
Partially massless spin-2 electrodynamics

S. Deser1,* and A. Waldron2,†

1Lauritsen Lab, Caltech, Pasadena California 91125, USA
and Physics Department, Brandeis University, Waltham, Massachusetts 02454, USA

2Department of Mathematics, University of California, Davis, California 95616, USA
(Received 19 September 2006; published 31 October 2006)

Maximal depth, partially massless, higher spin excitations can mediate charged matter interactions in a
de Sitter universe. This result is motivated by similarities between these theories and their traditional
Maxwell counterpart: their propagation is lightlike and corresponds to the same Laplacian eigenmodes as
the de Sitter photon; they are conformal in four dimensions; their gauge invariance has a single scalar
parameter and actions can be expressed as squares of single derivative curvature tensors. We study this
effect in detail for its simplest spin 2 example: It is possible to construct a natural and consistent
interaction scheme with conserved vector electromagnetic currents primarily coupled to the helicity 1
partially massless modes. The resulting current-current single ‘‘partial-photon’’ exchange amplitude is the
(very unCoulombic) sum of contact and shorter-range terms, so the partial photon cannot replace the
traditional one, but rather modifies short range electromagnetic interactions. We also write the gauge
invariant fourth-derivative effective actions that might appear as effective corrections to the model, and
give their contributions to the tree amplitude.
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I. INTRODUCTION

Some time ago [1], we developed a series of ‘‘partially
massless’’ higher spin theories in (Anti) de Sitter ((A)dS)
space, characterized by higher derivative invariances under
lower rank gauge parameters than their strictly massless
counterparts. These models generalized the lowest, spin 2,
example [2] and were seen to have gratifying properties,
such as light cone propagation [3], locally positive
energy [4], they irreducibly represent the dS isometry
group unitarily [5] and possess a clear hierarchy of
ghost-free helicity excitations ranging from �s as far
down as �t at depth 0< t < s (with s� t equaling the
gauge parameter rank). In this paper we concentrate on
maximal depth t � s� 1 theories which have a scalar-
gauge parameter, the dS Maxwell model is the first mem-
ber of this series of theories. Moreover, in dimension four,
all these theories are distinguished by being conformally
invariant [6]. They all propagate in the same way save for
the additional helicities, and are describable in terms of
curvature tensors first order in derivatives. The purpose of
this paper is to investigate whether this intriguing string of
coincidences has a deeper physical significance, amely
whether maximal depth partially massless theories can
mediate dS electromagnetic interactions.

Initially, we did not consider possible interactions of
these systems with conventional matter sources, a gap we
fill here. For concreteness, we concentrate on the lowest,
spin 2, model, represented by a symmetric tensor field A��

whose ‘‘natural’’ source would of course be the stress
tensor, but that has been preempted by another, massless,
spin 2 field. The (unique) partially massive model here
involves both ��2;�1� helicities and a scalar-gauge pa-
rameter. We will therefore attempt to interpret these ex-
citations as ‘‘partial photons’’ and focus on (conserved)
vector current matter sources that primarily excite helicity
1, as a sort of pseudoelectrodynamics.

Our preliminary investigations have uncovered a con-
sistent coupling to charged matter for spin 2 partial pho-
tons. An analysis of one-particle exchange amplitudes
yields a sum of short range and contact charged matter
interactions which indicates that the traditional dS photon
cannot be replaced, but rather only supplemented by its
partial counterpart. We also present a study of higher
derivative effective actions to exhibit possible radiative
corrections to the leading order tree level analysis1.

In the next Section, we outline the properties of our
model and recast it in Maxwellian form in terms of
scalar-gauge invariant first-derivative field strengths, rather
than the Riemann-like curvatures associated with the mass-
less tensor. In Sec. III we introduce sources and in its
following Section elaborate on the resultant current-
current interactions. Finally we exhibit the form of quartic
derivative corrections to the original free field model, and
their effects on these couplings. An Appendix summarizes
the symmetric algebra formalism of [8] which makes our
detailed computations possible.

