of massive particle, which we label by letters
j; k; l; m; . . . taking the values 1; 2; . . . ; N. The particle
states are eigenstates of momentum q; p; . . . as well as
species j; k; . . . , created on the vacuum by Faddeev-
Zamolodchikov operators or FZ operators A�q�yj :

 jq; j; p; k; . . .i � A�q�yj A�p�yk � � � j0i:

We are using the Heisenberg representation, so we work
with in-states and in-operators or out-states and out-
operators.

From either the the 1=N-expansion or from the assump-
tion of integrability, we find that particles are neither
created nor destroyed when scattered (that is, there is no
particle production). Hence multiparticle scattering may be
decomposed as a sequence of two-particle scatterings. The
requirement that this decomposition is consistent is the
Yang-Baxter equation or factorization equation. For non-
integrable theories, there is no such decomposition.

We can find expressions for Green’s functions which are
valid at large distances using exact form factors, for models
with a mass gap. Green’s functions are not exactly known,
except those for the spins of the Ising model, where all the
form factors are known [29]. Nonetheless, an expression
can be written down for the vacuum expectation value of a
product of operators which approaches the correct answer
at large separations.

1. The exact S-matrix of the O�N� nonlinear sigma
model

The two-particle S-matrix should have, on fairly general
intuitive grounds, the following form:
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outhq
0; j;p0; ljq;m;p;kiin � ��q01�p1���p01� q1�S

jl
mk�s�

���q01� q1���p
0
1�p1�S

jl
km�s�;

(A2)

where the four-tensor in species indices S�s�, depends on
the center-of-mass energy squared s � �q� p�2, and �
refers to Bose or Fermi statistics (we are going to consider
the former only). We introduce the other Mandelstam
variable t � �p0 � p�2 and the rapidities �1, �2, related to
the momenta by the standard relation p0 � m cosh�1,
p1 � m sinh�1, q0 � m cosh�2, q1 � m sinh�2. The rela-
tive rapidity is �12 � �2 � �1.

Bound states of two particles can form only when the
center-of-mass energy is less than the total rest-mass en-
ergy. Above the the total rest-mass energy, the energy
spectrum is continuous. Thus there may be poles in S�s�
in the complex s plane for s < 4m2, and there is a cut in
S�s� for s > 4m2. Assuming crossing s! t, there is a cut for
t > 4m2. Kinematically, s � 2m2�1� cosh�12� and t �
2m2�1� cosh�12�. Hence there are really two cuts in the
complex s plane; one for s > 4m2 and another for s < 0. A
minimal analyticity assumption is that any poles present lie
on the real s axis on the interval 0< s < 4m2.

If we make the change of variable from s to � � �12, we
find the analyticity structure is as follows. The s plane is

mapped to the region bounded by Im� � 0 and Im� � �,
called the physical strip (the physical strip is not the same
as the physical region, which is the on-shell kinematically
allowed region of �). Each of the boundaries Im� � 0, �,
�1< Re� <1 is a cut. Poles lie on the Re� � 0 axis
only. There may be poles on this axis outside the physical
strip, but these do not correspond to physical bound states
(there are no bound states for the model we are studying).
Note that crossing corresponds to �! i�� �. The reso-
lution of the identity or overcompleteness relation in ra-
pidity space, which is straightforwardly obtained from that
in momentum space, is
 

1 � j0ih0j �
X1
M�1

Z d�1 � � � d�M
�2��MM!

j�M; jM . . . ; �1; j1i

	 h�1; j1; . . . ; �M; jMj: (A3)

The tensor S��� can be decomposed in the following
way, following Zamolodchikov and Zamolodchikov
[16,30]:

 S jl
mk��� � �jl�mkS1��� � �

l
m�

j
kS2��� � �

j
m�lkS3���:

(A4)

We represent this decomposition pictorially as

S jl
mk (θ) = S 1(θ)

l

k

j

m

+ S 2(θ)

l

k

j

m

+ S 3(θ)

l

k

j

m

=

l

k

j

m

θ

Each line connecting two indices in this picture is a
Kronecker delta, in accordance with diagrammatic lore.
The rapidity � is drawn as an angle between incoming and
outgoing lines (though its range is, of course, not restricted
from 0 to �).

