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Two-dimensional gravity with a dynamical aether
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We investigate the two-dimensional behavior of gravity coupled to a dynamical unit timelike vector
field, i.e. “Einstein-aether theory.” The classical solutions of this theory in two dimensions depend on one
coupling constant. When this coupling is positive the only solutions are (i) flat spacetime with constant
aether, (ii) de Sitter or anti-de Sitter spacetimes with a uniformly accelerated unit vector invariant under a
two-dimensional subgroup of SO(2, 1) generated by a boost and a null rotation, and (iii) a nonconstant
curvature spacetime that has no Killing symmetries and contains singularities. In this case the sign of the
curvature is determined by whether the coupling is less or greater than one. When instead the coupling is
negative only solutions (i) and (iii) are present. This classical study of the behavior of Einstein-aether
theory in 1 + 1 dimensions may provide a starting point for further investigations into semiclassical and

fully quantum toy models of quantum gravity with a dynamical preferred frame.
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Theories of gravity in two spacetime dimensions have
provided useful toy models for the investigation of issues
such as black hole evaporation and information loss, sin-
gularities, and the quantization of gravity, in a setting
where some of the technical problems that arise in four
dimensions are absent. In two dimensions the Einstein-
Hilbert action is topological, so something else must be
used. An early proposal was the Jackiw-Teitelboim model
[1], for which the equations of motion imply the metric has
a fixed constant curvature specified by a parameter in the
Lagrangian. A generalization of this idea is dilaton gravity
[2], which is a class of models that incorporates a scalar
field in addition to the metric. These theories possess no
local degrees of freedom, but there exist, for example,
black hole solutions [2—-6], and when coupled to matter
fields the theories acquire local dynamics.

Several approaches to and puzzles in quantum gravity
have suggested the possibility that Lorentz symmetry may
be broken either spontaneously or fundamentally by one or
more tensor fields with nonvanishing vacuum values [7-9].
Consistency with general covariance requires that such
fields be dynamical. The simplest object defining a locally
preferred frame other than a time varying scalar field is a
unit timelike vector field. General relativity coupled to
such a unit timelike vector is referred to as “Einstein-
aether (ae) theory.” In 3 + 1 dimensions this theory has
four free coupling parameters, and currently there remains
an interesting region of the parameter space for which the
theory agrees with all observations. For a review of the
history and status of the 3 + 1-dimensional Einstein-aether
theory as of 2004, see [10] and the references therein. A
more current brief review with further references is given
in the introduction of [11].
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In this paper we examine the two-dimensional version of
Einstein-aether theory. Our motivation is that this might
provide a manageable setting in which to study the possible
role of a preferred frame in aspects of quantum gravity. For
instance the problem of time in canonical quantization
could be addressed, and the intrinsic preferred frame would
allow the impact of Lorentz violation on black hole entropy
and evaporation to be studied in a dynamically consistent
framework. The two-dimensional case provides the sim-
plest context in which to begin examining these ideas. It
may also be relevant to the spherical reduction of the
higher dimensional theory.

A unit vector field in two dimensions has only 1 degree
of freedom, so in this respect is similar to a dilaton field.
Like the dilaton, the presence of the vector field renders the
theory nontrivial, but still with no local degrees of freedom.
However, Einstein-aether theory seems to provide a differ-
ent two-dimensional gravity model than any previously
considered. It possesses both constant and nonconstant
curvature solutions. Unlike the Jackiw-Teitelboim model
the constant curvature is not specified a priori by the
action. In this regard it is similar to two-dimensional
unimodular gravity [12], but unlike in unimodular gravity
the sign of the curvature scalar is determined by the action.
Also it has the unit vector field, which defines in each
solution a locally preferred frame. The gradient of a dilaton
field also defines a vector, and so we looked for a corre-
spondence between unimodular dilaton gravity and ae-
theory in two dimensions, but so far have not identified
any precise mapping between the theories.

