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We construct new solutions of the vacuum Einstein field equations in four dimensions via a solution-
generating method utilizing the SL�2; R� symmetry of the reduced Lagrangian. We apply the method to an
accelerating version of the Zipoy-Voorhees solution and generate new solutions which we interpret to be
the accelerating versions of the Zipoy-Voorhees generalization of the Taub-NUT solution (with
Lorentzian signature) and the Zipoy-Voorhees generalization of the Eguchi-Hanson solitons (with
Euclidean signature). As an intermediary in the solution-generating process we obtain charged versions
of the accelerated Zipoy-Voorhees-like families of solutions. Finally we present the accelerating version
of the Taub-NUT solution and discuss its properties.
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I. INTRODUCTION

Ever since the formulation of General Relativity, exact
solutions have played an integral part in our understanding
of the nature of spacetime. For example, much of our
understanding of black-hole thermodynamics and inflation
was possible only with the discovery of the Kerr-Newman
and FRW solutions, respectively. Given the importance of
such exact solutions, there is a corresponding impetus to
derive new solutions which upon analysis would yield
further insight into our universe. Since Einstein’s equations
in their unadulterated form consist of a series of coupled
nonlinear differential equations, obtaining solutions by
hand is intractable unless some kind of simplifying sym-
metry is imposed in the ansatz. This motivated the develop-
ment of many ingenious and powerful strategies utilizing
such simplifications to derive solutions to Einstein’s equa-
tions. Of particular importance for the present work is a
special type of simplifying ansatz, the static axisymmetric
Weyl-Papapetrou metric, which was first proposed by Weyl
in [1]

 ds2
4 � �e

� dt2 � e �e2��d�2 � dz2� � �2d’2�: (1)

The metric is specified by the values of two functions  and
�, which are functions of the canonical Weyl variables �
and z. Starting with a static vacuum axisymmetric solution
of the Einstein field equations, consider its dimensional
reduction along the timelike direction down to three di-
mensions. The reduced Lagrangian can be written as:

 L 3 � eR�
1

2
e�@ �2; (2)

where we denote e �
���
g
p

andR is computed with the three-
dimensional metric:

 ds2 � e2��d�2 � dz2� � �2d’2: (3)

The equation of motion for  is then readily seen to be
� � 0, where � is the Laplacian constructed using the
three-dimensional metric (3). Now, the key observation is
that � � e�2����0 , where ���0 is the Laplacian
computed for a flat three-dimensional Euclidean metric,
which corresponds to setting � � 0 in (3). Therefore any
solution  ��; z� of Laplace’s equation in the flat three-
dimensional space is automatically a valid solution of
Laplace’s equation in the curved background (3). Once
we know  , the remaining function ���; z� is found by
performing a simple line-integral using the relations:

 @z� �
�
2
@� @z ; @�� �

�
4
��@� �

2 � �@z �
2�: (4)

The Einstein’s equations in 4-dimensions for a static axi-
symmetric background are now essentially reduced to
finding a solution of Laplace’s equation on flat space.
Because of the linearity of the Laplace equation for  ,
construction of multi-black-hole versions is easily carried
out. The Weyl formalism has been recently extended to
higher dimensions by Emparan and Reall [2] and the same
line of thought can be used for the corresponding higher
dimensional axisymmetric metrics.

Given the simplifications introduced by the above axi-
symmetric ansatz, one now has two choices. One may
either try to solve the differential equations directly, or,
in more general cases, try to further exploit the hidden
symmetries of the dimensionally reduced Lagrangians and
generate solutions using pre-existing solutions as seeds.

Consider for instance the following ‘‘scaling‘‘ symmetry
of the field equations: given a vacuum static solution
described by the pair of functions � ;�� then it is easily
seen from (4) that the pair �� ; �2�� will describe new
vacuum static axisymmetric solution of the field equations,
where � is any real parameter. As an example, its applica-
tion converts the Schwarzschild solution into the Zipoy-
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Voorhees solution [3]. This simple observation will be
liberally utilised in the present work.

There also exist transformations similar to the Ehlers-
Harrison transformation for the Ernst formalism [4–6]
which map static vacuum solutions into stationary
Einstein-Maxwell solutions. For the Weyl-Papapetrou an-
satz, it has been long known that a transformation already
exists that brings a static, axisymmetric vacuum solution to
a nontrivial class of static solutions in Einstein-Maxwell
theory [7]. In particular, the Schwarzschild solution can be
transformed into the Reissner-Nordström solution. In this
paper, we will demonstrate a simpler alternative derivation
of this transformation using a SL�2; R� symmetry of the
reduced Lagrangian in three dimensions.1 However, unlike
previous applications of this transformation, we show that
combining this transformation with the above scaling sym-
metry, one is able to generate new solutions. Our seed
metric will be an accelerating version of the Zipoy-
Voorhees solution [9]. In particular, we obtain new vacuum
stationary axisymmetric metrics which we interpret as
describing the accelerating Zipoy-Vorhees-like family of
Taub-NUT solutions (with Lorentzian signature) and of the
Eguchi-Hanson instantons (with Euclidean signature).
Much like the original Zipoy-Voorhees solution [3], such
metrics are parameterized by a real number �. For � � 1
we recover the accelerating Taub-NUT/Eguchi-Hanson
solitons and, for higher positive integer values of �, they
can be interpreted as the ‘‘superposition’’ of accelerating �
NUT-charged objects/solitons.

