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We consider here scalar and electromagnetic perturbations for the Vaidya metric in double-null
coordinates. Such an approach allows one to go a step further in the analysis of quasinormal modes
for time-dependent spacetimes. Some recent results are refined, and a new nonstationary behavior
corresponding to some sort of inertia for quasinormal modes is identified. Our conclusions can enlighten
some aspects of the wave scattering by black holes undergoing some mass accretion processes.
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I. INTRODUCTION

The quasinormal modes (QNM) analysis is a paradigm
for the study of gravitational excitations of black holes. For
a comprehensive review of the vast previous literature, see
[1,2]. We stress that the QNM of black holes are also
experimentally relevant since they could, in principle, be
detected in a gravitational waves detector such as LISA
(see, for instance, [3] and references therein). The robust-
ness of QNM analysis has been established by considering
several kinds of generalizations, such as, for instance,
relaxing the asymptotic flatness condition [4–6] or con-
sidering time-dependent situations [7–9]. The case of
asymptotic anti–de Sitter black holes deserves special
attention due to its relevance to the AdS/CFT conjecture
[10–22].

The analysis of QNM for time-dependent situations is of
special physical interest since it is expect that a black hole
can enlarge its mass by some accretion process, or even
lose mass by some other process, including Hawking ra-
diation. The late time tail for a Klein Gordon field under a
time-dependent potential was first considered in [7], where
some influence of the temporal dependence of the potential
over the characteristic decaying tails was reported. Such a
kind of time-dependent potential arises naturally when the
Vaidya metric is considered [8,9]. The Vaidya metric,
which in radiation coordinates �w; r; �; �� has the form

 ds2 � �

�
1�

2m�w�
r

�
dw2 � 2cdrdw� r2d�2; (1)

where d�2 � d�2 � sin2�d�2, c � �1, is a solution of
Einstein’s equations with spherical symmetry in the eiko-
nal approximation to a radial flow of unpolarized radiation.
For the case of an ingoing radial flow, c � 1 and m�w� is a
monotone increasing mass function in the advanced time
w, while c � �1 corresponds to an outgoing radial flow,

with m�w� being, in this case, a monotone decreasing mass
function in the retarded time w. The metric (1) is the
starting point for the QNM analysis of varying mass black
holes.

In [9], massless scalar fields were studied on an electri-
cally charged version of the Vaidya metric. Basically, two
kinds of continuously varying mass functions were con-
sidered:

 m�w� �

8<
:
m1 w � w1;
m1f�w� w1 � w � w2;
m2 w � w2;

(2)

with f�w� � �1� �w� and f�w� � exp���w�, called, re-
spectively, linear and exponential models. Generalized
tortoise coordinates were introduced, and a standard nu-
merical analysis was done. The conclusion was that, as a
first approximation, the QNM for a stationary Reissner-
Nordström black hole with mass m�w� and charge q�w� �
q0m�w� are still valid, as if some stationary adiabatic
regime was indeed governing the QNM dynamics for
time-dependent spacetimes. In principle, one should not
expect such stationary behavior for very rapidly varying
mass functions; however, the analysis of [9] was not able to
identify any breaking of such an adiabatic regime. We
notice also that both linear and exponential models, in-
spired by some known exact solutions [23] for which
generalized tortoise coordinates could be explicitly con-
structed, would hardly correspond to physically realistic
cases. Both cases have C0-class mass functions, implying
the existence of some infinitesimal shell distributions of
matters for w � w0 and w � w1 whose interpretation and
role are still unclear.

We attack here the QNM problem by considering the
Vaidya metric in double-null coordinates [24]. The main
advantage of such an approach is the possibility of consid-
ering any (monotone) mass function, allowing, for in-
stance, the analysis of smooth mass functions that could
correspond to physically more relevant situations, free of
obscure infinitesimal matter shells. Furthermore, the use of
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double-null coordinates has improved considerably the
overall precision of the numerical analysis, allowing us
to identify the breakdown of the adiabatic regime, charac-
terized by the appearance of a nonstationary inertial effect
for the QNM in the case of rapidly varying mass functions.
Once the stationary regime is reached, the standard QNM
results hold, reinforcing, once more, the robustness of the
QNM analysis. Our results can be used as a first approxi-
mation to describe the propagation of small perturbations
around astrophysically realistic situations where black
holes undergo some mass accretion processes. We notice
that the nonstationary inertial effect presented here is in
perfect agreement with the nonlinear analysis preformed in
[25], which reported extra redshift effects on the QNM
frequencies due to the growth of the effective black hole
mass.