I. 1 + 1-DIMENSIONAL ACTION

The action for Einstein-aether theory in n dimensions is

—1
a — n — + + a,b_
S[gab’u ’)\] 167TGfd XA/ g(R Lu /\(gabu u 1)),
(M
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where R is the Ricci scalar, A is a Lagrange multiplier
enforcing the unit timelike constraint on u#“, and the aether
Lagrangian is defined by

Lu = Cl(vaub)(vaub) + C2(vaua)2 + C3(vaub)(vbua)
+ C4(uavaub)(ucvcub)J (2)

where the c¢; are dimensionless coupling constants, and A
is a Lagrange multiplier. Here we use the signature
(+ — -+ —). This action includes all generally covariant
terms with up to two derivatives (not including total diver-
gences) that can be constructed from a metric and a unit
vector field.

In two-dimensional spacetime the variation of the
Einstein-Hilbert term ,/=gR is a total divergence. The
aether part of the action is nontrivial, but only two of the
terms are independent. To see this we express the covariant
derivative V u,, in the orthonormal basis {u¢, s9}, where s“
is a unit spacelike vector orthogonal to u®. It follows from
uu, = —s%, =1 and u, =0 that 0= u’V, u, =
sPV s, = ubV,s, + s’V u, everywhere. Using these re-
lations, we find that when the unit constraint is satisfied the
covariant derivatives take the form

V. u, = As,s, + Bu,s, 3)

V,s, = As,u;, + Bu,u,, 4)

where A and B are generically spacetime functions. Using
(3) we obtain

(Vaup)(Veu?) = A> — B, ®)
(Vaup)(VPu®) = A2, (6)
(Vu)? = A% (7

(uV ub)(ucV u,) = —B?, (8)
F,,F® = —2B? 9)

where F,, = V,u, — V,u,. These expressions may be
substituted into the Lagrangian (2) without changing the
equations of motion, since the Lagrange multiplier term in
the action (1) implies that the equations of motion are
equivalent to the condition that the action be stationary
only with respect to variations of u® that preserve the
constraint u“u, = 1. On the constraint surface the
Lagrangian is thus given by

Lu == C123A2 - C14Bz, (10)

where c1p3 = c¢; + ¢, + ¢3 and ¢4 = ¢; + ¢4. Using (7)
and (9) the Lagrangian can therefore be written, for ex-
ample, as

L, =3cuFF g, + c123(Vu®)?, (11)

without any loss of generality in the theory.
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If either cj4 or cjp; vanishes the theory is under-
deterministic. In particular, if cj53 = 0 then obviously
any metric and unit vector satisfying F,, = 0 obey all
the field equations with A = 0. If instead c¢;4, = 0 then
any metric and unit vector satisfying V,u? = 0 obey all
the field equations with A = 0. (In fact, these include all
solutions.) We thus assume in the remainder of this paper
that neither ¢4 nor c,3 is zero. The classical equations of
motion then depend only on the one combination ¢,3/c¢ 4
of the coupling coefficients.

The action can be further simplified by a field redefini-
tion of the form

8ap = &b + (0 — DNujuj, ut = o 2yle (12)
Here the coefficient o must be positive in order to preserve
Lorentzian signature. This redefinition preserves the gen-
eral form of the action given in (1), the overall effect being
only a change of the coupling constants,

S[gap u, cil = Slgey, u', cilci, o) (13)

The relation between ¢! and ¢; was found by Foster [13],
and is most usefully specified by certain linear combina-
tions that have simple transformation behavior,

cly = C1p (14)

oy = o e, (15)
chy=1=0"Yepz3 — 1), (16)
ch—cy—1=o0(c;, —c3—1). 17)

This result applies in any spacetime dimension. The c}
receive contributions from the R term in the action which
appear in (16) and (17) via the c;-independent terms.
However in 1 + 1 dimensions these contributions cannot
affect the equations of motion since as noted above the
variation of the R term is a total divergence. Indeed, the
Lagrangian (11) depends only on the two combinations ¢4
and cjp3 whose transformation has no c¢;-independent
terms.