The structure of this paper is as follows. In Sec. II we
describe our solution-generating technique, which maps a
static axisymmetric solution in vacuum to a new stationary
vacuum solution of Einstein’s gravity in four dimensions.
In Sec. III we apply the transformation technique on accel-
erating solutions, namely, on the C-metric and on the
accelerating Zipoy-Voorhees metric and we consider
more closely the properties of the generated accelerating
Taub-NUT solution in Sec. IV. Finally, in Sec. V we
summarize the main results of this paper and discuss
potential avenues for further research. In the appendix we
cast the accelerating Taub-NUT metric in Weyl-
Papapetrou form.

II. WEYL’S CHARGING METHOD: THE SL�2; R�
APPROACH

We start with Einstein-Maxwell theory in four dimen-
sions described by the Lagrangian:

 L 4 � eR�
1

4
eF2
�2�; (5)

where R is the Ricci scalar computed with the 4-
dimensional metric, F�2� � dA�1� is the electromagnetic

field strength and we denote e �
�������
�g
p

. Consider the di-
mensional reduction of the four-dimensional Lagrangian
(5) to three dimensions on a timelike coordinate using the
static Kaluza-Klein ansatz:

 ds2
4 � �e

��dt2 � e�ds2
3; (6)

while the electromagnetic potential is taken to have only an
electric component, A�1� � �dt. The reduced Lagrangian
in three dimensions is then2:

 L 3 � eR�
1

2
e�@��2 �

1

2
ee��@��2: (7)

Notice now that if one defines the matrix:

 M �
E�=2 �

2 E
�=2

�
2 E

�=2 �E���=2� � �2

4 E�=2

 !
; (8)

then the three-dimensional Lagrangian can be cast into the
following form:

 L 3 � eR� eTr�@M�1@M�; (9)

The reduced Lagrangian is then manifestly invariant under
general SL�2; R� transformations if one considers the fol-
lowing transformation laws for the three-dimensional
fields:
 

g�� ! g��; M! �TM�;

� �
a b

c d

 !
; ad� bc � 1:

(10)

Starting now with a static axisymmetric vacuum solution
described by the metric:

 ds2 � �e� dt2 � e ds2
3; (11)

then performing the dimensional reduction on the timelike
direction down to three dimensions and applying a general
SL�2; R� transformation parameterized as above, we obtain
a static axisymmetric electrically charged solution of
Einstein-Maxwell field equations, described by the fields:

 ds2 � �e��dt2 � e�ds2
3; A�1� � �dt;

e� � e 
�1� �e� �2

4C2�
; � �

4C�

e � �
;

(12)

where, in terms of the parameters appearing in �, the new
constants � and C can be expressed as � � c2=a2 and C �
1=�2ac�. Note that in the limit in which � � I2, i.e. c! 0
and a � 1, we have �! 0 simultaneously with C!�1
such that the product C2�! 1=4 remains constant.

As an example of this charging technique, let us generate
the Reissner-Nordström solution starting from the
Schwarzschild metric:

1A similar idea has been considered in [8], however the details
of the charging transformation differ here.

2Here e �
������
jgj

p
and R is computed with the 3-dimensional

metric ds2
3.
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 ds2 � �

�
1�

2m
r

�
dt2 �

dr2

1� 2m
r

� r2�d	2 � sin2	d’2�:

(13)

The final solution can be written in the form:
 

ds2 � �
4C2�r�r� 2m�

��1� ��r� 2�m�2
dt2 �

��1� ��r� 2�m�2

4C2�r�r� 2m�
dr2

�
��1� ��r� 2�m�2

4C2�
�d	2 � sin2	d’2�;

A�1� �
2C��1� ��r� 2�m�
�1� ��r� 2�m

dt: (14)

For generic values � � 1 we can easily perform a redefi-
nition of the radial coordinate, together with an appropriate
constant scaling of the timelike coordinate and cast the
solution into the usual Reissner-Nordström form. The
electric charge isQ � m=C, while the mass of the solution
is M � �1� ��Q=�2

����
�
p
�. Note that � � 1 is a special case

as it leads to the Bertotti-Robinson metric [10] and it
therefore describes the extremally charged Reissner-
Nordström solution for which M � Q.