We organize this paper as follows. The next section is
devoted to a brief introduction of the semianalytical ap-
proach [24] for the Vaidya metric in double-null coordi-
nates. Section III presents the main issues and results of our
numerical analysis. The last section contains some closing
remarks.

II. THE VAIDYA METRIC IN DOUBLE-NULL
COORDINATES

Double-null coordinates are specially suitable for time-
evolution problems such as the QNM analysis. However,
the difficulties of constructing double-null coordinates for
nonstationary spacetime are well known. The Vaidya met-
ric is a typical example (see [24] and references therein).
Indeed, it is known that the problem of constructing
double-null coordinates for generic mass functions is not
analytical soluble in general [23]. The semianalytical ap-
proach proposed in [24] is the starting point for our analy-
sis here. It consists, basically, of considering the Vaidya
metric in double-null coordinates ab initio, avoiding the
need for constructing any coordinate transformation. The
spherically symmetric line element in double-null coordi-
nates is

 ds2 � �2f�u; v�dudv� r2�u; v�d�2; (3)

where f�u; v� and r�u; v� are smooth nonvanishing func-
tions. The energy-momentum tensor of a unidirectional
radial flow of unpolarized radiation in the eikonal approxi-
mation is given by

 Tab �
1

8�
h�u; v�kakb; (4)

where ka is a radial null vector. Einstein’s equations for the
case of a flow in the v direction can then be reduced to the
following set of equations [23,24]:

 f�u; v� � 2B�v�@ur�u; v�; (5)

 @vr�u; v� � �B�v�
�
1�

2m�v�
r�u; v�

�
; (6)

 h�u; v� � �4
B�v�m0�v�

r2�u; v�
; (7)

where B�v� and m�v� are arbitrary functions obeying,
according to the weak energy condition,

 B�v�m0�v� � 0; (8)

where the prime denotes the derivative with respect to v.
The solution of (5)–(7) will correspond to the Vaidya
metric in double-null coordinates, as one can interpret
from (3) and (4). For m0�v� � 0, the choice

 B � �1
2 sign�m0� (9)

allows one to interpret m�v� as the mass of the solution and
v as the proper time as measured in the rest frame at
infinity for the asymptotically flat case [23,24]. Note that,
if the weak energy condition (8) holds, the functionm�v� is
monotone, implying that the radial flow must be ingoing or
outgoing for all v. It is not possible, for instance, to have
‘‘oscillating’’ mass functions m�v�.

The semianalytical approach of [24] consists of a strat-
egy to construct numerically the functions f�u; v�, r�u; v�,
and h�u; v� from Eqs. (5)–(7), and to infer the underlying
causal structure. Equation (6) along the lines of constant u
is a first order ordinary differential equation in v. One can
evaluate the function r�u; v� at any point by solving the
v-initial value problem knowing r�u; v0�. The trivial ex-
ample of Minkowski spacetime (m � 0), for instance, can
be obtained [24] by choosing r�u; 0� � u=2. Once we have
r�u; v�, we can evaluate f�u; v� and h�u; v� from (5) and
(7). Further details of the method can be found in [24]. We
consider here the following smooth mass function:

 m�v� � m1 �
m2 �m1

2
	1� tanh��v� v1�
 (10)

where � and v1 are also constant parameters. For the sake
of comparison with the results of [9], we also consider a
linear model. Figure 1 depicts the causal structure corre-
sponding to the hyperbolic mass function (10) obtained
from the semianalytical approach. For positive � andm2 >
m1, for instance, it represents a black hole with mass m1

receiving a radial flux of radiation and, consequently,
enlarging continuously its mass until reaching m2. The
choice of the initial condition for solving (6) is a rather
subtle issue [24]. For our purposes here, we note only that
demanding @ur�u; v0� � 0 is sufficient to guarantee that,
for any m�v�, the underlying spacetime causal structure
does not depend on the initial condition r�u; v0�. For
constantm andB � �1=2, Eq. (6) can be easily integrated,
leading to

 r�u; v� � 2m lnjr�u; v� � 2mj �
v
2
� P�u�; (11)
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where P�u� is an arbitrary function of u. It is also possible
to solve Eq. (6) analytically for the linear and exponential
mass functions [23]. Equation (11) is our reference to
choose the initial conditions r�u; v0�.