Since ¢y, is invariant and cj,; simply scales by the
nonzero factor o~ !, no field redefinition will make one
of the terms in (10) or (11) vanish. On the other hand, the
choice o = c¢j3/c14 (which is allowed as long as it is
positive) will produce ¢}, = ¢},3, in which case using (5)
the Lagrangian may be reduced to just one term of the
original four-term Lagrangian (2),

Ly reduced = C/14(vaub)(va”b) = C/14(FabFab + (vaua)z)-
(18)
In terms of the new fields the classical equations of motion

are thus totally independent of the coupling parameters.
We shall obtain the solutions for the general case when
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C123/c1a is positive by applying the field redefinition to
solutions of this reduced theory.

II. FIELD EQUATIONS AND SOLUTIONS

In this section we will study the general two-
dimensional theory described by the action with
Lagrangian (11), to obtain the field equations and the
curvature of their solutions. The Lagrangian takes the form

L, = c14GF*F, + BV, u)?), (19)
where

B= C123/014- (20)

The equations of motion depend on the couplings only
through the combination B defined in (20). Varying with
respect to the inverse metric g% and the covariant aether
vector u, as independent field variables, we find the metric
field equation

FanFy"™ = 38asGF " Fap — B(V.u)* = 2Bu"V,,(V uc))
= 2Bu,Vy)Veut + Augu, =0 (21)

and the aether field equation
V,F"@ + BV4(V.u) — Au® = 0, (22)

where A is a rescaled Lagrange multiplier (cf. Eq. (1)).
These amount to three equations from (21) and two from
(22). The u® component of the latter determines A. Using
the expansion of the covariant derivatives (3) and (4) to
project out the various components of the field equations
we find that the remaining four equations are equivalent to

uA = f, sA =0, uB = 0, sB = Bf, (23)
where (for example) uA = u™V,,A, and
f= §(A2 - B7'B2). (24)

The Egs. (23) are extremely restrictive, and there are just
two types of solutions. In the first type both A and B are
constant and related by B> = BA? so that f = 0. In the
second type of solution the gradients V,A and V,B are
both nonzero and independent. In this case A and B may be
used as coordinates, so one can immediately write the
unique solution

u=fd, and s= Bfo, 25)

The inverse metric is given by g% = u“u® — s%s”, hence

for this solution the line element is
4

W=y

(B>dA? — dB?). (26)

The scalar curvature R completely characterizes the
curvature in two dimensions. Using the relation

R = 2u“(VbVa - Vavh)ub (27)
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which is valid in two dimensions, and making use of (3)
and (4), we find

R =2(B% — A% + uA + sB). (28)

When the field equations (23) are satisfied the scalar cur-
vature is thus given by

R=(B-DA2+(1- B "B (29)

The solutions with constant A and B thus have constant
curvature. Being two dimensional, they are therefore either
Minkowski, de Sitter, or anti-de Sitter space, and have
three independent Killing vectors. The solution (26) has
nonconstant curvature unless 8 = 1, in which case it is flat.
For B # 1 it can be shown that (26) has no Killing vectors.
For B > 1 the curvature scalar is positive, for 0 < 8 < 1 it
is negative, and for 8 < 0 it is indefinite.

In the case B8 < 0 the function f defined in (24) can only
vanish when both A and B vanish, hence the only solution
with constant A and B is the one with A = B = 0. In this
solution the metric is flat, and according to (3) the vector
field u“ is then constant. The only other solution in this
case is (25) and (26). The curvature scalar for this metric
with 8 <0 is zero on the lines |B| = |A|(1 — B)/(1 —
B~ "), negative for smaller |B|/|A| and positive for larger
|B|/]|A|. It vanishes at A = B = 0, which lies at infinite
distance diverging as 1/A on any non-null line A/B =
const. There is a curvature singularity as either A or B
goes to infinity, except on the lines where the curvature
vanishes, and the geodesic distance to this singularity is
finite.

