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Previous evaluations of long range one-photon and one-graviton-loop corrections to the energy-
momentum tensor and the metric tensor describing spacetime in the vicinity of massive spinless and
spin 1=2 systems have been extended to particles with unit spin and speculations are confirmed concerning
universal properties of such forms.
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I. INTRODUCTION

In earlier papers, we described calculations of one-loop
corrections to the energy-momentum tensor of a charged or
neutral spinless or spin 1=2 particle of massm and focused
exclusively on the nonanalytic components of such results
[1,2]. This is because such nonanalytic pieces involve
terms with singularities at small momentum transfer q
which, when Fourier-transformed, yield long distance cor-
rections to the energy-momentum tensor, as well as—via
the Einstein equations—large distance corrections to the
metric tensor. This procedure is valid both in the charged
and neutral cases. In the former the corrections are due to
the one-photon-loop diagrams shown in Fig. 1 and are
straightforward. In the latter the corrections arise from
the one-graviton exchange diagrams shown in Fig. 2, but
while such graviton-loop corrections are in general non-
renormalizable, this feature is not an problem for the non-
analytic component which we study. Indeed such diagrams
do contain divergences, but these are ultraviolet infinities
and are confined to the short distance—large momentum
transfer—sector. The nonanalytic pieces are in the infrared
region and are associated with long distance—small mo-
mentum transfer—pieces of the amplitude. They are com-
pletely well defined and unique and must be reproduced in
any future successful theory of quantum gravity. In fact the
classical component of these corrections to T�� is gener-
ated by the classical electromagnetic or gravitational field
outside the massive system and must be the result of any
such calculation. This procedure of isolating robust fea-
tures of quantum gravity by excising the ill-defined short
distance sector while retaining the well-defined long dis-
tance component is the basic idea of the effective theory of
quantum gravity and has been developed in a series of
papers by various authors over the past decade [3].

A. Charged particle

In the case of a charged system having mass m and
charge e, for both the spinless and spin 1=2 field cases,
the longest range component of the T�� modifications
given by one-photon exchange is associated with the sim-
ple classical electric and magnetic fields outside an ele-
mentary charged system, but they are accompanied by

shorter range quantum corrections. Likewise the metric
was demonstrated to be modified from its simple
Schwarzschild form via terms proportional to G�, where
G is the gravitational constant and � � e2=4� is the fine
structure constant. Specifically, in harmonic gauge, the
metric for a spinless particle has the form
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(Note: the dependence on the arbitrary scale factor � can
be removed by a coordinate transformation.) The classi-
cal—@-independent—pieces of these �-dependent modi-
fications are well known and can be found by expanding
the familiar Reissner-Nordström metric, describing space-
time around a charged, massive object [4]. On the other
hand, the loop calculation also yields quantum mechani-
cal—@-dependent—pieces which are new and whose ori-
gin can be understood qualitatively as arising from
zitterbewegung [1].

(a) (b)

FIG. 1. Feynman diagrams having nonanalytic components.
Here the single wiggly lines represent photons while the double
wiggly line indicates coupling to a graviton.
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In the case of a spin 1=2 system the 00 and ij compo-
nents of the metric are identical to Eq. (1) but include a
factor �yf�i which vanishes if initial and final spins are
orthogonal. There exists, in addition a nonvanishing 0i
component of the metric, whose origin is the spin
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where ~S � �yF ~��i=2: Here the classical component of this
modification can be found by expanding the Kerr-Newman
metric [5], which describes spacetime in the vicinity of a
charged, massive, and spinning particle, and again there
exist quantum corrections due to zitterbewegung [1].

B. Neutral particle

In the case of neutral particles, for a spinless field the
metric arising from one-graviton exchange was shown to
be modified from its lowest order form by long distance
forms proportional to G2 —in harmonic gauge
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Again the classical—@-independent—pieces of these
modifications are well known and can be found by expand-
ing the familiar Schwarzschild (Kerr) metric, which de-
scribes spacetime around a massive (spinning) object [4].
On the other hand, the calculation also yields new quantum
mechanical—@-dependent—pieces.