III. SCALAR AND ELECTROMAGNETIC
PERTURBATIONS

In the coordinate system (3), for any desired form of the
mass function m�v�, the equations for scalar and electro-
magnetic perturbations can be easily put in the form [2]

 

@2 
@u@v

� V�u; v�f�u; v� � 0; (12)

where the potential V�u; v� is given by

 V�u; v� �
‘�‘� 1�

2r2�u; v�
� �

m�v�

r3�u; v�
; (13)

where � � 1 and � � 0 correspond, respectively, to the
scalar and to the electromagnetic cases. For a given mass
function m�v�, one first evaluates the functions f�u; v� and
r�u; v� with the semianalytical approach of the previous
section, and then the characteristic problem corresponding
to (12) can be solved with the usual second order character-
istic algorithm [2], where the initial data are specified
along the two null surfaces u � u0 and v � v0. Since the
basic aspects of the field decay are independent of the
initial conditions (this fact is confirmed by our simula-
tions), we use the Gaussian initial condition

  �u � u0; v� � exp
�
�
�v� vc�2

2�2

�
; (14)

and  �u; v � v0� � const. Our typical numerical grid is
large enough to assure that we can set effectively this last
constant to zero. After the integration is completed, the
values  �umax; v� are extracted, where umax is the maxi-
mum value of u on the numerical grid. Taking sufficiently
large umax, we have good approximations for the wave
function at the event horizon. Figure 2 presents an example
of  �umax; v� data for a hyperbolic increasing mass func-
tion and its comparison with the case of a Schwarzschild
black hole. Similar results hold if we extract the data for
other values of u. All the analysis presented here corre-
sponds to the data extracted on the horizon umax. Note that
the choice of umax is a matter of numerical convenience.
Since the QNM corresponds to eigenstates of an effective
Schroedinger equation [2], the associated complex eigen-
values can be read out anywhere once the asymptotic
regime is attained.

From the function  �umax; v�, one can infer the charac-
teristic frequencies ! of the damped oscillating modes.
Since the frequencies ! are themselves time dependent
(see Fig. 2), for a given v, !�v� is determined locally by a
nonlinear �2-fitting by using some damped cycles of  
around v. We perform an exhaustive numerical analysis for
many different mass functions m�v�. Figures 3 and 4
present the real (!R) and imaginary (!I) parts of the
frequencies of the perturbations as a function of v. They
correspond, respectively, to some decreasing and increas-
ing mass functions, and are typical for all values of ‘, all
kinds of perturbations (scalar and electromagnetic), and
different initial conditions. The imaginary part !I exhibits
similar time dependence, although its values are typically
known with lower precision than !R. This is not, however,
due to numerical errors in the integration procedure. In

FIG. 2 (color online). Values of the electromagnetic perturba-
tions  �umax; v� with ‘ � 2 for a Schwarzschild black hole with
mass m � 0:5 and for the Vaidya metric with the hyperbolic
mass function (10), where v1 � 75, � � 0:08, m1 � 0:5, and
m2 � 0:65 (Hyperbolic 3). One can clearly appreciate, for the
time-dependent case, the slowing down of the oscillation fre-
quency and damping taking place after v1.

r H
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u
−
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FIG. 1. Lines of constant u for the solution of (6) with the
hyperbolic mass function (10), with m2 >m1 and � > 0. All
solutions in the region below the line r � 2m�v� (the apparent
horizon) have r0 < 0, where the prime denotes the derivative
with respect to v. Any solution that enters into this region will
reach the singularity at r � 0 with finite v. On the other hand,
solutions confined to the r0 > 0 region always escape from the
singularity and reach I�. In the present case, there exists an
event horizon (the dashed line on the inserted conformal dia-
gram) close to the solutions rH�v�.