The functions S1���, S2��� and S3��� are assumed to be
real on the real � axis. Therefore, by the Schwartz reflec-
tion principle, S1���� � S1����, S2���� � S2���� and
S3���� � S3����.

If the reader stares at the diagrammatic form for S���, he
or she should be able to see that under crossing, S2�i��
�� � S2��� and S3�i�� �� � S1���.

There are two nontrivial conditions satisfied by the S-
matrix elements which, together with maximal analyticity,
will give its complete determination. The first of these is
unitarity within the two-particle sector. This is satisfied
because there is no particle production. Applying unitarity
to (A2) yields

 Sghmk����S
mk
jl ��� � �gj�

h
l :

This expression can be worked out by multiplying
Kronecker deltas together and contracting indices, or by

diagrammatic methods. In either case, we obtain the three
relations

 S2���S2���� � S3���S3���� � 1; (A5)

 S2���S3���� � S3���S2���� � 0; (A6)

 

NS1���S1���� � S1���S2���� � S1���S3����

� S2���S1���� � S3���S1���� � 0: (A7)

The second nontrival condition is scattering factorization
or the Yang-Baxter relation. This condition makes the
three- and higher-particle scattering amplitudes unique. If
we imagine three classical particles scattering, there are
two possible orderings in which this scattering can occur.
Each of these orderings corresponds to a certain decom-
position of three-particle S-matrix elements in terms of
two-particle S-matrix elements in the quantum theory. If
either decomposition is correct, they both are; we therefore
identify them.

Let us imagine three particles scattering with particle
rapidities �1, �2 and �3. The relative rapidities are
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� � �2 � �1, �0 � �3 � �2, and �� �0 � �3 � �1. The
Yang-Baxter equation is shown pictorially in Fig. 3. We
have labeled each of the incoming particles with a species
index i, j, k and each of the outgoing particles by another
species index l, m, o.

Now comes the real work—turning the Yang-Baxter
equation into something manageable. Each side of the
Yang-Baxter equation can be decomposed into 27 terms,
each proportional to a six-index tensor, which is a product
of three Kronecker deltas. The left-hand and right-
hand sides of the Yang-Baxter equation are decomposed

pictorially in Figs. 4 and 5, respectively. Each of the terms
is equal to a product of three functions S
��� times a
product of three Kronecker deltas. We abbreviate products
of three such functions, e.g. S2���S3��� �0�S2��0� as
S2S3S2, keeping the arguments in the order �, �� �0, �0

always. Though there are 27 terms on each side, each
term must be one of only 15 distinct tensors, up to the
factor of 3 S’s. That is because there are exactly 15 ways to
make a six-index tensor from a product of three Kronecker
deltas.

For N � 2, there is an additional subtlety, which is that
the 15 tensors constructed from products of three
Kronecker deltas are not linearly independent. This is
important for understanding the sine-Gordon/massive-
Thirring model, but is of no relevance to this paper.
These tensors are linearly independent for N � 3.

With the labeling of species as in Fig. 2, we can see the
form of each term in Figs. 4 and 5. For example, the first
term on the left-hand side of the Yang-Baxter equation is
seen from Fig. 4 to be S1���S1��� �

0�S3��
0��ij�

l
k�

mo. In
this way, the Yang-Baxter equation reduces to 15 algebraic
equations. Of these 15 equations, the seven which are
proportional to one of the following:

= S 1S 1S 3 + S 1S 2S 3 + S 1S 3S 3

+ S 1S 1S 2 + S 1S 2S 2 + S 1S 3S 2 + S 1S 1S 1

+ S 1S 2S 2 + S 1S 3S 1 + S 2S 1S 3 + S 2S 2S 3

+ S 2S 3S 3 + S 2S 1S 2 + S 2S 2S 2 + S 2S 3S 2

+ S 2S 1S 1 + S 2S 2S 1 + S 2S 3S 1 + S 3S 1S 3

+ S 3S 2S 3 + S 3S 3S 3 + S 3S 1S 2 + S 3S 2S 2

+ S 3S 3S 2 + S 3S 1S 1 + S 3S 2S 1 + S 3S 3S 1

FIG. 4. Expansion of the left-hand side of the factorization equation.