*Electronic address: deser@brandeis.edu
†Electronic address: wally@math.ucdavis.edu

1Very recently a Stückelberg reformation was used to study
possible matter couplings [7].
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II. PARTIALLY MASSLESS SPIN 2:
PARTIAL PHOTONS

Our dS conventions2 with cosmological constant �> 0
are

 R��
�� � �

2�

3
��
���

�
��; (1)

and the commutator of covariant derivatives acting on
vectors is

 �D�;D��V� �
2�

3
g���V��: (2)

The dS metric g�� moves all indices and defines covariant
derivatives; its signature is �� ���� in four dimensions.
Throughout our analysis, we hold this dS background
fixed.

Unlike the action and field equations of its strictly
massless de Sitter graviton relative, the partially massless
spin 2 excitations (‘‘partial photons’’) can be formulated in
terms of a Maxwell-like curvature tensor that is first order
in derivatives3

 F��� � D�A�� �D�A��; (3)

where the potential A�� � A��. The curvature F��� is
invariant under gauge transformations

 �A�� �
�
D�D� �

�

3
g��

�
�: (4)

Although one would usually expect curvature tensors for
spin 2 fields A�� to be of Riemann type—second order in
derivatives (and more generally, sth order at spin s [11,10]),
the additional derivative in the gauge transformation bal-
ances the one ‘‘missing’’ in the curvature. Moreover, the
gauge parameter � is a scalar, just like the Maxwell case.
This motivates our main observation that the partially
massless spin 2 field may be better viewed as a general-
ization of the photon, rather than its graviton antecedent.

On the basis of the gauge invariance (4) alone, there
exists a one parameter family of invariant actions and
accompanying field equations. However, requiring the ab-
sence of ghosts in the free spectrum yields a unique ‘‘par-
tial photon’’ action principle4

 Spp � �
1

4

Z
d4x

�������
�g
p

�F���F��� � F�F��; (5)

where F� is the curvature trace

 F� 	 F��
�: (6)

To be precise, unitary, spin 2 irreducible representations of
the dS isometry group SO�4; 1� carry either 2, 4 or 5 de-
grees of freedom (respectively strictly massless, partially
massless or massive theories) [5]. Here the ten covariant
field components A�� yield 4 partially massless degrees of
freedom because the free field equations

 G �� � D�F����� �
1

2
g��D

�F� �
1

2
D��F�� � 0; (7)

obey the constraint

 D�G�� �
2�

3
F�: (8)

This removes 4 degrees of freedom and two more are
accounted for by the gauge invariance (4) and correspond-
ing Bianchi identity

 D�D�G�� �
�

3
G�

� 	 0; (9)

leaving four physical propagating modes. These corre-
spond to excitations of helicity ��2;�1�. They propagate
at the speed of light [3] (i.e. along the light cone, dS being
conformally flat) and obey a local energy positivity theo-
rem [4] completely analogous to dS gravitons [12].
Moreover, just like photons in four dimensions (but in
contrast to gravitons), the partially massless spin 2 theory
is conformally invariant [2,6].

We are now ready to introduce sources.

III. COUPLINGS

As stated, the stress tensor being the source of gravity,
we turn to the other universal possibility, the covariantly
conserved vector current J�,

 D�J
� � 0: (10)

The coupling obviously requires an extra index, so there
are two possible local combinations,

 Sint � �
Z
d4x

�������
�g
p

A���QD
�J� �Q0g��D�J

��: (11)

The charges Q and Q0 carry mass dimension unity. [For
conserved J�, the trA divJ term is moot at tree level but
can play a rôle in loops which we mostly ignore in this
work.5] A quick computation reveals

2Actually, all computations in this paper apply also to AdS
backgrounds, but partially massless excitations are no longer
unitary in that case.

3In fact, the same holds for maximal depth theories of arbitrary
spin [9].

4To avoid confusion, note that this is simply a rewriting of the
usual, second order, s � 2, partially massless action obtained by
linearizing the Einstein tensor. Observe also that there exists a
natural first order reformulation of the above action.

5Observe also that the tensor D��J�� is trace-free on shell. This
does not mean that the coupling is conformal, because this tensor
ought not be confused with its stress energy counterpart.
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 ��D�A��� � D�

��
D2 �

4�

3

�
�
�
;

��D�A��� � D�

��
D2 �

�

3

�
�
�
:

(12)

Hence the combination

 V� � QD�A�� �Q
0D�A�

� (13)

transforms like an electromagnetic potential �V� � D� ~�

with parameter ~� � �Q�Q0�D2�� Q�4Q0

3 ��. Therefore
we can hope to couple it consistently to charged matter
fields. There are two distinct cases:

(1) Nondynamical matter: For an on-shell, conserved,
background matter current, theQ0 coupling is irrele-
vant and as divA transforms into the gradient of a
scalar ( just like an E=M potential—see (12)), the
interaction Sint preserves gauge invariance.