At this point let us note that this method is not restricted
only to metrics with axisymmetric symmetry; it can be
extended to any general static vacuum solution of
Einstein’s field equations. Also, one can easily consider a
similar method to generate magnetically charged static
solutions out of axial vacuum metrics.

Once we obtained a static electrically charged solution
in Einstein-Maxwell theory, the next step in our solution-
generating technique will be to perform a dualization of the
electromagnetic potential and find the corresponding mag-
netically charged solutions. In our case it turns out that it is
easier to compute the dual electromagnetic potential in the
reduced three-dimensional theory. In this case we start with
the three-dimensional Lagrangian (7) and dualize the sca-
lar field to obtain a magnetic 2-form field strength F�2�.
Following the usual dualization procedure, we add a term
d� ^ F�2� to the action and solve the equations of motion
for the scalar field �. Replacing the result in the action we
finally express the Lagrangian in terms of the dual field as3:

 L 3 � eR�
1

2
e�@��2 �

1

4
ee��F2

�2�; (15)

where the components of the twoform field strength are
computed using the formula:

 F�
 � ee���
�@��; (16)

where ��
� is the Levi-Civita symbol. After lifting the
solution back to four-dimensions we obtain a magnetically
charged static solution of the Einstein-Maxwell field
equations.

We are now ready to perform the last step in our
solution-generating method, namely, to map the magnetic
solution to a vacuum axisymmetric stationary solution of
Einstein’s field equations in four dimensions. This actually
involves two steps: we first map the magnetic solution of
the Einstein-Maxwell theory to a solution of the Einstein-
Maxwell-Dilaton (EMD) theory with a specific value of the
dilaton coupling, namely, the one corresponding to the
Kaluza-Klein theory, i.e. a � �

���
3
p

. To do this we shall
employ the general results derived in [11] (see also [12] for
a geometrical derivation of the respective mapping).
Starting with a magnetostatic solution:

 ds2
4 � �e

��dt2 � e��e2��d�2 � dz2� � �2d’2�;

A�1� � A’d’;
(17)

the corresponding solution of the EMD system is:

 ds2
4 � �e

���=4�dt2 � e�=4��e2��1=4�d�2 � dz2�

� �2d’2�;

A�1� �
A’
2
d’; e ~�=

��
3
p

� e�=4:

(18)

This is none other than the dimensional reduction of a
vacuum five-dimensional metric using the ansatz:

 ds2
5 � e��2 ~�=

��
3
p
�

�
dz�

A’
2
d’

�
2
� e ~�=

��
3
p

ds2
4: (19)

In our case it turns out that the 5-dimensional metric is
simply the trivial product of a 4-dimensional Euclidean
metric with a time direction. Since the 5-dimensional
metric solves the vacuum Einstein equations it is manifest
that the 4-dimensional Euclidean metric will be Ricci flat,
i.e. it solves the vacuum Einstein equations in four dimen-
sions. Therefore, our final result is expressed in the form:
 

ds2
4 � e���=2��dz� A’=2d’�2

� e�=2��e2��1=4�d�2 � dz2� � �2d’2�: (20)

We note that even if the charging method does not
require any other symmetry beyond the static condition,
this second step in our solution-generating technique can
be applied only to stationary axisymmetric metrics that can
be cast into the Weyl-Papapetrou form. However, this is not
really a very stringent constraint as most of the physically
interesting solutions can be cast in the Weyl-Papapetrou
form. To understand the effects of this last step in our
solution-generating method one could take for instance
the magnetically charged four-dimensional Reissner-
Nordström and map it to an Euclidean vacuum metric as
in (20). However, given the presence of the square roots
appearing in the factors e�=2 it is easily seen that we obtain
an axisymmetric NUT-charged solution with naked singu-
larities, whose physical interpretation is obscure at this
point. On the other hand, since we restrict ourselves to
axisymmetric metrics that can be cast in Weyl form, it turns

3Note that we perform the dualization using a three-
dimensional Euclidean metric.

ACCELERATING TAUB-NUT AND EGUCHI-HANSON . . . PHYSICAL REVIEW D 74, 084031 (2006)

084031-3



out that before we apply the charging procedure one can
use the scaling symmetry discussed in introduction to scale
the dilaton in the initial seed in such a way to cancel the
awkward effect of the square-roots in the final expression
of the metric.