i
j

m

l

k

o

θ

θ
θ + θ =

k
j

m

o

i

l

θ

θ
θ + θ

FIG. 3. The factorization equation for three-particle S-matrix
elements.
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 �li�
m
j �

o
k; �lo�mj �ik; �lk�

m
j �

o
i ; �lk�

mo�ij;

�lm�oi �jk; �lj�
m
k �

o
i ; �lk�

m
i �

o
j ;

are trivially satisfied. Of those eight remaining, five are
redundant, leaving three nontrivial equations [16,30]. The
terms proportional to �li�

m
k �

o
j and �lj�

m
i �

o
k each give

 S2S3S3 � S3S3S2 � S3S2S3: (A8)

The terms proportional to �lo�mi �jk and �lm�ik�oj each
give

 S2S1S1 � S3S2S1 � S3S1S2: (A9)

The terms proportional to �lj�
mo�ik and �lo�mk �ij, also

give (A9), but with the arguments � and �0 reversed.
Finally, the terms proportional to �li�

mo�jk and �lo�nk�
ij

each give
 

NS1S3S1 � S1S3S2 � S1S3S3 � S1S2S1 � S2S3S1

� S3S3S1 � S1S1S1 � S3S1S3; (A10)

In each of (A8)–(A10) the arguments are �, �� �0 and �0,
respectively.

Next, let us solve the unitarity and factorization equa-
tions. If the function h��� is defined as h��� �
S2���=S3���, (A5) becomes

 h��� � h��0� � h��� �0�:

Unless h��� vanishes, the only possible solution is

 h��� �
i
�
�; (A11)

for some constant �. Note that (A6) yields h���� �
h��� � 0, which is automatically satisfied. Defining an-
other function ���� � S1���=S3���, Eqs. (A9) and (A11)
imply that

 ���� �0��1 � ���0��1 � �
i�
�
:

The solution for ���� is

 ���� � �
i�

i� �
; (A12)

where  is another constant. In terms of the original
functions,

= S 1S 1S 3 + S 1S 2S 3 + S 1S 3S 3

+ S 1S 1S 2 + S 1S 2S 2 + S 1S 3S 2 + S 1S 1S 1

+ S 1S 2S 2 + S 1S 3S 1 + S 2S 1S 3 + S 2S 2S 3

+ S 2S 3S 3 + S 2S 1S 2 + S 2S 2S 2 + S 2S 3S 2

+ S 2S 1S 1 + S 2S 2S 1 + S 2S 3S 1 + S 3S 1S 3

+ S 3S 2S 3 + S 3S 3S 3 + S 3S 1S 2 + S 3S 2S 2

+ S 3S 3S 2 + S 3S 1S 1 + S 3S 2S 1 + S 3S 3S 1

FIG. 5. Expansion of the right-hand side of the factorization equation.
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 S3��� �
�i�
�

S2���; S1��� � �
i�

i� �
S2���: (A13)

Next we substitute (A13) into (A10) and multiply both
sides by ��i� ����� �0��i� �� �0��0�i� �0�. The
result is that a fourth-order polynomial in rapidities �
and �0 is zero. The zeroth-, first-, and fourth-order terms
are identically zero. Both the second- and third-order terms
are zero provided

  �
��N � 2�

2
:

By the crossing property and (A13), we have that  � �
and thus � � 2�=�N � 2�. By (A5) and (A13), we obtain
 

S2���S2���� �
�2

�2 � 4�2

�N�2�2

;

S3��� � �
2�i

�N � 2��
S2���;

S1��� � �
2�i

�N � 2��i�� ��
S2���:

(A14)

Using crossing, we can write the first of these equations as

 S2���S2��i� �� �
�2

�2 � 4�2

�N�2�2

: (A15)

We will solve (A15) for the solution of the two-particle
S-matrix inside the physical strip, assuming maximal ana-
lyticity. Rather than following Refs. [16,30] at this stage,
we will instead use an elegant prescription invented by
Karowski, Thun, Truong, and Weisz for the sine-Gordon/
massive-Thirring model [31]. We use this prescription not
only because it is straightforward, but because it gives the
solution in precisely the form we need for obtaining form
factors of current operators. We are not aware of this
method being used for models other than sine-Gordon in
the literature (we suspect it lies buried in the notes of the
serious practitioners of the subject), but the result is cer-
tainly well known, and can be obtained by other methods.