In the case of a spin 1=2 system the 00 and ij compo-
nents of the metric are the same as those for spin 0 times
the factor �yf�i, which vanishes for orthogonal spins, and
there exists, in addition, a nonvanishing 0i piece of the
metric
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where the spin vector is ~S � �yf ~��i=2 as above. Here the
classical component of this modification can be found by
expanding the Kerr-Newman metric [5], describing space-
time around a neutral spinning mass and once again there
exist quantum corrections due to zitterbewegung.

C. A speculation

Based on the feature that the 00, ij components of both
the energy-momentum tensor and the metric were found to
have identical forms for both spin 0 and 1=2 up to a factor
which requires that the components of initial and final
spins be identical, it is tempting to speculate that the
leading 00, ij pieces of the metric about a particle of
arbitrary spin has a universal form. That universality is
true for the leading off-diagonal—spin-dependent—com-
ponent cannot be determined from a single spin 1=2 cal-
culation, but it seems reasonable to speculate that this is
also the case. However, whether these assertions are gen-
erally valid can be found only by additional calculation,
which is the purpose of the present note, wherein we
evaluate the nonanalytic piece of the energy-momentum
tensor for a spin 1 particle having massm—e.g., theW	 or
Z0 boson. We also make the connection with and examine
the universality issue for the metric tensor describing
spacetime around such a spin 1 particle.

In the next section then we briefly review the results of
the previous papers, and follow with a discussion wherein
these calculations are extended to the case of a massive
spin 1 particle. Results are summarized in a brief conclud-
ing section.

II. LIGHTNING REVIEW

Since it important to the remainder of this note, we first
present a concise review of the results obtained in our pre-
vious papers [1]. In the case of a spin 0 system having mass
m, the general form of the energy-momentum tensor is
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where P � 1
2 �p1 � p2� is the average momentum, while

q � p1 � p2 is the momentum transfer. The tree level

(a) (b)

FIG. 2. Feynman diagrams having nonanalytic components.
Here the doubly wiggly lines represent gravitons.
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values for these form factors are

 FS�0
1;tree � 1; FS�0

2;tree � �
1
2: (6)

In the case of a spin 1=2 system, again of mass m, there
exists an additional form factor—FS�1=2

3 �q2�—associated
with the existence of spin—
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and the tree level values for these form factors are

 FS�1=2
1;tree � FS�1=2

3;tree � 1; FS�1=2
2;tree � 0: (8)

A. Charged particles

Now consider the modification due to radiative (photon
loop) corrections in the case that the spin 0 or spin 1=2
particle is charged. As discussed in the introduction we will
retain only the leading nonanalytic pieces of such correc-
tions, since these are model-independent and determine the
long distance corrections to the energy-momentum tensor
and to the metric. Such nonanalytic pieces arise only from
Figs. 1(a) and 1(b) so we consider solely these diagrams.
Here we have defined
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we find, for spin 0 and 1=2, the results
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Such nonanalytic forms, which are singular in the small-q
limit, are present due to the presence of two massless
propagators in the Feynman diagrams [6] and can arise
even in electromagnetic diagrams when this situation ex-
ists [7]. Upon Fourier-transforming, the piece proportional
to S is found to give classical (@-independent) behavior
while the term involving L is found to yield quantum
mechanical (@-dependent) corrections.1 The feature that
the form factors F1�q

2 � 0� and F3�q
2 � 0� retain their

values of unity even when electromagnetic corrections are

included arises from the stricture of energy-momentum
conservation in the case of F1�q

2� and angular momentum
conservation in the case of F3�q2�. An intriguing implica-
tion of the latter result is the absence of any anomalous
gravitomagnetic moment. (Note that there exists no con-
straint on FS�0

2 �q2 � 0�.)
The universality of these radiatively corrected forms is

suggested by the identity of chFS�0
1;2 �q

2� and chFS�1=2
1;2 �q2�.