III. ACCELERATING ZIPOY-VOORHEES-LIKE
FAMILIES OF SOLUTIONS

In four dimensions, a particularly interesting class of
solutions that generalize the Schwarzschild black-hole is
the so-called C-metric. The static part of this metric was
found by Levi-Civita almost one century ago (see [6]),
however, its physical interpretation was clarified only after
Kinnersley and Walker’s work decades later [13]. By per-
forming appropriate coordinate definitions, they found that
this metric describes a pair of causally disconnected black
holes uniformly accelerating in opposite directions. The
cause of the acceleration is understood in terms of nodal/
conical singularities along the axis that connects the two
black holes and these singularities are interpreted as
strings/struts pulling or pushing the black holes apart. A
more general class of electrovacuum spacetimes that in-
cludes and considerably generalizes the C-metric was
found by Plebański and Demiański [14] (see also in [15]
the general Type D family of solutions in EM theory).
Recent analyses of this class of solutions have been per-
formed in [16,17], where a new exact solution describing a
pair of accelerating and rotating charged black holes hav-
ing also a NUT-charge has been presented. However, an
accelerating NUT solution without rotation has not been
identified yet within that class [17]. It is the goal of this
section to try to construct such an accelerating solution. We
shall consider next the uncharged C-metric, respectively,
the accelerating Zipoy-Voorhees solution [9] as the seeds
in our solution-generating procedure.

Expressed in the form given in [16] the C-metric takes
the simple form:

 ds2 �
1

A2�x� y�2

�
��y2 � 1�F�y�dt2 �

dy2

�y2 � 1�F�y�

�
dx2

�1� x2�F�x�
� �1� x2�F�x�d’2

�
;

where F��� � 1� 2mA�. We restrict our attention to case
in which 0 	 2mA< 1 and, in order to preserve the sig-
nature of the metric, we restrict the values of the coordi-
nates such that:

 �
1

2mA
	 y 	 �1; �1 	 x 	 1: (21)

In terms of these coordinates, spatial infinity corresponds
to x � y � �1, the black-hole horizon is located at y �
� 1

2mA , while acceleration horizon corresponds to y � �1.
The part of the symmetry axis joining the black-hole

horizon with the acceleration horizon is x � 1, while the
one joining the black-hole horizon to infinity is x � �1.

In order to apply our solution-generating technique we
need to write the C-metric in Weyl form. Using the results
from [16] we obtain:

 ds2 � �e� dt2 � e �e2��d�2 � dz2� � �2d’2�;

e� �
�y2 � 1�F�y�

A2�x� y�2
; e2� �

�y2 � 1�F�y�
f�x; y�G�x; y�

;
(22)

where
 

f�x; y� � �y2 � 1�F�x� � �1� x2�F�y�;

G�x; y� � �1�mA�x� y�2�2 �m2A2�1� xy�2;
(23)

while the canonical Weyl coordinates � and z are defined
such that:
 

�2 �
�y2� 1��1� x2�F�x�F�y�

A4�x� y�4
;

z�
�1� xy��1�mA�x� y��

A2�x� y�2
;

d�2�dz2 �
f�x;y�G�x;y�

A4�x� y�4

�
dy2

�y2� 1�F�y�
�

dx2

�1� x2�F�x�

�
:

(24)

Consider now the scaling transformation � ;�� !
�� ; �2��, where � is a real parameter. Applying it to
the C-metric we obtain a new vacuum solution of the form:
 

ds2 � �

�
�y2 � 1�F�y�

A2�x� y�2

�
�
dt2 � �A2�x� y�2���2




�
�1� x2�F�x�

��y2 � 1�F�y����1 d’
2 �
��y2 � 1�F�y���

2��

�f�x; y�G�x; y���
2�1




�
dy2

�y2 � 1�F�y�
�

dx2

�1� x2�F�x�

��
: (25)

It is clear that by taking � � 1 we recover the initial
C-metric. On the other hand, let us consider the zero-
acceleration limit of this metric. Performing the coordinate
transformations:

 x � cos	; y � �
1

Ar
; t! A2��1t; (26)

while taking the limit A! 0 and rescaling the metric by a
constant factor A2��2 it is readily seen that we recover the
Zipoy-Voorhees solution [3]. Therefore, one could naively
interpret the metric (25) as describing an accelerating
version of the Zipoy-Voorhees solution. However, the
fact that the above metric is not the ‘‘proper’’ accelerating
Zipoy-Voorhees solution can also be seen from the fact that
the � � 2 of this family should reduce to the so-called
accelerating Darmois solution. This is the coincident limit
of the accelerating Bonnor dihole solution that was re-
cently found by Teo in [9]. In fact, a different metric
describing the accelerated Zipoy-Voorhees solution, how-
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ever, written in a very symmetric form has been presented
by Teo in the same work. The ‘‘proper’’ accelerating
Zipoy-Voorhees solution reads:
 

ds2 � �e� dt2 � e �e2��d�2 � dz2� � �2d’2�;

e� �
�y2 � 1�F�y�

A2�x� y�2

�
F�y�
F�x�

�
��1

;

e2� �
�y2 � 1�F�y�
f�x; y�G�x; y�

F�y��
2�1F�x����1�2

G�x; y��
2�1

;