To use the prescription of Ref. [31], it is convenient to
decompose S��� differently. Instead of (A4), we write

 S��� � P0S0��� � PSSS��� � PASA���; (A16)

where P0, PS, and PA project to the singlet, symmetric-
traceless and antisymmetric irreducible representations,
respectively, on N � N:

 �P0�
jl
mk �

1

N
�jl�mk; �PS�

jl
mk �

1

2
��jk�

l
m � �

j
m�lk�;

�PA�
jl
mk �

1

2
��jk�

l
m � �

j
m�lk� �

1

N
�jl�mk:

(A17)

The Eqs. (A14) and (A15) become

 

SA���SA��i� �� �
�
1�

i�
�

��
1�

i�
�� �i

�
�2

�2 � �2

�
1� i�

��i�

1� i�
�

;

S0��� �
��� i����� i�� � iN��
��� i����� i��

SA���;

SS��� �
�� i�
�� i�

SA���; (A18)

where, as before, � � 2�=�N � 2�. We will use the first of
(A18) to solve for SA���.

Following Ref. [31] we assume
(1) The function SA��� is analytic1 and nonzero in the

interior of the physical strip (it has, of course, cuts
on the boundaries).

(2) j lnSA���= sinh�z� ��j ! 0 as jRezj ! 1, for any
fixed choice of � in the physical strip.

Now sinh�z� �� has only one zero of z in the physical
strip, provided � is in the physical strip. Let C be the
counter-clockwise contour enclosing the physical strip;
so C extends from �1 to 1 and from �i�1 to �i�
1. Then
 

lnSA��� �
1

2�i

Z
C

dz
sinh�z� ��

lnSA�z�

�
1

2�i

Z 1
�1

dz
sinh�z� ��

ln�SA�z�SA�z� �i��

�
1

2�i

Z 1
�1

dz
sinh�z� ��

ln
1� i�

z�i�

1� i�
z

(A19)

where in the last step, we used (A18).
Though (A19) is a succinct expression for the S-matrix,

it is not yet the most useful form. To find a better form, we
need the following Fourier transforms
 Z 1

�1

dz
2�

ei	z

sinh�z� ��
�
iei����i=2�

2 cosh�	2
;

Z 1
�1

dz
2�

ei	z ln
�

1�
i�
z

�
�

1

	
�1� e�	��;

which can be worked out using basic complex-integration
methods. Substituting these Fourier transforms into (A19),
we obtain

 SA��� � exp
Z 1

0

d	
	
e�2	=�N�2� � 1

e	 � 1
sinh

�
	�
�i

�
: (A20)

This is the form of the S-matrix we shall use to discuss

1In the case of the sine-Gordon model, there are bound-state
poles on the imaginary axis in the analogous S-matrix element,
for some choices of the coupling [30,32–34]. Hence this analy-
ticity assumption is only valid for the case where the solitons
have repulsive interaction. After the answer is found for this
case, it can be generally applied by analytic continuation [31].
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form factors. We note that this expression (A20) can be
converted to the Zamolodchikovs’ rational expression of
gamma functions [16,30] using the integral formula [35]
 

��z� � exp
Z 1

0

d	
	

�
e�	z� e�	

1� e�	
��z� 1�e�	

�
; Rez> 0;

which can be checked by differentiation and comparison
with the integral formula for the psi function and verifica-
tion that the right-hand side is equal to one at z � 1. This
integral formula was first used by Weisz [36] to write the
infinite-gamma-function-product-ratio expressions of
Zamolodchikov [30,32] for the sine-Gordon S-matrix in a
more compact form.