In the next section we determine the nature of the
solutions for the special case 8 =1, and the following
section addresses the case 0<<fB # 1. Since the
Lagrangian with 8 > 0 can be reached by a field redefini-
tion from the 8 = 1 case, the solutions for general positive
[B can be obtained by field redefinition from the 8 =1
solutions.

III. B = 1: FLAT-SPACETIME SOLUTIONS

To find the solutions in the case 8 = 1, for which the
curvature vanishes, we adopt null coordinates (w, v), so

ds? = dwdv, (30)

u=Fo,+ F g, 31)

where F(w, v) is to begin with an arbitrary function. The
functions A and B defined in (3) and (4) are then given by

A=—-F,+F°F, B=F, +F7?F, (32

Using the field equations (23) with 8 = 1, we find that
uB + sA = 0 implies (logF),, =0, (u + s)(A—B) =0
implies F,, =0, and (u—s)(A+ B)=0 implies
(1/F) ,, = 0. It follows that the general solution is

F=(a+bw)/(c+ dv), (33)
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where a, b, ¢, d are constants. Thus there are four classes of
solutions for u“, corresponding to whether or not the con-
stants b and d vanish. Up to constant coordinate shifts and
opposite scalings of w and v (which preserve the
Minkowski metric (30)) these four solutions have (w, v)
components

(1, 1), (34)

(kw, (kw) ™), (35)
(kv)~!, kv), (36)
(w/v, (w/v)™"), (37)

where k is a constant with dimensions of inverse length that
sets a physical scale for the solution.

The first solution (34) is simply a constant vector field
covering the entire Minkowski spacetime. In this solution
A and B both vanish. The second and third solutions (35)
and (36) are equivalent to each other with the roles of w
and v reversed. For the solution (35) we use (32) to find
that A = —B = —k, so these are solutions of the type with
A and B constant. In the solution (35) the vector field u“ is
nonsingular in regions covering one-half of the flat
Minkowski manifold, either w >0 or w < 0. Along the
line w = 0 the vector u* becomes infinitely stretched in
order to maintain unit norm as it aligns with the null vector
d,. There is a similar divergence as w — *oco where u“
aligns with d,,. The flow lines of u“ are the level curves of a
function ® with u® = kw® , + (kw)~'® , = 0, which is
satisfied by ® = v + (k*>w)~!. Thus the flow lines are
given by

v+ (K2w)~! = const. (38)

These curves are hyperbolae, as can also be seen from the
fact that the acceleration vector u®d, u® is given in (w, v)
components by kwad,, (kw, (kw)~!) = (k>w, —w™!), which
has the constant squared norm —k>. A plot showing these
flow lines in a part of the Minkowski space is shown in
Fig. 1.

The solution (35) is further characterized by its symme-
tries. Being flat, the metric has two translational symme-
tries generated by the Killing vectors d,, and d,,, and one
boost symmetry generated by wd,, — vd,,. The vector field
u® is clearly invariant under 9d,, since its components
depend only upon w. It is also invariant under the boost
Killing vector: [wd,, — vd,, kwd,, + (kw)~'9,] = 0. The
commutator of these two Killing vectors that commute
with u is

[wa, —vd,, 9,] = 9. 39)
They generate a non-Abelian subalgebra of the Poincaré
algebra in 1 + 1 dimensions. This subalgebra is isomor-

phic to the algebra of the affine group A(1) of translations
and scalings in one dimension. It will reappear in the next
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FIG. 1. Plot of the flow lines of (35) in Minkowksi space with
Cartesian coordinates ¢ (increasing vertically) and x (increasing
toward the right). The u® field approaches the null vector 9,
along the line w = ¢t — x = 0, hence must be infinitely stretched
there in order to maintain the unit constraint.

section as a subalgebra of the 2 + 1-dimensional Lorentz
group when we relate this solution to a constant curvature
one via a field redefinition.