(2) Dynamical matter: The interacting partial photon—
charged matter system

 S � Spp � Sint � Smatter;

varies under partial gauge transformations with pa-
rameter � and local U�1� transformations with pa-
rameter � as

 �S �
Z
d4x

�������
�g
p

J�D�

�
�e�� �Q�Q0�D2�

�
4Q�Q0

3
��

�
:

For the choice of parameters

 Q � �Q0;

we may identify Q�� � � and the system is in-
variant under arbitrary U�1� gauge transformations.
For general choices of Q and Q0 we still have
invariance under arbitrary partial gauge transforma-

tions �, so the system is consistent,6 but there exist
(a set of measure zero)U�1� gauge equivalent matter
configurations not reachable by any choice of �,
corresponding to zero modes of the operator �Q�
Q0�D2 � 4Q�Q0

3 �.
For the remainder of our analysis we retain both parame-
ters �Q;Q0� and the distinction between dynamical and
background charged matter will not play any special rôle.

Classical consistency of the coupling (11) relies not only
on the gauge invariance (4) but also the constraint (8) to
ensure that ghost states are nonpropagating. In particular
one might worry that including the source J� introduces
terms involving covariant derivatives of dynamical fields to
the right hand side of (8). In particular, the key property
that the constraint is only first order in time derivatives of
fields,7 could be violated. In fact, there is actually no
obstruction to the constraint analysis, because the new
contributions only involve matter fields. In the case that
these are dynamical, unwanted time derivatives can always
be removed using the matter field equations.

We next study the simplest phenomenological implica-
tions of our new coupling, one-particle exchange
processes.

IV. ONE-PARTICLE EXCHANGE

The simplest effect of the coupling (11) is clearly the
‘‘one-partial photon’’ exchange process depicted in Fig. 1.
There are two distinct phenomenological possibilities: We
could replace the photon by its partial counterpart and
compute only the second diagram—an option quickly
ruled out by the results that follow—or view the partial
photon as a modification of the existing electromagnetic
theory and study the sum of photon and partial-photon
exchange diagrams. The calculation begins with the propa-
gator for massive spin 2 fields [13]

 D �
1

��m2 � 6

�
1�

grad div
m2 �

grad2 div2 � 1
2m

2�m2 � 3�g tr� 1
2m

2�g div2 � grad2 tr�
3m2�m2 � 2�

�
: (14)

Here we employ units �=3 � 1 and the operator � is
Lichnerowicz’s wave operator [13]. The operators
�tr;div;grad;g� correspond to the trace, divergence, gra-
dient and multiplication by the metric and symmetrizing
operations in the symmetric algebra formalism of [8]. A
self contained account is given in Appendix A. The first
physical observation is that there are poles for masses

m2 � 0 and m2 � 2 � 2�=3. These are easily understood
as corresponding to the strictly massless graviton and
partially massless limits where gauge invariances imply
noninvertibility of the kinetic term. In this connection, the
coefficient �m2 � 3�=�m2 � 2� � �m2 ���=�m2 � 2�

3 � of
g tr is also interesting, because it is the basis of the
resolution to the Veltman-van Dam-Zhakarov ambiguity
[14,15]. Namely, when sandwiched between covariantly
conserved stress tensors (so all terms involving grad or
div vanish), the spin 2 propagator limits to its massless flat
space counterpart when one first takes the mass m2 ! 0
and thereafter considers vanishing cosmological constant
�! 0 [16–18].

6The key point is the ability to gauge away ghostlike partial-
photon excitations.