We have obtained the minimal O�N�-symmetric S-
matrix, i.e. that with as much analyticity as possible.
When expanded in powers of 1=N, this agrees with the
S-matrix of the nonlinear sigma model obtained by stan-
dard 1=N-expansion methods [16,37]. If the two-particle
S-matrix elements are multiplied by CDD factors [38]

 

Y
k

sinh�� i sin
k
sinh�� i sin
k

;

unitarity and factorization are unaffected. One such S-
matrix obtained in this way is that of the O�N� Gross-
Neveu model. See Refs. [16,30] for more discussion. The
supersymmetric sigma model is a nonlinear sigma model
and a Gross-Neveu model coupled together; its S-matrix
was obtained in Ref. [39].

2. Exact form factors

The determination of exact two-particle form factors
was initiated by Vergeles and Gryanik [40] for the funda-
mental particles of the sinh-Gordon model and by Weisz
[36] for the solitons of the sine-Gordon model.
Subsequently, Karowski and Wiesz [3] obtained general-
izations of this result for the sine-Gordon model and ex-
tended the method to other models. Smirnov and later
Kirillov and Smirnov [41] found extensions to higher-point
form factors. Smirnov formulated a set of axioms under-
lying the entire subject [42] and which was useful in
studying specific field theories. In the meantime,
Smirnov’s axioms have actually been proved as theorems,
assuming maximal analyticity and the LSZ axioms [43].
Though establishing their validity from deeper principles is
certainly worthwhile, the validity of Smirnov’s axioms can
be argued from symmetries, crossing, integrability and a
little physical intuition.

Our interest in form factors is that they contain off-shell
information about integrable quantum field theories. This

means that they can be used to study deformations of such
theories which are no longer integrable. The form-factor
program has lead to nonperturbative calculations in statis-
tical mechanics [29,44] and condensed-matter physics
[45,46] which agree well with experimental measurements.

A form factor is a matrix element of an operator B�x�
between multiparticle states. We can obtain all of these
from

 fB��1; . . . ; �M�j1���jM � h0jB�0�j�M; jM; . . . ; �1; j1iin

(A21)

by crossing and the Lorentz-transformation properties of
the operator B�x�. For example

 fB��1; . . . ; �M�j1���jM exp�i
XM
l�1

pjl � xl

� h0jB�x�j�M; jM; . . . ; �1; j1iin: (A22)

Let us state some basic commutation relations of the FZ
particle creation in-operators and annihilation in-operators
Aj���

y and Aj���, respectively, (the arguments of these
operators are now rapidities instead of momenta):
 

Ai��2�
yAj��1�

y � Slmij ��2 � �1�Am��1�
yAl��2�

y;

Ai��2�Aj��1� � Slmij ��2 � �1�Am��1�Al��2�;

Ai��2�Aj��1�
y � 2��ij���2 � �1�

� Smijl ��2 � �1�Am��1�
yAl��2�:

(A23)

The third equation is obeyed for a free field theory with the
S-matrix element replaced by the identity on two-particle
space. The 2� in the normalization of the first term on the
right-hand side of this equation follows from the over-
completeness relation (A3) in rapidity space. The form of
the second term on the right-hand side of this equation
follows from crossing.

For pedagogical reasons, we shall list the form-factor
axioms for general multiparticle form factors and attempt
to convince the reader that they are reasonable. Our list
follows Essler and Konik [46], though we attempt to
provide more justification for some of the axioms. We
use only four of these five axioms. We will only consider
the case of operators with mutually-local commutation
relations. For discussion of how to deal with other commu-
tation relations, see Chapter 6 of Smirnov’s book [42] or
the article by Essler and Konik [46].