For the fourth solution (37) we again use (32) to find that
now

B=—-wl+vL (40)

These are not constant, so this solution corresponds to the
solution (25) and (26) with 8 = 1. Though not obviously
flat, this line element is evidently related to the Minowski
metric by the coordinate transformation (40). The vector
field u“ in this solution is singular on both lines w = 0 and
v = 0, and stretches infinitely as either v or w goes to
infinity. The solution is thus regular in any of the four
wedges (w>0,v>0), (w<0,v<0), (w>0,v<0),
and (w <0, v >0). The first two are related by time
reflection and the last two by space reflection, but the first
pair is physically distinct from the second pair. The flow
lines in this case are the level curves of a function ® with
ud = (w/v)®,, + (v/w)®, = 0, which is satisfied by
® = w~! — v, The flow lines are therefore given by

w™l —v™! = const. 41
These curves do not have constant acceleration. A plot
showing them in a part of the Minkowski space is shown
in Fig. 2. Unlike the previous case, this u? field commutes
with none of the Killing vectors of the flat metric.
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FIG. 2. Plot of the flow lines of (37) in Minkowksi space with
Cartesian coordinates ¢ and x. Here the aether is singular along
the linesw=¢t—x=0and v=1t+x=0.

This completes our analysis of the solutions in the
special case when the coupling constants satisfy 8 =1,
for which the metric is flat. Next we turn to determining the
solutions for general 8 > 0.

IV. 0 < 8 # 1 SOLUTIONS

To obtain the general solutions for the theory when 0 <
B # 1 we use the field redefinition (12) with o = S,

8ap = Map + (B — Dubuj,  ut = B2 (42)

If (5, u') is a solution to the theory with 8 = 1 then
(gap» u%) is a solution with arbitrary positive 8 = ¢23/¢14.
Conversely, every solution of the 8 # 1 theory can be
obtained in this way. We apply this method to the three
different types of solutions found in the previous section.

Under the field redefinition (42) the new line element is

ds? = (B — D) 2dw? + X B + Ddwdv
+ %(B — D)(u")*dv? (43)
and the new aether is
u= B 2w, + u"a,), (44)

where we use the same coordinates (w, v) to describe the
new solution as we used for the flat one. The determinants
of both the primed (flat) and unprimed metrics are constant
in these coordinates, hence we have V,u% = V! u% and
similarly for s¢, so using (3), (4), and (42) we find

A=pB"'24' and B=PR. (45)

PHYSICAL REVIEW D 74, 084027 (2006)
The curvature (29) of the new metric is therefore given by
R=(1—B"1(A” + B?), (46)

where A’ and B’ are those of the primed, flat solution
(which had 8 = 1).

For the constant vector field solution (34) the primed
metric components remain constant, as do those of the
aether, so after the field redefinition we still have the trivial
solution of a constant aether in a flat spacetime after the
field redefinition.

In the next two subsections we consider the solutions
obtained by field redefinition from the other two types of
solutions, first (37) and next (35) and (36).

A. Nonconstant curvature solution
Using (43) with the primed solution (37) we find

ds* = %(,8 — D(w/v)*dw?* + %(,8 + 1)dwdv
+1(B = D(v/w)*dv?. 47)

As we saw in (40) A’ and B’ are not constant for this u/,
hence according to (45) neither are A and B, so this
solution corresponds again to the nonconstant curvature
solution (26). The scalar curvature (46) of the new metric
(47) is given, according to (40) and (46), by

R=2(1-8NHw2+v72). (48)

As discussed in Sec. III, none of the flat-spacetime Killing
vectors commute with this /¢, from which it follows that
no Killing vector of g,;, could commute with #“. Moreover,
in fact g,, has no Killing vectors at all, as mentioned
previously.

