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We show that the hierarchy between the Planck and the weak scales can follow from the tendency of
gravitons and fermions to localize at different edges of a thick double wall embedded in an AdS5

spacetime without reflection symmetry. This double wall is a stable BPS thick-wall solution with two
subwalls located at its edges; fermions are coupled to the scalar field through Yukawa interactions, but the
lack of reflection symmetry forces them to be localized in one of the subwalls. We show that the graviton
zero-mode wave function is suppressed in the fermion edge by an exponential function of the distance
between the subwalls, and that the massive modes decouple so that Newtonian gravity is recuperated.
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I. INTRODUCTION

The idea of confining our four-dimensional Universe
inside a topological defect embedded in a higher dimen-
sional spacetime dates at least as far back as the suggestion
of Rubakov and Shaposhnikov [1] (see also [2]) that we
could be living inside a domain wall. They showed that
fermions (of one chirality) can be confined to the wall by
their Yukawa interactions with the scalar field. Domain
walls are vacuum configurations that are topologically
protected and thus stable, but their gravitational interac-
tions cannot be ignored. This became evident after the
work of Randall and Sundrum [3], in which they showed
that the five-dimensional metric produced by an infinitely
thin brane is enough to ensure that Newtonian gravity is
reproduced on the brane.

Actually, the RS brane does not even have to be a true
domain wall, in the sense that no scalar field is needed for
the effect. One just has to ensure that the bulk spacetime is
anti-de Sitter (AdS), and on the brane the four-dimensional
cosmological constant is set to zero. The natural question is
then whether fermions can also benefit from this effect,
allowing us to live in a domain wall just because of its self-
gravitation. The answer is on the negative, as shown in [4]
fermion modes behave exactly opposite as the gravitons,
the warp factor forcing them to escape from the wall into
the bulk. If one wants matter to be confined to the wall, it is
necessary to combine the Rubakov-Shaposhnikov sugges-
tion with the Randall-Sundrum scenario, i.e., to consider a
real domain wall, made up of the vacuum expectation value
of a scalar field that breaks a discrete symmetry, take into
account its gravitational self-interactions, and make it
couple to the fermions. This amounts to solve the five-
dimensional coupled Einstein-Klein-Gordon system for an
adequate potential, and many such solutions can be found
in the literature. Among them, BPS walls, those where the
four-dimensional cosmological constant is set to zero, are
the most appealing ‘‘thick brane’’ generalizations of the
Randall-Sundrum scenario. BPS solutions to the Einstein-
Klein-Gordon system can be found by means of an auxil-

iary function of the scalar field, the fake superpotential of
the first-order formalism of [5–7].

The fact that fermion zero-mode localization requires
exactly the inverse warp factor as graviton zero-mode
localization, is used in this paper to provide a rationale
for the large hierarchy between the Planck and weak scales
in some particular thick wall solutions. These solutions are
a straightforward generalization of the simplest BPS wall
which represents a smoothing of the scenario of [3], found
by Gremm [8]. The generalization produces an asymmetric
double-wall system: a BPS wall with a substructure con-
sisting of two subwall located at its edges, but with differ-
ent bulk cosmological constants on both sides. As a
consequence of the asymmetry, fermions coupled to the
scalar field are forced by the warp factor to localize on one
of the subwalls, the fermion subwall. On the other hand,
the graviton zero-mode wave function is suppressed in the
fermion subwall by an exponential function of the wall’s
thickness, i.e. the distance between the subwalls, and grav-
itons localize in the opposite subwall, the Planck subwall.
This allows one to provide a large hierarchy between the
effective Planck masses on both subwalls, as proposed by
Randall and Sundrum in their earlier work [9] but with no
orbifold geometries and no negative tension branes.