(1) Scattering Axiom. This follows from the properties
(A23) of the FZ operators. It is

 

fB��1; . . . ; �i�1; �i�1; �i; �i�2 . . . ; �M�j1���ji�1ji�1jiji�2���jM

� Skiki�1
jiji�1
��i � �i�1�f

B��1; . . . ; �i�1; �i; �i�1; �i�2; . . . ; �M�j1���ji�1kiki�1ji�2���jM : (A24)

This axiom is sometimes called Watson’s theorem [47].
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(2) Periodicity axiom.—This axiom is subtle. It is motivated by crossing. The axiom states

 fB��1; . . . ; �M�j1���jM � fB��M � 2�i; �1 . . . ; �M�1�jMj1���jM�1
: (A25)

To see where this axiom comes from, let us see what happens when a creation FZ operator in front of a ket (state
vector) is replaced by an annihilation operator behind a bra (dual state vector) by crossing. Consider the Green’s
function of FZ operators and B

 h0jAj1
��1�B�0�AjM ��M�

yAjM�1
��M�1�

y � � �Aj2
��2�

yj0iconnected

� h0jAj1
��1�B�0�AjM ��M�

yAjM�1
��M�1�

y � � �Aj2
��2�

yj0i � h0jAj1
��1�B�0�j0i

	 h0jAjM ��M�
yAjM�1

��M�1�
y � � �Aj2

��2�
yj0i;

which is ‘‘connected’’ in the sense that the vacuum intermediate channel is subtracted [43]. This Green’s function
can be thought of asM� 1 incoming particles being absorbed by a vertex corresponding to the operator B�0�which
then emits a single particle. Consider the pair of particles, with labels 1 (the outgoing particle) and M. Under
crossing, these both become incoming particles, but with �1 replaced by �1 � �i. To see this, notice that this change
preserves all the relativistic invariants �pj � pj�1�

2, j � 2; . . . ;M� 1, but it switches the two invariants s1M �

�p1 � pM�
2 and t1M � �p1 � pM�

2. Thus

 h0jAj1
��1�B�0�AjM ��M�

yAjM�1
��M�1�

y � � �Aj2
��2�

yj0iconnected � fB��1 � �i; �1; . . . ; �M�j1���jM : (A26)

Suppose that instead of switching the invariants s1M and t1M, we switch the invariants s12 � �p1 � p2�
2 and t12 �

�p1 � p2�
2. Then we find

 h0jAj1
��1�B�0�AjM ��M�

yAjM�1
��M�1�

y � � �Aj2
��2�

yj0iconnected � fB��2; �1; . . . ; �M; �1 � �i�j2���jMj1
: (A27)

Comparing (A26) and (A27), the axiom follows.
(3) Annihilation pole axiom.—This axiom is important for relating form factors ofM particles to form factors ofM� 2

particles. Though we will not apply M> 2 form factors in this paper, we mention the axiom anyway, since higher-
point form factors should be eventually be of interest in our problem. The idea is the following: let us again consider
the form factor fB��1; . . . ; �M�j1���jM . Now there is the possibility of the �M� 1�st and Mth particles annihilating
(they can be antiparticles) at �M � �M�1 � �i (so that sM�1M � �pM�1 � pM�

2 will vanish). Thus there must be a
pole in the form factor which corresponds to this annihilation at �M � �M�1 � �i. There are two terms in the
residue of this pole: i) The �M� 1�st particle may scatter with the �M� 2�nd, �M� 3�rd, . . ., 1st particles before
annihilating the Mth particle, or ii) the �M� 1�st particle may not scatter with any particles before annihilating the
Mth particle. The axiom is

 

iResfB��1; . . . ; �M�j1���jM j�M��M�1��i � fB��1; . . . ; �M�2�j1���jM�2
CjM�1jM � S

kM�1k1
t1j1

��1 � �M�1�

	 St1k2
t2j2
��2 � �M�1� � � � S

tM�4kM�3
tM�3jM�3

��M�3 � �M�1�S
kM�3kM�2
jM�1jM�2

��M�2 � �M�1�

	 fB��1; . . . ; �M�2�k1���kM�2
CkM�1jM ; (A28)

where C is the charge-conjugation matrix. The nor-
malization of the left-hand side follows from the
standard state normalization, e.g. h�j�0i � 2�����
�0�.