7In this analysis time can be taken as the coordinate along any
timelike vector field. In dS, there is a timelike Killing vector
(within the intrinsic horizon) which provides the most natural
choice of time-slicing.
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The partially massless limit m2 ! 2 can be taken safely
in the exchange amplitude

 A �
Z
TDT (15)

for (two index-symmetric) sources T 	 T��dx
�dx� obey-

ing the partially massless conservation law

 �div2 � tr�T � 0: (16)

Explicitly we find

 A �
Z
T

1

�� 4

�
1�

1

2
grad div�

�� 8
3

4�
g tr

�
T:

(17)

Specializing to the coupling (11), which on-shell yields

 T � QgradJ; (18)

produces the exchange amplitude

 A pp �
Q2

2

Z
J��� 6�J: (19)

Clearly, by themselves, this sum of contact and short range
terms is a rather unphysical amplitude for the interaction of
charged matter. If we include the first, photon, diagram of
Fig. 1 and call the dimensionless quantity (reinstating �)

 q2 	
Q2�

3
; (20)

we find

 A tot �
Z
J
e2

�

�
1�

q2

2e2

3�

�

�
3�

�
� 6

��
J: (21)

Thanks to the powers of inverse �, only extremely large
values of the coupling q will produce measurable effects

from the new contact and short range interactions predicted
by this result.

Finally, lest the reader be disappointed by the impossi-
bility of replacing Maxwell photons by their dS partial spin
2 counterparts, as expressed by the amplitude App in (19),
we provide a simple rederivation of our results relevant for
the computations of candidate radiative counterterms
studied in the next Section:

The one-particle exchange amplitude computation re-
quires us to compute

R
�gradJ�A�J� with A � A�J� deter-

mined by

 GA � gradJ; (22)

whereGA are the partially massless field equations and the
kinetic operator G is as in (A12). Since the current J is a
transverse vector (divJ � 0), we need only compute the
helicity 1 part of A � . . .� gradAT � . . . where AT is also
a transverse vector. Using the constraint (A14) to compute
the divergence of (22) yields

 � 2 div gradAT � div gradJ: (23)

The �div;grad� commutator gives an overall factor �� 6
so AT � � 1

2 J and in turn
R
�gradJ�A�J� � 1

2 
R
Jdiv gradJ � 1

2

R
J��� 6�J as claimed. Notice the

crucial rôle played by the divergence constraint in this
derivation.

V. HIGHER DERIVATIVE ACTIONS

It is unlikely that the form of the amplitude (21) is
respected by radiative corrections. Alternatively one might
like to search for modifications of our underlying theory in
order to produce ‘‘improved’’ amplitudes. From either
viewpoint, an interesting question is what higher derivative
corrections are allowed to the result (21). While we avoid,
at this premature stage, detailed higher loop computations,
much can be said about candidate local counterterms. We
begin with the most rudimentary requirement, namely, that
they be invariant under the partial gauge transformation (4).
Moreover, we restrict our attention to corrections quartic in
derivatives and again employ the symmetric algebra for-
malism. In particular we specify actions by displaying the
analog of the ‘‘kinetic operator’’ G in (A12), in terms of
which the field equations are GA � 0 and action S �
� 1

2

R
AGA (which is equivalent to (5)). One-particle ex-

change amplitudes are obtained by solving the analog of
GA � gradJ.

The most general partially gauge invariant action quartic
in derivatives is8

Partial Photon ExchangePhoton Exchange

FIG. 1. Partial Photon Mediated Scattering.

8It is interesting to note that higher derivative Maxwell-like
actions have also been considered in a mathematical context,
where one attempts to preserve conformal invariance in dimen-
sions higher than four [19].
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S4 � ��1 � 1�G� ��2 � 1�grad��� grad div�div� �3�g� tr� g div2 � grad2 tr� grad div�

� �1

�
��� 6���� 4� � 4 grad div�

3

2
g��� 2� tr� g div2 � grad2 tr� grad

�
��

1

2
grad div

�
div

�

� �2�g�2 tr� g� div2 � grad2� tr� grad2 div2�: (24)

The total action for the intermediate partial photons is

 Stot � G� S4: (25)

This theory produces the amplitude

 A tot �
Z
J

1

�1� �2��� �3 �
2�1

��6

J; (26)

about which we observe the following:
(1) At �1 � �2 � �3 we obtain a photon amplitude

J 1
�
J. However, although this counterterm is by

construction gauge invariant, to avoid propagating
ghosts, one might also try to impose the divergence
constraint on the counterterm. Yet for this choice of
parameters we find divS4 � grad� div2 � � � �
which certainly violates the constraint.

(2) At �1 � �2 � 1, �3 � 0, �2 � ��1=6, one ob-
tains divS4 � 0, and hence leaves the divergence
constraint unaltered. However this case returns to
the original amplitude (19). In fact, this conclusion
is obvious, since only the helicity 1 part of S4 can
contribute to the exchange amplitude.