QUASINORMAL MODES FOR THE VAIDYA METRIC PHYSICAL REVIEW D 74, 084029 (2006)

084029-3



fact, the convergence of the second order characteristic
algorithm is quite good. For instance, the differences in
the calculated frequencies of Figs. 3 and 4, obtained by
using as integration steps �u � �v � 0:2, 0.1, and 0.05,
are smaller than the size of the points used in the figures,
and no difference is detected for even smaller steps. We
credit the irregularities observed for !I to the local
�2-fitting described above. For subcritical damped oscil-
lations such as the QNM considered here, the oscillation
frequencies !R can be easily determined from a few
damped cycles, while for the damping term !I one typi-
cally needs many more cycles in order to get a similar
precision. By taking a large number of cycles, we will tend
to smear the calculated frequencies, leading to some kind
of average and not to the desired instantaneous values. We
opt, then, to take as few as possible cycles, paying the price
of having some irregularities for !I.

Let us consider for a close analysis, for instance, the case
of decreasing m�v� (Fig. 3). For the rapidly varying cases
(Linear 2 and Hyperbolic 2), one clearly sees the inertial
effect for !R near v � 75. The function !R�v� does not
follow the track corresponding to m�1�v�, as one would
expect for a stationary adiabatic regime, and as it really
does for the Hyperbolic 1 case. After the rapidly increasing
phase, !R behaves as if it would have some intrinsic
inertia, reaching a maximum value that is bigger than
!R�1�, implying the relaxation corresponding to the re-
gion with !0R�v�< 0 for v > 75. We also notice that, for
the rapidly varying case, one could not detect sensible
differences between the smooth hyperbolic case and the
C0 linear one. Nevertheless, one can see that the slower
linear case (Linear 1) exhibits some inertial effects close to

the second matching point of m�v�. In all other regions, it
follows the track corresponding to m�1�v�. No appreciable
difference in the transients of scalar and electromagnetic
perturbations was detected. As we have already mentioned,
such transient inertial behavior could not be detected by the
QNM analysis done in radiation coordinates presented in
[9]. Analogous conclusions hold for the case of increasing
m�v� (Fig. 4). In fact, since the increasing mass functions
considered here can be obtained from the decreasing ones
by a time reversal m�v� ! m��v�, the underlying causal
structures are equivalent [24], and the corresponding QNM
are also related. Under a time reversal, the graph of !R

(and of !I) must be reflected on a horizontal axis.
We could infer from our numerical simulations the

situation corresponding to the onset of the QNM nonsta-
tionary inertial behavior. The deviation from the stationary
regime is measured by the second derivative of the mass

FIG. 4 (color online). The real (!R) and imaginary (!I) parts
of the frequency for electromagnetic perturbations with ‘ � 2 as
a function of v for increasing linear and hyperbolic mass
functions. For all the cases, m1 � 0:5 and m2 � 0:65.
Linear 3: v1 � 60, v2 � 90. Linear 4: v1 � 74:5, v2 � 75:5.
Hyperbolic 3: v1 � 75, � � 0:08. Hyperbolic 4: v1 � 75, � �
0:8.

FIG. 3 (color online). The real (!R) part of the frequency for
scalar perturbations with ‘ � 2 as a function of v for decreasing
linear and hyperbolic mass functions. For all the cases, m1 � 0:5
and m2 � 0:35. Linear 1: v1 � 60, v2 � 90. Linear 2: v1 �
74:5, v2 � 75:5. Hyperbolic 1: v1 � 75, � � 0:08.
Hyperbolic 2: v1 � 75, � � 0:8. The imaginary part !I has
similar behavior for the increasing mass case (Fig. 4); see the
text.
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function m00�v�. Heuristically, one should expect the ap-
pearance of nonstationary behavior when j1=m00j is smaller
than a certain characteristic time of the system, which
should prevent the system from relaxing into an adiabatic
regime. There are two characteristic times associated with
the QNM of black holes: the oscillation period 2�=!R and
the damping time j1=!Ij. The onset of the inertial behavior
is associated with the second one. We verify appreciable
deviations from the stationary regime whenever jm00�v�j is
of the same order (or larger) than j!Ij. For instance, for
Hyperbolic 2 and Hyperbolic 4 data sets (corresponding to
the inertial behavior depicted in Figs. 3 and 4) we have
jm00max=!final