Of course, the spin-dependent gravitomagnetic form factor
chFS�1=2

3 �q2� has no analog in the spin 0 sector.
The connection with the metric tensor described in the

introduction arises when these results for the energy-
momentum tensor are combined with the (linearized)
Einstein equation [8]
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where we have defined

 g�� � ��� � h�� (11)

and
 T � TrT��: (12)

Taking Fourier transforms, we find—for spin 0
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while for spin 1=2 we find
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where the spin vector ~S is as defined above. Evaluating the
various Fourier transforms, we find the results quoted in
the introduction [9].

B. Neutral particles

If the system being considered is neutral the radiative
corrections found above vanish and the leading modifica-
tions to the energy-momentum tensor arise from graviton-
loop corrections. Again we emphasize that although such
quantum gravity corrections are themselves nonrenorma-

1The at first surprising feature that a loop calculation can yield
classical physics is explained in Ref. [6]
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lizable, meaning that the short distance effects are infinite
and ill-defined, the nonanalytic components, which give
rise to long range corrections, are entirely well defined and
robust—they must arise in any future theory of quantum
gravity. In this case the corrections arise from the diagrams
shown in Fig. 2(a) and 2(b) and have the form, for spin 0
and 1=2
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As found in the case of charged systems, and required by
energy-momentum and angular momentum conservation,
the formfactors neuF1�q

2 � 0� and neuF3�q
2 � 0� are un-

affected by loop corrections while there exists no such
restriction on neuF2�q

2�. Also, we confirm the universality
of the neutral system results via the identity of loop cor-
rections to the form factors neuFS�0

1;2 and neuFS�1=2
1;2 .

The connection with the metric tensor can now be found
by combining these corrections with the (linearized)
Einstein equation [8]. Taking Fourier transforms, we
find—for spin 0—the results
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while for spin 1=2
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Evaluating the various Fourier transforms, we find the
results quoted in the introduction [9].2

The purpose of the present note is to study how these
results generalize to the case of higher spin and thereby to
check our universality assumption. Specifically, we shall
examine the radiative corrections to the energy-momentum
tensor of a spin 1 system having mass m for both the
charged and neutral cases.

III. SPIN 1

A neutral spin 1 field 
��x� having mass m is described
by the Proca Lagrangian, which is of the form [10]
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4U���x�U���x� � 1

2m
2
��x�
��x�; (18)

where

 U���x� � i@�
��x� � i@�
��x� (19)

is the spin 1 field tensor.

A. Charged spin 1 interactions

If the particle has charge e, we can generate a gauge-
invariant form of Eq. (18) by use of the well-known mini-
mal substitution [11]—defining

 �� � ir� � eA��x� (20)

and
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the charged Proca Lagrangian density becomes
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Introducing the left-right derivative

 D�x�r
$
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the single-photon component of the interaction can be
written as
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so that the on-shell matrix element of the electromagnetic
current becomes

2Here the r-dependent corrections proportional to @ arise from
the graviton vacuum polarization correction, while those inde-
pendent of @ arise from corrections to the linear Einstein equa-
tion [1].

BARRY R. HOLSTEIN PHYSICAL REVIEW D 74, 084030 (2006)

084030-4



 

1�������������
4EfEi

p hpf; �Bjj�jpi; �Ai � �
e�������������

4EfEi
p 
2P���B � �A

� �A��
�
B � q� �

�
B��A � q�;

(25)

where we have used the property pf � ��B � pi � �A � 0 for
the Proca polarization vectors. If we now look at the spatial
piece of this term we find
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where we have used the result that in the Breit frame for a
nonrelativistically moving particle

 i�̂�B � �̂A � h1; mfj ~Sj1; mii (27)

which we recognize as representing a magnetic moment
interaction with g � 1. On the other hand if we take the
time component of Eq. (25), we find, again for the Breit
frame and a nonrelativistically moving system
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where the hat indicates the rest frame value, we observe
that
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which is the expected electric monopole term—any elec-
tric quadrupole contributions have cancelled [12]. Overall
then, Eq. (25) corresponds to a simple E0 interaction with
the charge accompanied by an M1 interaction with g-factor
unity, which is consistent with the speculation by
Belinfante that for a particle of spin S, g � 1=S [13].