(3) One can also consider intermediate situations where
(i) the leading derivative contributions to divS4

vanish or (ii) only terms first order in derivatives
in divS4 remain. Case (i) requires �2 � 1 which
already cancels the leading 1=� behavior of the
amplitude (26). Case (ii) holds whenever �2 � 1
and �3 � 0 � �1 � 6�2. By the same reasoning
as above this gives again an amplitude ��� 6.

Clearly these results are somewhat formal, though it is at
least encouraging that the symmetric algebra technology
allows their computations to be carried out efficiently. We
discuss their underlying physical principles and interpre-
tation further in the Conclusions.

VI. CONCLUSIONS

We have carried out an initial analysis of the interactions
available to partially massive free gauge theories, particu-
larly for the simplest four dimensional s � 2 case. [The
formal generalization to higher s and dimensionality is
straightforward. Note, in particular, that interactions
�
R
J�D�1 � � �D�s�1A�1...�s�1� will yield a string of ever

increasing short range interactions.] Having motivated the
choice of vector currents, primarily coupled to the model’s
helicity 1 excitations, rather than that of tensors to helicity
2, we first recast the free field into Maxwell-like form in
terms of first derivative, but still gauge invariant field
strengths. The coupling of the vector J� to the tensor field

required a derivative coupling, and led to one-particle tree
exchange amplitudes very different from the usual
Maxwell

R
J�e2=��J with its Coulomb 1=r falloff. The

derivative couplings instead led to forces �
R
J���

2��J, with much steeper falloff/contact interactions that
would superpose with the Maxwell ones if both couplings
are present. We also constructed, and considered, the ef-
fects of all effective quartic derivative order actions main-
taining scalar-gauge invariance. Our analysis catalogued
these counterterms according to their effect on the diver-
gence constraint of the free model. An open question is to
determine whether adding such effective terms to the
Lagrangian produces ghost excitations. Imposing the
only the scalar-gauge invariance as a requirement even
allows one to recover a Coulomb 1=r interaction but we
suspect that this type of correction engenders ghostlike
excitations. Therefore as it stands our proposal amounts
to a candidate modification of dS electrodynamics. By
tuning the couplings Q and Q0 we can always render it
unobservable in tree physics although much work remains
to see if this is a sensible, let alone phenomenologically
called for, modification of dS quantum field theories.

We close with a reminder: All computations in this paper
pertain to a fixed de Sitter background. Surely any genuine
modification of de Sitter electrodynamics will require a
coupling of partially massless theories to gravity, a topic on
which we currently have little to add.
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APPENDIX A: SYMMETRIC TENSOR ALGEBRA

Efficient computations involving symmetric tensors may
be performed using the formalism of [8].9 Symmetric
tensors are viewed as functions of commuting differentials
dx� as suggested by the notation for the metric tensor
ds2 � dx�g��dx�. In addition the operation @� 	
d=d�dx�� is introduced whereby

 �@�; dx
�� � ���: (A1)

9In that work the generalization to spinors was also given and
has recently been applied to (A)dS fermionic higher spin action
principles [20].
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To avoid confusion, note that the symbol @� does not act on
functions of the space time coordinates such as g���x� or
A���x�. In this notation an s-index-symmetric tensor is
denoted

 � � ’�1...�s
dx�1 � � � dx�s ; (A2)

but sums of tensors with differing number of indices are
also permitted. The object � in (A2) is in fact an eigen-
vector of the ‘‘index operator’’

 N 	 dx�@�; (A3)

whose job is to count indices. Component-wise,
N: ’�1...�s

� s’�1...�s
. Further useful operations and their

actions on component fields are

 

g 	 dx�dx�g��: ’�1...�s
� g��1�2

’�3...�s�2�

grad 	 dx�D�: ’�1...�s
� D��1

’�2...�s�1�

div 	 D�@�: ’�1...�s
� sD�’��1...�s�1

tr 	 g��@�@�: ’�1...�s
� s�s� 1�’���1...�s�2 :

(A4)

Mnemonically: g and grad multiplies by the metric/cova-
riant derivative and totally symmetrizes, while tr and div
are the trace and divergence operators. The gradient op-
erator should be viewed as the symmetric tensor general-
ization of the Poincaré exterior derivative d for differential
forms.