(4) Lorentz-invariance axiom.—If an operator B�x�
carries Lorentz spin s, the form factors must trans-
form under a boost �j ! �j � 
 for all j �
1; . . . ;M as

 fB��1 � 
; . . . ; �M � 
� � es
fB��1; . . . ; �M�;

(A29)

We hope the reader will have no trouble distinguish-
ing spin s from center-of-mass energy squared s.

(5) Minimality axiom.—Just as we assume S-matrix
elements have as much analyticity as possible, so
we make a similar assumption of form factors. In
order to check the validity of this principle, all that
can be done is to compare with some perturbative
method, which means either standard covariant per-
turbation theory or the 1=N-expansion. In cases
where we can find form factors, minimality stands
up very well. If a first guess for the form factor
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fB��1; . . . ; �M� satisfies the first four axioms, then
so does

 fB
minimal��1; . . . ; �M� � fB��1; . . . ; �M�

	
PM�fcosh��j � �k�g�

QM�fcosh��j � �k�g�
;

(A30)

where PM and QM are symmetric polynomials. In
this way, we can eliminate all the poles in form
factors, except those corresponding to bound states.
In order for Axiom 3 to be satisfied:

 PMj�M��M�1��i � PM�2;

QMj�M��M�1��i � QM�2:

The overall normalization of the form factors is not
determined by these axioms The normalization can be
found for the case of current operators, which is what we
shall apply to the �2� 1�-dimensional Yang-Mills theory.

3. Currents of the O�N� nonlinear sigma model

After this review of form-factor concepts, we next apply
these ideas to the case of two-particle form factors, which
we shall find explicitly for currents of the O�N� sigma
model. The two-particle form factor may be written as

 fB��1; �2�j1j2
� e�s�1FB��2 � �1�j1j2

;

by axiom 4. In terms of the function FB��1; �2�j1j2
,

Axioms 1 and 2 are
 

FB���k1k2
� e�s�Sj1j2

k1k2
���FB����j1j2

;

FB�2�i� ��j2j1
� es�FB���j1j2

;
(A31)

respectively.
Let us now recall the projectors P0, PS, and PA defined

in (A17). We have already used the fact that these diago-
nalize the S-matrix acting on species tensors transforming
as N � N. We define

 FB
0;S;A���k1k2

� �P0;S;A�
j1j2
k1k2

FB���j1j2
;

which allows us to rewrite (A31) as
 

FB
0;S;A��� � e�s�S0;S;A���F

B
0;S;A����;

FB
0;S��� � es�FB

0;S�2�i� ��;

FB
A ��� � �e

s�FB
A �2�i� ��:

(A32)

We can solve the Eqs. (A32) for the form factors, up to an
overall normalization by a contour-integration method [3].

Consider a function F��� satisfying

 F�2�i� �� � �es�F���; F��� � es�SA���F����:

Define the contour C to be that from �1 to 1 and from
1� 2�i to �1� 2�i. Then

 lnF��� �
Z
C

dz
4�i

coth
z� �

2
lnF�z�

�
Z 1
�1

dz
4�i

coth
z� �

2
ln

F�z�
F�z� 2�i�

Differentiating this formula with respect to � (we will
explain why in a moment)

 

dF���
d�

�
Z 1
�1

dz
8�i

1

sinh2 z��
2

ln
F�z�

�es�F��z�

�
Z 1
�1

dz
8�i

1

sinh2 z��
2

lnSA�z�:

From our expression for SA in (A20) and differentiating the
integral formula

 

Z 1
�1

dz
4�i

coth
z� �

2
sinh

	z
�i
�

sin2 	
� ��i� ��

sinh	
�

1

2 sinh	
(A33)

(which can be done using basic complex-integration meth-
ods) with respect to �, and finally integrating dF���=d�
with respect to �,

 F��� � G exp2
Z 1

0

d	
	
e�2	=�N�2� � 1

e	 � 1

sin2 	
2� ��i� ��

sinh	
;

(A34)

where G is a constant. The reason we had to differentiate
and integrate with respect to � is that otherwise, the second
term of (A33) will not lead to a convergent answer.