When w or v vanishes the metric (47) has a curvature
singularity. In the same limits u? aligns with either 9,, or
d,, which are null vectors when respectively w or v equals
zero. Thus, for this solution, the scalar curvature becomes
singular exactly on the horizons where u“ must be infi-
nitely stretched. As in the flat case discussed above there
are two distinct regular solutions (up to time or space
reflection), corresponding to the coordinate ranges w, v >
0 or w <0, v > 0. Approaching the singularity at w = 0
along a line of constant w + v > 0, the distance diverges
logarithmically as logw. If instead we fix w/v and go out to
infinite values of w and v the curvature approaches zero,
and the distance diverges linearly in w. On the other hand if
we fix w and go out to infinite v the curvature approaches a
constant proportional to w~! and the distance diverges as
logv.

B. Constant curvature solutions

Under the field redefinition (42) the second type of
solution (35) produces the metric

ds? = X(B — D(kw) 2dw? + X(B + Ddwdv
+ i(ﬁ = 1)(kw)*dv? (49)
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FIG. 3. Conformal diagram of 1 + 1 dS spacetime with the
flow lines of the aether field. Horizontal lines at the top and
bottom represent null infinity, while the two vertical lines at the
left and right are identified. The solid and dashed gray lines form
the past and future horizons of the Killing horizon for the boost
symmetry under which the aether is invariant. The slope of the
flow lines is —B~'/2 on all boundaries of the diagram which is
drawn for the case g = 0.1.

and rescaled u*
u= B~ 2(kwa,, + (kw)~'a,). (50)

As mentioned in the previous section, (32) implies for the
primed solution A’ = —B’ = —k, so according to (45) this
solution corresponds to the general type with constants
A= —B 2k and B =k, and the scalar curvature (46)
of the primed metric (49) is

R =2(1 - B Hix 51)

The curvature is constant, so the geometry is locally that of
de Sitter (dS) for 0 < 8 < 1 and anti-de Sitter (AdS) space
for B > 1 (recall that we use the metric signature (+—), so
the scalar curvature for dS is negative while for AdS it is
positive). The nature of these maximally symmetric spaces
is well known, so to fully describe these solutions we need
only specify the behavior of the u“ vector field on the dS/
AdS background. This behavior is illustrated for the case of
de Sitter and anti-de Sitter spaces in Figs. 3 and 4. In the
remainder of this paper we explore the properties of this
solution.
First note that since

uv u, = u?(As,s, + Bu,s,) = ks, (52)

the magnitude of the acceleration of the flow of u¢ with
respect to g, is constant and equal to k, as is that of u’®
with respect to 7,;,. The coordinates w and v in (49) are not
null with respect to g, since the effect of the u/,u) con-
tribution to (42) is to narrow the light cones of the flat
metric when 0 < 8 <1 and widen them when B> 1.
However, 4, is a null vector when w = 0 and similarly
d,, is null when w — *o00. From (50), it is clear that u? is
singular on one of the dS/AdS horizons labeled by w = 0,
where it is infinitely stretched in order to remain unit
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FIG. 4. Conformal diagram of 1 + 1 AdS spacetime with the
flow lines of the aether field. The two vertical lines at the left and
right are at null infinity, and the diagram should be continued
infinitely in the vertical direction. The aether is regular in the
Poincaré patch bounded by the solid gray lines and null infinity.
The dashed gray lines are the rest of the boost Killing horizon.
The diagram is drawn for the case 8 = 10.

timelike as it approaches a null vector. It is also infinitely
stretched as w approaches *oo. The aether is thus regular
in either of the two coordinate patches w > 0 or w < 0. It is
not immediately clear to which regions of dS/AdS these
patches correspond. We shall address this shortly with the
help of new coordinates better adapted to the dS/AdS
metric, but first let us examine the symmetries of the
solutions.

1. Symmetries of constant curvature solutions

Constant curvature dS/AdS manifolds are maximally
symmetric and have three independent Killing vectors in
1 + 1 dimensions. In a flat 2 + 1-dimensional embedding
space these generate the boosts and rotation in the SO(2, 1)
or SO(1,2) symmetry group that preserves the dS or AdS
hyperboloid, respectively. Two-dimensional dS and AdS
are related by interchange of the spacelike and timelike
dimensions so the corresponding solutions are closely
related. We shall focus on the dS case here, and indicate
the corresponding results for AdS at the end.