Despite this suggestively simple result, however,
Eq. (18) does not correctly describe the interaction of the
charged W-boson field, due to the feature that the W	 are
components of an SU(2) vector field [14]. The proper
Proca Lagrangian has the form
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where the field tensor ~U���x� contains an additional piece
on account of gauge invariance
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with g being the SU(2) electroweak coupling constant. The
Lagrange density Eq. (31) then contains the term
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among (many) others. However, in the standard model the
neutral member of the W-triplet is a linear combination of
Z0 and photon fields [15]—
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Lagrangian
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which represents an additional interaction that must be
appended to the convention Proca result. In the Breit frame
and for a nonrelativistically moving system we have
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The first piece—Eq. (36)—constitutes an additional mag-
netic moment and modifies the W-boson g-factor from its
Belinfante value of unity to its standard model value of 2.
Using
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we observe that the second component—Eq. (37)—im-
plies the existence of a quadrupole moment of size Q �
�e=M2

W . Both of these results are established predictions
of the standard model for the charged vector bosons [16].

In fact, it has recently been argued, from a number of
viewpoints, that the ‘‘natural’’ value of the gyromagnetic
ratio for a particle of arbitrary spin should be g � 2 [17],
as opposed to the value 1=S from the Belinfante conjecture,
and we shall consequently employ g � 2 in our spin 1
calculations below.

B. Photon-loop corrections: Spin 1

Having obtained the appropriate Langrangian for the
interactions of a charged spin-1 system,
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we can now calculate the matrix elements which will be
needed in our calculation. Specifically, the general single-
photon vertex for a transition involving an outgoing photon
with polarization index � and four-momentum q � p1�
p2, an incoming spin one particle with polarization index
� and four-momentum p1 together with an outgoing spin
one particle with polarization index� and four-momentum
p2 is [18]
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� �gp2� � �g� 1�p1�������; (40)

while the two-photon vertex with polarization indices�, �,
an incoming spin one particle with polarization index �
and four-momentum p1 together with an outgoing spin one
particle with polarization index � and four-momentum p2

has the form [19]

 V�2��;�;���p1; p2� � �ie2�2���������������������:

(41)

The energy-momentum tensor connecting an incoming
vector meson with polarization index � and four-
momentum k1 with and outgoing vector with polarization
index � and four-momentum k2 is found to be [20]
 

hk2; �jT
�0�
��jk1; �i � �k1�k2� � k1�k2����� � k1��k2����

� k2����� � k2��k1���� � k1�����

� �k1 � k2 �m2�������� � �������

� ���
�k1 � k2 �m2���� � k1�k2��

(42)

and that between photon states is identical, except that the
terms in m2 are absent. The leading component of the on-
shell energy-momentum tensor between charged vector
meson states is then

 

hk2;�BjT
�0�
��jk1;�Ai� �k1�k2��k1�k2���

�
B ��A�k1

���B�k2��A��k2��A��k2

��A�k1���B��k1���B����k1 �k2�m2�

����B��A���
�
B��A��

����
�k1 �k2�m2���B

��A�k1 ���Bk2 ��A� (43)

and the focus of our calculation is to evaluate the one-loop
electromagnetic corrections to Eq. (43), via the diagrams
shown in Fig. 1, keeping only the leading nonanalytic
terms. Details of the calculation are outlined in the appen-
dix, and the results are

(a) Seagull loop diagram [Fig. 1(a)]

 

Amp
a��� �
L�

48�m

�
�A � ��B

�
2q�q� �

1

2
q2���

�
� �A � q��B � q��� � �A � q��

�
B�q�

� ��B�q�� � �
�
B � q��A�q� � �A�q��

� 2��A��
�
B� � �A��

�
B��q

2

�
: (44)

(b) Born loop diagram [Fig. 1(b)]

 

Amp
b��� �
�

48�m

	
�3P�P�q2��B � �A�8L� 3S� � 
�P��A� � P��A����B � q� �P��

�
B� � P��

�
B��A � q��

� q2�4L� 3S� � 
�A � q���B�q� � �
�
B�q�� � �

�
B � q��A�q� � �A�q���L

�

�
q�q��10L� 3S� � q2���

�
15

2
L� 3S

��
��B � �A � 2���B��A� � �

�
B��A��q

2L� . . .