Now we consider the form factors of the O�N� current
operator of the sigma model. This operator is Jjk� �
nj@�nk � nk@�nj. By Hermiticity, translation invariance,
antisymmetry and Lorentz invariance

 h0jJjk� �0�j�2; m; �1; li � iG��jl�
k
m � �

j
m�kl ��p1 � p2�� exp2

Z 1
0

d	
	
e�2	=�N�2� � 1

e	 � 1

sin2 	
2� ��i� �12�

sinh	
: (A35)

INTEGRABLE MODELS AND CONFINEMENT IN �2� 1�- . . . PHYSICAL REVIEW D 74, 085001 (2006)

085001-17



This is the expression for the current-operator form factor
with as much analyticity as possible. The normalization of
the right-hand side of (A35) is obtained by the crossing
relation (A26) for the two-point case. We will fix this
normalization for the case of N � 4, which is the case
we wish to study further. It is not difficult, however, to
obtain the normalization for any N using slightly different
methods.

The normalization is fixed by examining the matrix
elements of a charge operator. The eigenvalues of this
operator are fixed by symmetry considerations. In this
way the value of the form factor can be specified for
particular rapidities. We will find that G � 1.

As we already mentioned, the connection between the
SU(2)-valued field U and the unit four-vector n is U �
n4 � inb�b. The relation between the currents defined in
(4.3) for the principal chiral sigma model and those for the
vector sigma model is therefore

 jL
�b �

���
2
p �

J4b
� �

1

2
�bcdJcd�

�
;

jR
�b �

���
2
p �

J4b
� �

1

2
�bcdJcd�

�
:

The left-handed charge density obeys the algebra

 �jL
0 �x

1�b; j
L
0 �y

1�c� � i
���
2
p
�bcd��x1 � y1�jL

��x
1�d;

and the left-handed charge is Qb �
R
dx1JL0 �x

1�b. The
charge therefore obeys the commutation relations

 �QL
b; Q

L
c � � i

���
2
p
�bcdQL

d;

Since the charge is in an orbital representation, the possible
eigenvalues of QL

3 are 0 (isospin zero), 0, �
���
2
p

(isospin
one), etc. We find the same relations for the right-handed
charge.

From (A22) and (A35), we have

 

h0jjL;R
0 �x�bj�2; j2; �1; j1i � i

���
2
p
G��j14�j2b � �j24�j1b � �bj1j2

�m�cosh�1 � cosh�2�

	 expf�im�x0�cosh�1 � cosh�2� � x
1�sinh�1 � sinh�2��gF��2 � �1�; (A36)

where the plus or minus sign corresponds to the left-handed (L) or right-handed (R) current, respectively, and

 F��� � exp2
Z 1

0

d	
	
e�	 � 1

e	 � 1

sin2 	��i���
2�

sinh	
� exp�

Z 1
0

d	
	

e�	

cosh2 	
2

sin2 	��i� ��
2�

: (A37)

Now under crossing, the relation (A26) for our simple two-point case yields

 

h�1; j1jj
L;R
0 �x�bj�2; j2i � iG

���
2
p
��j14�j2b � �j24�j1b � �bj1j2

�m�cosh�1 � cosh�2�

	 expf�im�x0�cosh�1 � cosh�2� � x1�sinh�1 � sinh�2��gF��2 � �i� �1�; (A38)

Integrating each side of (A38) over x1 yields

 h�1; j1jQ
L;R
b j�2; j2i � iG

���
2
p
��j14�j2b � �j24�j1b � �bj1j2

�h�1j�2i:

This result yields the eigenvalues of QL;R
b for isospin one, provided G � 1.

Equation (A35) with G � 1 is a result of Karowski and Weisz [3], who also checked its validity in the 1=N-expansion.
We shall use it to obtain an expression for the effective action of the electrostatic potential �.

When an interaction is added to the action of an integrable model, the form factors will recieve corrections [21]. The
mass spectrum will be altered as well. We shall not work to high enough order in g00 for these effects to be taken into
account. If higher-order calculations can be done, however, they will need to be included.
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