In terms of the Minkowski coordinates X°, X!, X? of the
flat 2 + I-dimensional spacetime the generators of
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SO(2, 1) are the two boosts K; = X%9, + X'9, and K, =
X%9, + X?d,, and one rotation J = X'9, — X29,. These
form the Lie algebra with commutators

[Kl’ KZ] = J’

[J, Kl] = —K,, [J, Kz] = K.

(33)

We are interested in the subgroup under which also the
aether is invariant. The corresponding Killing vectors are
identical to the Killing vectors of 7,, that commute with
u', since Lym,, = Leu, =0 implies L.g,, = Leu, =
0. Their algebra is given by (39). These Killing vectors
must generate a two-dimensional non-Abelian subgroup of
SO(2, 1). The only two-dimensional non-Abelian subalge-
bras of (53) are generated by a boost and a null rotation, for
example

This coincides with the flat-spacetime algebra (39) dis-
cussed in Sec. III, and so reveals the geometrical nature
of the symmetry group of our solutions.

Acting with the null rotation J + K, as a differential
operator one sees that the combination X° + X! is invari-
ant. Thus, the flow lines of this null rotation on the hyper-
boloid are the intersections of null planes X° +
X' = const. with the embedded hyperboloid. We shall
now reexpress the dS solution in the “planar” coordinate
system adapted to the generator of null rotations. This will
help to illustrate the nature of the aether field in this
solution and exhibit which patch of dS is covered by a
nonsingular aether.

2. B < 1: de Sitter solution in planar coordinates

In planar coordinates (z, x) the unit dS hyperboloid
(X9)? — (X1)? — (X?)> = —1 is described by the embed-
dings

X° = —sinhr — x%¢,
X' = — coshr + jx?¢/, (55)
X% = xe!

[14]. Since X° + X' = —e¢’, lines of constant ¢ are the flow

lines associated with the null rotation discussed above. The
full range of ¢ in (—oo, o0) foliates half of the hyperboloid.
Using ds?> = (dX°)? — (dX")?> — (dX?)* with (55) the in-
duced 1 + 1-dimensional metric on the hyperboloid is
found to be

ds? = dr* — e*'dx>. (56)

In planar coordinates the null rotation symmetry generated
by 9, is manifest.
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The solution (49) has curvature scalar given by (51),
whereas the unit hyperboloid has curvature scalar —2.
Hence the two agree when units are chosen so that the
inverse length k is given by k = (8~! — 1)~'/2. Put differ-
ently, they agree in units with the “Hubble constant™

H=k(B ' -1 (57)

equal to unity. We now adopt such units for notational
brevity. The results can be written in arbitrary units by
inserting the appropriate powers of H to give each quantity
the correct dimension.

Under the coordinate transformation

w=¢é, (58)
v=2B""2x— (B + e’ (59)
the metric (49) (in units with H = 1) takes the planar form
ds? = dt* — e*dx?, (60)
and the aether (50) takes the form

u=(1-p)""a, - B2 9,). (61)

The flow lines of the aether are given by
x— \/,_B‘e” = const. (62)

The symmetries under which this aether is invariant are the
null rotation generated by the Killing vector d, and the
boost wd,, — vd, which in planar coordinates takes the
form d, — xd,. This is a combined time translation and
spatial contraction. In terms of the embedding coordinates
(55), the flow lines are given by the intersections of the
planes

X -JB _

5 X = const. (63)

with the de Sitter hyperboloid.