: (45)

The full loop contribution is then

 

Amp
a� b��� �
�

48�m
f��B � �A
�q�q� � q

2���� � 3P�P�q
2��8L� 3S� � ��P��A� � P��A���

�
B � q

� �P��
�
B� � P��

�
B���A � q�q

2�4L� 3S� � . . .g: (46)

Because of covariance and gauge invariance the form of the matrix element of T�� between on-shell spin 1 states must be
expressible in terms of six independent form factors
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hp2; �BjT���x�jp1; �AiS�1 � �
ei�p2�p1��x��������������

4E1E2

p

�
2P�P��

�
B � �A

chFS�1
1 �q2� � �q�q� � ���q

2���B � �A
chFS�1

2 �q2�

� 
P����B��A � q� �A��
�
B � q� � P���

�
B��A � q� �A��

�
B � q��

chFS�1
3 �q2�

� 
��A���B� � �
�
B��A��q

2 � ���B�q� � �
�
B�q���A � q� ��A�q� � �A�q���

�
B � q

� 2����A � q��B � q�
chFS�1

4 �q2� �
2

m2 P�P��A � q�
�
B � q

chFS�1
5 �q2�

�
1

m2 �q�q� � ���q
2��A � q�B � q

chFS�1
6 �q2�

�
: (47)

Here chFS�1
1 �q2�, chFS�1

2 �q2�, chFS�1
3 �q2� correspond to their spin 1=2 counterparts chFS�1=2

1 �q2�, chFS�1=2
2 �q2�,

chFS�1=2
3 �q2�, while chFS�1

4 �q2�, chFS�1
5 �q2�, chFS�1

6 �q2� represent new forms unique to spin 1. (Note that each kinematic
form in Eq. (47) is separately gauge invariant.)

The results of the calculation described above can most concisely be described in terms of these form factors. Thus the
tree level predictions can be described via

 FS�1
1;tree � FS�1

3;tree � 1; FS�1
2;tree � FS�1

4;tree � �
1
2; FS�1

5;tree � FS�1
6;tree � 0; (48)

while the photon-loop corrected values are given by

 

chFS�1
1;loop�q

2� � chFS�1=2
1;loop �q

2� � chFS�0
1;loop�q

2� �
�

16�
q2

m2 �8L� 3S� � . . . ;

chFS�1
2;loop�q

2� � chFS�1=2
2;loop �q

2� � chFS�0
2;loop�q

2� �
�

24�
�8L� 3S� � . . . ;

chFS�1
3;loop�q

2� � chFS�1=2
3;loop �q

2� �
�

24�
q2

m2 �4L� 3S� � . . . ; chFS�1
4;loop�q

2� �
�

192�
q2

m2 �16L� 3S� � . . . ;

chFS�1
5;loop�q

2� �
�

384�
q2

m2 �64L� 9S� � . . . ; chFS�1
6;loop�q

2� �
�

192�
�64L� 15S� � . . . ;

(49)

and we note that these results confirm universality—
chFS�1

1;2;3;loop�q
2� as found for unit spin agree exactly with

the forms chFS�1=2
1;2;3;loop�q

2� found previously for spin 1/2 and
with chFS�0

1;2;loop�q
2� in the spinless case. The three ‘‘new’’

form factors chFS�1
4;5;6�q

2�, which have no analog for lower
spin systems are seen to be higher order and to have a
quadrupole structure, which presumably itself has a uni-
versality generalization to higher spin systems.