(27)

where the canonical Weyl coordinates are again defined in
(24). Indeed, we see that the Darmois solution (i.e. the � �
2 member of this family) is clearly different from the � �
2 member of (25) and therefore we cannot actually inter-
pret (25) as being an accelerating version of the Zipoy-
Voorhees family.4 Nonetheless, since the metric (25) is
only an intermediate result in our solution-generating tech-
nique, we shall not further discuss its properties at this
point, but limit ourselves to notice that one can apply the
scaling transformation on Teo’s solution and further gen-
erate a new family of vacuum metrics indexed by two
distinct real parameters:
 

ds2 � �e� dt2 � e �e2��d�2 � dz2� � �2d’2�;

e� �
�
�y2 � 1�F�y�

A2�x� y�2

�
F�y�
F�x�

�
��1

�
�
;

e2� �

�
�y2 � 1�F�y�
f�x; y�G�x; y�

F�y��
2�1F�x����1�2

G�x; y��
2�1

�
�2

;

(28)

The next step is to charge the solution (28) using a
general SL�2; R� transformation. Using the formulas (12)
we obtain:
 

ds2 � �e� 
1

H��x; y�
dt2 � e H��x; y�


 �e2��d�2 � dz2� � �2d’2�;

A�1� �
4C�

� A
2�x�y�2

�y2�1�F�y�
�F�x�F�y��

��1�� � �
dt;

H��x; y� �
�1� ���y

2�1�F�y�
A2�x�y�2

�F�y�F�x��
��1���2

4C2�
:

Let us consider a few limiting cases of the above metric.
Taking �! 0 and C! 1 while keeping the product C2�
constant we recover the uncharged metric (28). On the
other hand, the � � 1 member of this family should cor-
respond to the charged accelerating Zipoy-Voorhees solu-
tion (see also [18]). In particular, for � � 1 this should
reduce to a charged version of the C-metric. However,
unlike the known form of the electrically charged
C-metric, in general, the above solution has a curvature
singularity located at the roots of H��x; y� � 0. Therefore

its interpretation as a new form of the charged C-metric is
dubious.

By dimensionally reducing this solution down to three
dimensions and dualising the scalar field � to an electro-
magnetic field as described in Sec. II, we find that the
magnetic potential is given by:

 A’ �
�
C
�1� x2���F�x� � �1� ��F�y��

A2�x� y�2
�

2m��x
AC

;

(29)

while the metric remains unchanged in this process.
Finally, taking � � 2 and using (20) we find:

 ds4 �
�y2 � 1�F�x�

A2�x� y�2

�
F�y�
F�x�

�
� C2�
H�x; y�

�dt� A’d’�
2

�
H�x; y�

A2�x� y�2

��
F�x�
F�y�

�
�
�1� x2�F�y�d’2

�
�F�x�F�y������1�

G�x; y��
2�1

�
dy2

�y2 � 1�F�y�

�
dx2

�1� x2�F�x�

��
; (30)

where we defined:

 H�x; y� �
1� ���y

2�1�F�x�
A2�x�y�2

�F�y�F�x��
��2

2
: (31)

This is the main result of this section. In the limit �! 0,
C! 1 (with C2� constant and rescaling the t coordinate
by a constant factor) we recover the Euclidean form of the
accelerating Zipoy-Voorhees solution (28). It is manifest
that the C-metric corresponds to the � � 1 member of this
family. Another interesting limit to consider is the zero-
acceleration limit. In this case it turns out that performing
the coordinate transformations:

 x � cos	; y � �
1

Ar
; �! �A4; t!

t
A
;

(32)

we obtain a general family of vacuum Euclidean solutions,
indexed by a real parameter �,5 which interpret as the
Zipoy-Voorhees generalization of the Eguchi-Hanson soli-
ton:
 

ds2 �
1� ��1� 2m

r �
2�

�1� 2m
r �

�

��
r�r� 2m�

�r�m�2 �m2cos2	

�
�2�1


 �dr2 � r�r� 2m�d	2� � r�r� 2m�sin2	d’2

�

�
4C2��1� 2m

r �
�

1� ��1� 2m
r �

2�

�
dz�

2m�
C

cos	d’
�

2
: (33)

4We thank Edward Teo for pointing this out to us.