The advantage of these operators is their algebra10

 �N; g� � 2 g; �N;grad� � grad;

�N;div� � �div; �N; tr� � �2 tr;

�tr;g� � 2 N� 4d;

(A5)

valid for any d-dimensional Riemannian manifold. When
this manifold is flat

 �div;grad� � �; (A6)

and � is the Laplacian. In general, the commutator of div

and grad equals the Laplace operator plus somewhat
complicated curvature terms. For constant curvature mani-
folds such as de Sitter space there is a beautiful simplifi-
cation observed long ago in a mathematical context by
Lichnerowicz [13], namely

 �div;grad� � �� 2 c; (A7)

where we employ units

 � � d� 1; (A8)

and

 c � gtr�N�N� d� 2� (A9)

is the quadratic Casimir for the sl�2;R� Lie algebra
�g;N; tr� while

 � � �� c; (A10)

is the Lichnerowicz wave operator. Importantly, it is cen-
tral, i.e. commutes with all the above operations.

Finally as an example of the utility of this formalism, we
spell out the partially massless spin 2 system. Writing A 	
A��dx

�dx�, the field Eqs. (7) are simply

 GA � 0; (A11)

with

 G � �� 4� grad div�
1

2
�grad2 tr� g div2�

�
1

2
g��� 1� tr: (A12)

Gauge invariance and the Bianchi identity are expressed by
the equalities

 �div2 � tr�G � 0 � G�grad2 � g�; (A13)

which may be easily verified using the above algebra. The
constraint follows because

 d ivG � �2�div� grad tr�: (A14)

Finally we emphasize that this algebra can be easily
implemented in an algebraic manipulation program such
as FORM [21] which facilitates extremely rapid
computations.

[1] S. Deser and A. Waldron, Phys. Rev. Lett. 87, 031601
(2001); Nucl. Phys. B607, 577 (2001).

[2] S. Deser and R. I. Nepomechie, Phys. Lett. B 132, 321
(1983); Ann. Phys. (N.Y.) 154, 396 (1984).

[3] S. Deser and A. Waldron, Phys. Lett. B 513, 137 (2001).
[4] S. Deser and A. Waldron, Phys. Lett. B 508, 347 (2001).

[5] S. Deser and A. Waldron, Nucl. Phys. B662, 379 (2003).
[6] S. Deser and A. Waldron, Phys. Lett. B 603, 30 (2004).
[7] Y. Zinoviev, hep-th/0609170.
[8] K. Hallowell and A. Waldron, Nucl. Phys. B724, 453

(2005).
[9] Rod Gover (private communication).

10Note that �g;N; tr� generate the sl�2;R� Lie algebra while
�div;grad� form its doublet representation.

S. DESER AND A. WALDRON PHYSICAL REVIEW D 74, 084036 (2006)

084036-6



[10] S. Deser and T. Damour, Class. Quant. Grav. Lett. 4, L95
(1987).

[11] B. de Wit and D. Z. Freedman, Phys. Rev. D 21, 358
(1980).

[12] L. F. Abbott and S. Deser, Nucl. Phys. B195, 76
(1982).

[13] A. Lichnerowicz, Institut des Haute Études Scientifiques
10, 293 (1961); Bull. Soc. Math. Fr. 92, 11 (1964).

[14] H. van Dam and M. J. G. Veltman, Nucl. Phys. 22, 397
(1970).

[15] V. I. Zakharov, Pis’ma Zh. Eksp. Teor. Fiz. 12, 447 (1970)
[JETP Lett. 12, 312 (1970)].

[16] I. I. Kogan, S. Mouslopoulos, and A. Papazoglou, Phys.
Lett. B 503, 173 (2001).

[17] M. Porrati, Phys. Lett. B 498, 92 (2001).
[18] S. Deser and A. Waldron, Phys. Lett. B 501, 134 (2001).
[19] T. Branson and A. Gover, Differential Geometry and its

Applications 17, 229 (2002).
[20] R. R. Metsaev, hep-th/0609029.
[21] J. A. M. Vermaseren, math-ph/0010025.

PARTIALLY MASSLESS SPIN-2 ELECTRODYNAMICS PHYSICAL REVIEW D 74, 084036 (2006)

084036-7