We verify that both chFS�1
1 �q2 � 0� � 1 and

chFS�1
3 �q2 � 0� � 1 as required by energy-momentum

and angular momentum conservation. Interestingly, the
form factors chFS�1

4 �q2� and chFS�1
5 �q2� are also unrenor-

malized from their tree level values and this fact has an
interesting consequence. Since, in the Breit frame and
using nonrelativistic kinematics we have

 

hp2; �BjT00�0�jp1; �Ai ’ m
	
�̂�B � �̂A

�
chFS�1

1 �q2� �
q2

2m2 F
S�1
2 �q2�

�
�

1

2m2 �̂
�
B � ~q�̂A � ~q

�
chFS�1

1 �q2� � chFS�1
2 �q2�

� 2
�

chFS�1
4 �q2� � chFS�1

5 �q2� �
q2

2m2 F
S�1
6 �q2�

��


� . . . hp2; �BjT0i�0�jp1; �Ai ’ �
1

2

��̂�B � �̂A� � ~q�iF

S�1
3 �q2� � . . . (50)

we can identify values for the gravitoelectric monopole, gravitomagnetic dipole, and gravitoelectric quadrupole coupling
constants
 

KE0 � mchFS�1
1 �q2 � 0�; KM1 �

1

2
chFS�1

3 �q2 � 0�;

KE2 �
1

2m

chFS�1

1 �q2 � 0� � chFS�1
3 �q2 � 0� � 2chFS�1

4 �q2 � 0� � 2chFS�1
5 �q2 � 0��: (51)

Taking Qg � m as the gravitational ‘‘charge,’’ we observe that the tree level values—

 KE0 � Qg; KM1 �
Qg

2m
; KE2 �

Qg

m2 (52)
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are unrenormalized by loop corrections—not only is there
no any anomalous gravitomagnetic moment, as mentioned
above, but also there exists no anomalous gravitoelectric
quadrupole moment.

Finally, we note that the metric forms are also universal
up to small (shorter distance) quadrupole corrections—

 

chgS�1
00 �r� �

chgS�0
00 �r� � �̂

�
B � �̂A;

chgS�1
0i �~r� �

chgS�1=2
0i � ~r�;

chgS�1
ij �~r� �

chgS�0
ij � ~r� � �̂

�
B � �̂A;

(53)

where in the case of spin 1 we use the spin vector
~S � i�̂�B � �̂A—cf. Eq. (27).

C. Spin 1 neutral particle

Using the simple Proca Langrangian Eq. (18), we can
calculate the matrix elements which will be required for
our graviton-loop calculation. Specifically, the general
single graviton vertex for a transition involving an out-
going graviton with polarization indices �� and four-

momentum q � p1 � p2, an incoming spin one particle
with polarization index � and four-momentum p1 together
with an outgoing spin one particle with polarization index
� and four-momentum p2 is

 

V�1��;�;���p1;p2�� i
�
2
f�p1�p2��p1�p2�����

����p1�p2��p1��p2�����p2�����

�p2��p1�����p1�����

��p1 �p2�m
2�

�����������������������g;

(54)

where � �
�������������
32�G
p

is the gravitational coupling, while the
two-graviton vertex with polarization indices �� and ��,
an incoming spin one particle with polarization index �
and four-momentum p1 together with an outgoing spin one
particle with polarization index � and four-momentum p2

has the form

 

V�2��;�;��;���p1;p2� � �i
�2

4
f
p1�p2������p1 �p2�m

2������������������������ ����
����p1�p2�

�p1�p2�� ����p1�p2�����p1�p2�����p1�p2�����p1�p2�� �p1 �p2�m
2�

� ��������������������
����p1�p2��p1�p2�� ����p1�p2�����p1�p2�����p1�p2�

����p1�p2�� �p1 �p2�m
2��������������������
����p1�p2��p1�p2�� ����p1�p2�

����p1�p2�����p1�p2�����p1�p2�� �p1 �p2�m2�����������������

����
����p1�p2��p1�p2�� ����p1�p2�����p1�p2�����p1�p2�����p1�p2�

� �p1 �p2�m2���������������������
����p1�p2��p1�p2�� ����p1�p2�����p1�p2�

����p1�p2�����p1�p2�� �p1 �p2�m2����������������� ����
����p1�p2��p1�p2��

����p1�p2�����p1�p2�����p1�p2�����p1�p2�� �p1 �p2�m2�����������������

� ����p1�����p1������p2�����p2�� � ����p1�����p1�����p2�����p2��

� ����p1�����p1������p2�����p2�� � ����p1�����p1������p2�����p2��g: (55)