5Notice that C is not an essential parameter and it can be
absorbed by a constant rescaling of the z coordinate.
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Indeed, if we take � � 1 and properly rescale the z coor-
dinate to absorb some constant factor we obtain a
spherically-symmetric metric:
 

ds2 � �
r�r� 2m�

r2 � ��r� 2m�2
�dz� 4m cos	d’�2

� �r2 � ��r� 2m�2�
�

dr2

r�r� 2m�
� d�2

�
:

We distinguish now two possibilities. If we set directly
� � 1 we can cast the metric in the following form:

 ds2 �
R2

4

�
1�

4

R4

�
�dz� cos	d’�2 �

dR2

1� 4

R4

�
R2

4
d�2;

after redefining R2 � 4m�r�m� and  � 4m. This is the
well-known Eguchi-Hanson soliton [19]. On the other
hand, if � � 1 then by redefining the radial coordinate
such that R2 � n2 � r2 � ��r� 2m�2 with �1� ��n2 �
4m2� and rescaling z we obtain:

 ds2 �
�R� n���

�
p ��R� n

����
�
p
�

R2 � n2 �dz� 2n cos	d’�2

�
R2 � n2

�R� n���
�
p ��R� n

����
�
p
�
dR2 � �R2 � n2�d�2;

which we recognise as the Euclidean version of the Taub-
NUT metric. It is now possible to set again � � 1 and
recover the extremal Taub-NUT solution.

Another case of interest is the one that corresponds to
negative values for �. Setting �! ��, from the general
form of the metric (33), we obtain a metric with Lorentzian
signature6:
 

ds2 �
1� ��1� 2m

r �
2�

�1� 2m
r �

�

��
r�r� 2m�

�r�m�2 �m2cos2	

�
�2�1


 �dr2 � r�r� 2m�d	2� � r�r� 2m�sin2	d’2

�

�
4C2��1� 2m

r �
�

1� ��1� 2m
r �

2�

�
dt�

2m�
C

cos	d’
�

2
: (34)

where now � takes positive values only. Consider now the
� � 1 member of this family of solutions. After redefining
the radial coordinate such that R2 � N2 � r2 � ��r�
2m�2, where �1� ��N2 � 4�m2, we obtain:

 ds2 � �
�R� N���

�
p ��R� N

����
�
p
�

R2 � N2 �dt� 2N cos	d’�2

�
R2 � N2

�R� N���
�
p ��R� N

����
�
p
�
dR2 � �R2 � N2�d�2;

i.e. the Taub-NUT solution [20] with mass M � � N���1�
2
���
�
p

and NUT charge N. On the other hand, setting �! 0 and
taking the limit C! 1 while keeping the product C2�
constant, the metric (34) is readily seen to reduce to the
Zipoy-Voorhees metric.

Therefore, we expect that (30) describes for positive
values of � the accelerating version of the family (33),
while for negative values of � it describes the accelerating
version of (34). Computing some of the curvature invari-
ants for this metric one finds that generically there is a
curvature singularity located at the roots of H�x; y� � 0 as
long as x � y. However if we consider negative values of �
(i.e. replace �! ��) in the above metric we obtain a
vacuum solution with Lorentzian signature and further-
more, we find that H�x; y�> 0 always (for x � y).

IV. PROPERTIES OF THE ACCELERATING
TAUB-NUT SOLUTION

In what follows we will concentrate our attention on the
� � 1 member of this Lorentzian family. The metric be-
comes:

 

ds4 � �
�y2 � 1�F�y�

A2�x� y�2
C2�
H�x; y�

�
dt�

1

C

�
�1� x2�F�x�

A2�x� y�2

�
2mx
A

�
d’

�
2
�

H�x; y�

A2�x� y�2

�
�1� x2�F�x�d’2

�
dy2

�y2 � 1�F�y�
�

dx2

�1� x2�F�x�

�
; (35)

where we denote:

 H�x; y� �
1� ���y

2�1�F�y�
A2�x�y�2

�2

2
:

Let us first notice that the C-metric, respectively, the
Taub-NUT metric are included as limiting cases in the
above solution. Indeed, taking �! 0 and C! 1 while
keeping the product C2� constant, after rescaling the time
coordinate with a constant factor we obtain the uncharged
C-metric solution. On the other hand, the zero-acceleration
limit is taken by performing the coordinate redefinitions
and scalings of the parameters:

 x � cos	; y � �
1

Ar
; �! A4�; t!

t
A
;

(36)

in the limit A! 0. It is readily seen that in this limit we
obtain the Taub-NUT metric.

To understand the properties of this solution it turns out
to be more convenient to consider the above metric in Weyl
form:6We also changed the notation z! t.
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ds2 � �e���dt� A’d’�
2 � e��e2��d�2 � dz2�

� �2d’2�;

e�� � e� 
2C2�

1� �e�2 ;

e2� �
�y2 � 1�F�y�
f�x; y�G�x; y�

;

(37)

where the canonical Weyl coordinates � and z are given by
(24) and the expressions of e� and e2� in terms of the
canonical Weyl coordinates are given in Appendix A. The
general analysis of the above metric can now be done in
parallel with the one corresponding to the uncharged
C-metric. In particular, we see that if we restrict the values
of m and A such that 0 	 2mA< 1, then, in order to
preserve the correct signature of the metric, the coordinates
�x; y� have to take the range:

 � 1 	 x 	 1; �
1

2mA
	 y 	 �1: (38)

Now, it is well known that, in Weyl cylindrical coordinates,
black-hole horizons correspond to rods on the symmetry
axis [11]. Our interpretation of the above solution as de-
scribing an accelerating NUT-charged black hole will rely
on the identification of such rods on the symmetry axis.