3. De Sitter solution in global coordinates

To further visualize how the aether flow behaves and
what part of de Sitter spacetime it covers in a nonsingular
manner, we transform to global Robertson-Walker coordi-
nates (7, ¢), which in two dimensions arise from foliating
the hyperboloid with circles. These are related to the
embedding coordinates X*12 of (55) via

X0 = sinhT,
X' = coshT cose, (64)
X2 = coshT sing,
and they yield the line element
ds* = dT?* — cosh*Td¢?. (65)

In these coordinates only the rotation symmetry generated
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by J is manifest. The ranges T € (—o0,00) and ¢ €
(—ar, ) cover the entire manifold.

If we introduce the new coordinate 7 via coshT = secr,
the metric takes the conformally flat form

ds* = sec’r[dr* — do?], (66)

and the finite range of 7 € (— /2, w/2) covers the entire
manifold. In these coordinates the flow lines (62) are given
by

sing — /B cosT

. = const. 67
cosg + sint

The flow lines are plotted in Fig. 3. The aether is regular in
the planar coordinate system, which covers the triangle
with solid gray edges. On these edges u“ becomes infi-
nitely stretched as it approaches a null direction. The solid
gray lines form the past horizon part of the Killing horizon
for the boost symmetry under which the aether is invariant,
while the dashed gray lines form the future horizon part.
The aether cannot possibly be regular at the bifurcation
points where the past and future horizons intersect, since
these are fixed points of the Killing flow hence a unit
timelike vector cannot be invariant there. (A similar cir-
cumstance occurs in the context of the 3 + 1-dimensional
black hole solutions in Einstein-aether theory [10,15].)
However, the aether is regular on the horizon to the future
of the bifurcation points. This solution therefore provides a
setting with a nonsingular aether flowing across a future
horizon.

4. B > 1: Anti-de Sitter solution

When 8 > 1 the curvature scalar (51) is positive, hence
(with our signature choice) the constant curvature solutions
for this theory correspond to anti-de Sitter space. In two
dimensions dS and AdS are exactly the same spacetime
locally, only with a reversal in the identification of what are
the timelike and spacelike directions. Rather than going
through the details we simply remark here that the aether
solution for the AdS case can be obtained from the dS case
by interchanging the planar ¢ and x coordinates. This leads
to the AdS metric in Poincaré coordinates, covering the so-
called “Poincaré patch,” and to the u“ field appropriate to
the AdS space. The flow lines of the aether are again given
in the embedding coordinates by (63), only now with 8 >
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1. In Fig. 3 we plot this flow and the Killing horizons in a
conformal diagram for AdS. To avoid closed timelike
curves we can pass to the covering space as is usually
done, in which case the diagram should be extended infi-
nitely in the vertical direction.

V. DISCUSSION

In this paper we have shown that the general Einstein-
acther action can be parametrized by two coupling con-
stants in 1 + 1-dimensional spacetime, and the classical
equations of motion depend only on one combination 3 of
these. Hence there is a one-parameter family of classical
theories. Using a field redefinition of the metric, we dem-
onstrated that for 8 > 0 the theory can be reduced to a
form involving only one coupling constant which does not
affect the classical solutions. The only solutions to this
reduced theory are a flat metric together with one of three
distinct types of solutions for the aether field. Via the
inverse field redefinition these produce all solutions for
the generic theory, namely, (i) flat spacetime with constant
aether, (ii) constant curvature spacetimes with a uniformly
accelerated u“ invariant under a two-dimensional symme-
try group generated by a boost and a null rotation, and
(iii) a nonconstant curvature spacetime that has no Killing
symmetries and contains singularities. The sign of the
curvature is determined by whether the coupling S is less
or greater than one. For 8 < 0 only the solutions (i) and
(iii) are present.

Unlike in dilaton gravity, there are no asymptotically flat
black hole solutions, although the de Sitter and anti-de
Sitter solutions possess Killing horizons that could allow
issues of black hole thermodynamics to be studied. This
classical study of the behavior of Einstein-aether theory in
1 + 1 dimensions may provide a starting point for further
investigations into semiclassical and fully quantum toy
models of quantum gravity with a dynamical preferred
frame.
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