We also require the triple graviton vertex function, which is given by [21]

 

�����;
��k; q� �
i�
2

	
P��;
�

�
k�k� � �k� q���k� q�� � q�q� �

3

2
���q2

�
� 2q	q�
I

	�;
��I

��;

� � I

	�;

�I

��;
��

� I	�;��I
��;


� � I
��;

��I
	�;


�� � 
q	q
�����I

	�;

� � �
�I

	�;
��� � q	q

�����I
	�;


� � �
�I
	�;

���

� q2����I��;
� � �
�I
��;

��� � �
��q	q�����I
�;	� � �
�I��;	��� � 
2q	�I��;��I
�;	��k� q�

�

� I��;��I
�;	��k� q�
� � I��;
�I��;	�k

� � I��;
�I��;	�k
�� � q2�I��;��I

�

�;� � I

�
��;�I

��;

��

� ���q	q��I��;	�I
��;

� � I
�;	�I

��;
���� �

�
�k2 � �k� q�2�

�
I��;��I

�

�;� � I

��;
��I

�

�;� �

1

2
���P��;
�

�

� �k2�
�I
��;

�� � �k� q�
2���I

��;

��

�

; (56)

where we have defined
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 I��;�� �
1
2������� � ������� (57)

and

 P��;�� � I��;�� �
1
2������: (58)

The final ingredient which we need is the harmonic gauge graviton propagator

 D��;���q� �
i

q2 � i�
P��;��: (59)

Again the leading piece of the spin 1 energy-momentum tensor is given in Eq. (47) but now the one graviton-loop
corrections are calculated via Fig. 2 and are found to have the form

(a) Seagull loop diagram [Fig. 1(a)]

 

neuFS�1
1;loopa�q

2��
GLq2

�

�
0�3�1�

1

2

�
�

3

2

GLq2

�
; neuFS�1

2;loopa�q
2��
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�
��5�2�2�4���
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�
;

neuFS�1
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2��
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�
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0�

3

2
�1�

1

2

�
�0; neuFS�1

4;loopa�q
2��

GLm2

�

�
0�1�1�

3

2

�
�

3

2

GLm2

�
;

neuFS�1
5;loopa�q

2��
GLm2

�
�0�3�0�0���3

GLm2

�
; neuFS�1

6;loopa�q
2��

GLm2

�

�
�5�

1

2
�0�3

�
��

5

2

GLm2

�
:

(60)

(b) Born loop diagram [Fig. 1(b)]
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�
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3
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2
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�
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6;loopb�q
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S
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S
�
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(61)

where we have divided each contribution into the piece which arises from the first four bracketed pieces of the triple
graviton vertex above.3

The full results of this calculation can then be described via:

3There exists no contribution to the nonanalytic terms from the pieces in the fifth bracket since the intermediate gravitons are
required to be on-shell.
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neuFS�1
1;loop�q

2� � neuFS�1=2
1;loop �q

2� � neuFS�0
1;loop�q

2� �
Gq2

�

�
�

3

4
L�

1

16
S
�
� . . .

neuFS�1
2 �q2� � neuFS�1=2

2;loop �q
2� � neuFS�0

2;loop�q
2� �

Gm2

�

�
�2L�

7

8
S
�
� . . .

neuFS�1
3 �q2� � neuFS�1=2

3;loop �q
2� �

Gq2

�

�
1

4
L�

1

4
S
�
� . . . neuFS�1

4 �q2� �
Gq2

�

�
11

8
L�

41

128
S
�
� . . .

neuFS�1
5 �q2� �

Gq2

�

�
1

4
L�

5

128
S
�
� . . . neuFS�1

6 �q2� �
Gm2

�

�
1

4
L�

43

128
S
�
� . . .

(62)

and we confirm universality in that neuFS�1
1;2;3;loop�q

2� as
found for unit spin agree precisely with the forms
neuFS�1=2

1;2;3;loop�q
2� determined previously for spin 1/2 and

with neuFS�0
1;2;loop�q

2� in the spinless case. It is also interest-
ing that the loop contributions to the new form factors
neuFS�1