We will define the symmetry axis to correspond to � �
0, i.e. it is the z-axis. Using (24) one sees that it corre-
sponds to the four intervals: x � �1, x � 1, y � � 1

2mA
and y � �1. As we shall prove below, y � � 1

2mA corre-
sponds to the event horizon of the black hole, y � �1 is
the acceleration horizon, the line x � 1 is the part of the
symmetry axis between the event horizon and the accel-
eration horizon, while x � �1 is the part of the symmetry
axis joining up the event horizon with asymptotic infinity.

To this end, notice that the asymptotic region x � y �
�1 corresponds to z � �1, while the end-points of the
range of the coordinates �x; y� are mapped into z�x; y� as
follows:
 

z1 � z
�
�1;�

1

2mA

�
� �

m
A
;

z2 � z
�

1;�
1

2mA

�
�
m
A
;

z3 � z�1;�1� �
1

2A2 :

Note now that e��j��0 vanishes at all the above points
zi, i � 1::3, it is positive for z < z1 and z2 < z < z3

whereas both e��j��0 and e2�j��0 are zero for z1 < z <
z2 and z > z3. We may then follow a similar analysis with
the one performed in [21] to conclude that the regions z1 <
z < z2 and z > z3 are the Killing horizons of our acceler-
ating solution. One can also see this by noting that the
location of the horizons is given by the equation gyy � 0,
which in our case corresponds to the equation �y2 �

1�F�y� � 0. Furthermore, by computing the area of each
of the above horizons one can check that z1 < z< z2 has
finite area and it corresponds then to a black-hole horizon,
while z > z3 has infinite area and it corresponds to an
accelerating horizon. Indeed, using the C-metric coordi-
nates the area of the black-hole horizon is readily found to
be:

 AH �
Z 2�

0

Z 1

�1

���������������
g’’gxx
p

dxd’ �
8�m2

C
����
�
p
�1� 4m2A2�

:

(39)

while the area corresponding to y � �1 diverges.
Having determined that the above solution describes an

accelerating object, let us turn now to a consideration of the
‘‘cause’’ of the acceleration. The analysis of the conical
singularities proceeds exactly as in the case of the un-
charged C-metric. In particular, if we denote the periodic-
ity of ’ as �’, then along a portion of the axis where the
metric function e�� is positive, e�� > 0, the deficit of
conical angle will be given by7:

 � � 2�� �’e��j��0: (40)

Recall that if �< 0 one has an excess of conical angle and
this corresponds to a strut, if �> 0 one has a deficit of
conical angle that corresponds to a string, whereas if � �
0 there is no conical singularity on that part of the sym-
metry axis. Since in our case the function e2� is precisely
the same with the one corresponding to the uncharged
C-metric, we deduce that in general there is a conical
singularity residing in this solution and that, for appropri-
ate values of �’, it can be chosen to lie along z2 < z< z3

(i.e. x � 1) or z < z1 (i.e. x � �1). In particular we find:

 �x��1 � 2�� �1� 2mA��’: (41)

One can remove the conical singularity on the segment
z2 < z< z3 (i.e. x � 1) if one chooses �’ � 2�=�1�
2mA� but then there will be a positive deficit angle for z <
z1 (i.e. x � �1) and this can be interpreted as an semi-
infinite cosmic string pulling on the black hole.
Alternatively, for �’ � 2�=�1� 2mA� one can eliminate
the conical angle for z < z1 (i.e. x � �1) but then there
will be a excess of conical angle for z2 < z< z3 (i.e. x �
1). This is interpreted as a strut pushing on the black hole.
The strut continues past the acceleration horizon and con-
nects with the mirror black hole on the other side of it.8

Following the discussion in [16] let us consider next the
presence of torsion singularities. In general these appear
when the conical singularities possess a nonzero angular

7The measurement of the proper circumference and proper
radius must be performed in a frame for which the proper time
d� � dt� A’d’ � 0.