I j � 25%, while for Hyperbolic 1 and
Hyperbolic 3 (the stationary behavior) such a ratio is 100
times smaller. Estimating the magnitude of the inertial
effect from our numerical simulations without an approxi-
mated analytical model seems to be much harder. Again
heuristically, one expects the magnitude of the effect to be
proportional to jm00j	, where 	 is the time interval along
which jm00j * j!Ij. We could check that the relative var-
iations in frequencies during the inertial behavior for the
smooth case are always limited by the ratio jm00=!Ij.
Further analytical work is certainly necessary to enlighten
this point. We finish by noticing that, for the C0 linear case,
jm00maxj is always large, increasing indeed with 1=�v, and
hence nonstationary inertial behavior is reported in all
simulations using the C0 linear data set. Since 	 is very
small in such cases (of the same order as �v), the magni-
tude of the inertial effects is also typically small.

IV. FINAL REMARKS

All situations we considered in the present work involve
mass functions corresponding to an initial black hole with
mass m1 undergoing some mass accretion or decrease
process and ending with a mass m2. Such an ‘‘asymptotic
Schwarzschild’’ choice assures us that the spacetime has
the usual black hole causal structure for v! �1 and,
consequently, that QNM can be defined in the usual way
and that the corresponding frequencies can be properly
compared. For all the cases considered, the inertial tran-
sients dissipate away and !�v� tends to follow the track of
m�1�v� rather quickly, confirming the robustness of the
numerical QNM analysis. The integration in double-null
coordinates has turned out to be much more efficient than
the integration in radiation coordinates [9], allowing us to
reach the precision necessary to unveil the reported non-
stationary behavior with quite modest computational re-
sources. Despite the fact that radiation coordinates are
known to be defective at the horizon [26], we believe
that numerical analyses such as those presented in [9] are
still confident since the QNM analysis is always concerned

with the exterior region of the black hole. However, as
confirmed by the present calculations, algorithms based on
the characteristic integration are typically more efficient by
far.

An interesting extension of this work would be the
analysis of the highly damped QNM (overtones, n > 0).
Since for such overtones the ratio j!I=!Rj is always larger
than for the n � 0 QNM considered here, including, for
sufficiently large n, cases for which j!I=!Rj> 1, it would
be interesting to check if the nonstationary inertial behav-
ior could somehow be attenuated for n > 0. We notice that
the numerical analysis presented here cannot be extended
directly to the n > 0 case since one cannot identify the n >
0 frequencies with sufficient accuracy. We believe this
could be attained, in principle, by means of the WKB
approximation.

Although the typical astrophysical situations of mass
accretion for black holes will hardly keep spherical sym-
metry intact during intermediate stages, our results can be
used as a first approximation for the scattering by these
sources since, as it is well known, after the transient
phases, the system should accommodate itself in a sta-
tionary spherical symmetric configuration. One must, how-
ever, keep in mind that nonstationary inertial behavior in
the QNM frequencies is expected to take place whenever
jm00j * j!Ij, rendering the analysis of the rapidly varying
situations a subtler task.

The evaporation by Hawking radiation could indeed be
considered as a physically genuine process where the black
hole mass decreases and spherical symmetry is maintained.
Our approach can be applied to this case, with some crucial
remarks about the causal structure of the spacetime left
behind after the evaporation [27].

We finish by noticing, as it is well known, that the
damped oscillations correspond to an intermediate phase
in the wave scattering by asymptotically flat black holes.
The very last final phase corresponds, indeed, to a power
law decay. In the problems considered here, the power law
tail typically appears for large values of v for which the
QNM already settled down in the stationary phase, with no
trace from the transients. We do not detect, in this case, any
influence of the time dependence of the potential in these
tails. There is no contradiction with the results reported in
[7]. This is a consequence of our choice of ‘‘asymptotic
Schwarzschild’’ mass functions, for which the correspond-
ing potential has no resemblance to the ones considered in
[7].
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