4;loop�q
2�, neuFS�1

5;loop�q
2� which have no lower spin ana-

log, vanish to order q0 even though there exist nonzero
contributions from both loop diagrams individually. Of
course, the nonrenormalization of neuFS�1

1 �q2 � 0� and
neuFS�1

3 �q2 � 0�, required by energy-momentum and an-
gular momentum conservation, is obtained, as required,
meaning that, as noted above, there exists no anomalous
gravitomagnetic moment. Likewise we observe that, as in
the charged particle case there exists no anomalous grav-
itoelectric quadrupole moment, so this appears to be a
general result.

Finally, we note that the neutral particle metric forms are
also universal up to small (shorter distance) quadrupole
corrections—

 

neugS�1
00 �r� �

neugS�0
00 �r� � �̂

�
B � �̂A;

neugS�1
0i �~r� �

neugS�1=2
0i �~r�;

neugS�1
ij �~r� �

neugS�0
ij �~r� � �̂

�
B � �̂A;

(63)

where in the case of spin 1 we use the spin vector
~S � i�̂�B � �̂A—cf. Eq. (27).

IV. CONCLUSIONS

Above we have calculated the long distance one-loop
corrections to the energy-momentum tensor of a charged or
neutral spin 1 system, which arise from the presence of
nonanalytic pieces in such diagrams. We have confirmed
the universality which was speculated in our previous
work. In the case of the energy-momentum tensor we
have confirmed for both photon-loop or graviton-loop
contributions that

 FS�0
1;loop�q

2� � FS�1=2
1;loop �q

2� � FS�1
1;loop�q

2�;

FS�0
2;loop�q

2� � FS�1=2
2;loop �q

2� � FS�1
2;loop�q

2�;

FS�1=2
3;loop �q

2� � FS�1
3;loop�q

2�:

(64)

Likewise in the case of the metric tensor we found that, up
to small quadrupole corrections,

 gS00� ~r� � gS�0
00 � ~r� � hS;mfjS;mii;

gS0i�~r; ~S� � gS�1=2
0i � ~r; ~S�;

gSij� ~r� � gS�0
ij �~r� � hS;mfjS;mii;

(65)

where the spin vector ~S has the general form ~S �

hS;mfj ~SjS;mii. The universality in the case of the classical
(square root) nonanalyticities is not surprising and in fact is
required by the connection to the metric tensor and to the
classical form of the energy-momentum tensorand of the
metric tensor. In the case of the quantum (logarithmic)
nonanalyticities, however, it is not clear why these terms
must be universal. We also found additional higher order
form factors for spin 1, which also receive loop corrections.
It is tempting to conclude that this photon-loop and
graviton-loop correction universality holds for arbitrary
spin. However, it is probably not possible to show this by
generalizing the calculations above. Indeed the spin 1
result involves considerably more computation than does
its spin 1=2 counterpart, which was already much more
tedious than that for spin 0. Perhaps a generalization such
as that used in nuclear beta decay can be employed [22].
Work is underway on this problem and will be reported in
an upcoming communication.
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APPENDIX

In this section we sketch how our results were obtained.
The basic idea is to calculate the Feynman diagrams shown
in Figs. 1 and 2. Thus for Fig. 1(a) we find [23]
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while for Fig. 1(b) [23]
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with obvious generalizations for the one graviton-loop case shown in Fig. 2. Here the various vertex functions are listed in
Sec. III, while for the integrals, all that is needed is the leading nonanalytic behavior. Thus we use
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for the ‘‘bubble’’ integrals and
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for their ‘‘triangle’’ counterparts. Similarly higher order forms can be found, either by direct calculation or by requiring
various identities which must be satisfied when the integrals are contracted with p�, q� or with ���. Using these integral
forms and substituting into Eqs. (A1) and (A2), one derives the results given in Sec. III.
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