8The existence of the second black hole on the other side of the
acceleration horizon is obscured by the use of the Weyl
coordinates.
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velocity, signified by a nonvanishing ! � gt’=gtt along
the symmetry axis. As is apparent from metric written in
Weyl-Papapetrou form, near the symmetry axis �! 0 for
a nonzero value of ! the coordinate ’ will become a
timelike coordinate and this will lead to the apparition of
CTCs sufficiently close to the axis. In general, these CTCs
can be eliminated only when ! takes the same constant
value along the entire axis of symmetry as in that case it is
possible to perform a global coordinate transformation t!
t�!j��0’ to give a metric without such pathologies. For
our accelerating NUT solution we find that on the symme-
try axis � � 0:

 !jx��1 � �
2m
AC

; (42)

and therefore at the first sight there are unavoidable torsion
singularities associated with this metric. However, one can
still perform a coordinate definition tN � t� 2m

AC’ on the
line x � 1 respectively tS � t� 2m

AC’ near x � �1. Since
the coordinate ’ is periodic, this will introduce a period-
icity for the time coordinate. However, this is precisely
what is expected in the case of a NUT-charged solution
[22].

V. CONCLUSIONS

In this paper we constructed new solutions of the vac-
uum Einstein field equations in four dimensions via a
solution-generating method utilizing the SL�2; R� symme-
try of the dimensionally reduced action in three dimen-
sions. Our method was based on the simple observation
that a static axisymmetric metric as written in Weyl-
Papapetrou form exhibits a simple ‘‘scaling‘‘ symmetry
that allows one to generate a family of new static vacuum
axisymmetric solutions, indexed by a real parameter. In
particular, using this scaling symmetry one can easily
generate the Zipoy-Voorhees solution from the
Schwarzschild solution.

We also made use of a charging method for static
vacuum metrics, which dates back to Weyl [1]. We dem-
onstrated a simpler alternative derivation of this transfor-
mation by using a SL�2; R� symmetry of the reduced
Lagrangian in three dimensions. However, unlike previous
applications of this transformation, we showed that with
our simplified mapping and by combining this charging
method with the scaling property, one is able to generate
new vacuum stationary axisymmetric metrics. The
Lorentzian version of the generated solutions gives a
Zipoy-Voorhees-like generalization of the accelerating
Taub-NUT solutions, while the Euclidean version gives a
nontrivial two-parameter generalization of the Eguchi-
Hanson solitons in four dimensions. We focused our atten-
tion on a particular member of this family and we showed
that it describes the accelerated version of the Taub-NUT
space.

As avenues for further research, it would be interesting
to study in more detail the connection of the singular
charged C-metric that we obtained with the usual form of
the C-metric. In particular, it would be interesting to find a
proper dilatonic generalization of the accelerated Zipoy-
Voorhees metric, one that would reduce to the proper
charged C-metric in the appropriate limit.
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APPENDIX: THE WEYL FORM OF THE
ACCELERATING TAUB-NUT METRIC

Following Emparan and Reall [2] we introduce the
notation:

 �i � z� zi; Ri �
�����������������
�2 � �2

i

q
;

Yij � �2 � RiRj � �i�j:
(A1)

It can then be shown [2] that:

 

R1 � �1 �
�y2 � 1�F�x�

A2�x� y�2
;

R1 � �1 �
�1� x2�F�y�

A2�x� y�2
;

R2 � �2 �
�x� 1��y� 1�F�x�

A2�x� y�2
;

R2 � �2 � �
�x� 1��y� 1�F�y�

A2�x� y�2
;

R3 � �3 �
�x� 1��y� 1�F�y�

A2�x� y�2
;

R3 � �3 � �
�x� 1��y� 1�F�x�

A2�x� y�2
;

(A2)

while:

 Y12 �
�x� 1��y� 1��2mA� 1�2

2A4�x� y�2
;

Y13 �
�x� 1��y� 1�F�x�F�y�

2A4�x� y�2
; Y23 �

2F�x�F�y�

A4�x� y�2
:

Then the Weyl form of the uncharged C-metric corre-
sponds to the following expressions:

BRENDA CHNG, ROBERT MANN, AND CRISTIAN STELEA PHYSICAL REVIEW D 74, 084031 (2006)

084031-8



 

e� �
�R1 � �1��R3 � �3�

R2 � �2
;

e2� �
1

4�2mA� 1�2R1R2R3

Y12Y23

Y13

�R1 � �1��R3 � �3�

R2 � �2
;

(A3)

from which we can readily find e�� in (37). Finally,
expressing x in terms of � and z we find [16]:

 A’ �
1

C

�
�R1 � �1��R2 � �2�

R3 � �3
�

2m
A
F1 � F2

2F0

�
; (A4)

where:

 

F0 � 4m2AR1 �m�1� 2mA�R2 �m�1� 2mA�R3;

F1 � �4mR1 � 2m�1� 2mA�R2 � 2m�1� 2mA�R3;

F2 �
2m

A2 �1� 2m2A2�: (A5)

This completes the derivation of the Weyl-Papapetrou form
of the accelerated Taub-NUT solution.
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