Attempts to achieve suppressed mass scales with two
positive tension branes, the so-called Lykken-Randall sce-
nario [10], are found in the literature [11]. To our knowl-
edge, however, all of them require some form of radion
field in order to stabilize the extra dimension [12]. In our
case, the stability of the two wall system stems from their
topological properties, they are just a special kind of BPS
walls. The fact that no compactification of the bulk coor-
dinate is required allows us to reproduce Newtonian grav-
ity on the walls as in [3], while keeping a large mass
hierarchy as in [9]. Moreover, the fermions are not arbi-
trarily assumed to be located in a different wall as the
gravitons, they do so as a consequence of spacetime being
warped. In contrast with the scenario of [10], the fermion
subwall is not a ‘‘probe’’ brane, and it has a non-negligible
tension.
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The paper is organized as follows. In the next Section we
give an overview of the mechanism that provides stable,
asymmetric double walls from a known BPS solution, and
how fermions get localized on the brane with larger Planck
mass. The following section is dedicated to explicitly con-
struct these solutions from the simplest known BPS wall of
[8], to find the graviton and fermion zero modes, and to
calculate the Newtonian potential.

II. DOUBLE WALLS AND HIERARCHY

The so-called BPS double walls are solutions to the 5-
dimensional Einstein-scalar field set of equations that sat-
isfy the BPS condition. As such, for the line element
written in ‘‘proper length’’ coordinates

 ds2 � e2A������dx
�dx� � d�2; (1)

they can be generated from a ‘‘fake superpotential’’ W���
[5–7] by solving the BPS equations for the scalar field,
warp factor and scalar potential

 �0 � 3
dW
d�

A0 � �W

V��� �
3

2

�
3
�
dW
d�

�
2
� 4W2

�
;

(2)

where prime denotes derivative with respect to the bulk
coordinate �. BPS walls have a four-dimensional cosmo-
logical constant set to zero by fine-tuning the wall’s surface
energy density, therefore ��� in (1) is the Minkowski
metric.

For W��� given by

 W��� � ��sin��=�0��
2�1=s; (3)

with � and�0 real constants, solutions to (2) were found in
[13] representing a family of double branes parametrized
by an odd integer s > 1 that interpolate between AdS5

spacetimes. For s � 1, this is just the brane of Ref. [8],
i.e. a regularization of the infinitely-thin RS brane, but for
s > 1 the wall splits in two in a well defined sense: the
energy density has two maxima as can be seen in Fig. 1.
The fact that exponentiating the superpotential for a single
wall gives rise to double systems was also used in [14] to
construct BPS double walls. The topological charge is
given by the asymptotic values of the superpotential

 QT � W��1� �W��1� � 2�; (4)

and is independent of s, i.e., it is the same as in the single
wall.

We have then a stable wall with two subwalls, in which
the thickness of the subwalls goes to zero as s! 1, while
the separation between them remains fixed. The spacetime
far away of the wall is AdS5 with the same cosmological
constant (��) on both sides, while the spacetime in be-
tween the sub-branes is nearly flat, i.e.

 �� � �6�2; �in � 0: (5)

The gravitational zero modes are calculated as usual

  g0 � Nge
2A���; (6)

with Ng a normalization factor. Because the spacetime
between the two sub-branes is nearly flat, the zero modes
are not peaked at � � 0, but instead distribute smoothly
over the whole system [15], as seen in Fig. 1. A similar
behavior has been found for other BPS double branes [14].

Fermion modes of a given chirality can also be localized,
by adding as usual a Yukawa coupling � with the scalar
field [4]. One obtains

  f0 ��� 	 e
�2A���e��

R
����d�: (7)

The fermion zero modes for the system considered have
been calculated in [16], and can be seen in Fig. 1. Details of
the calculation are given in the next section, but the general
behavior will suffice for the time being.

Now, suppose the superpotential is shifted by a positive
constant

 

~W � W � �: (8)

According to (2), we will have the same solution for the
scalar field. Furthermore, since for the double wall (2) and
(3), the extrema of V��� are the same ones of W���, it
follows that the extrema of the new scalar potential ~V���
are the same ones of V���, namely � � 0 and � �
�	�0=2. Hence, the two subwalls are situated at the
same place as before. Notice that the topological charge
is the same. However, the cosmological constants are now
different at the two sides of the double wall and the space-
time in between the subwalls is no longer flat, one has

 �� � �6��� ��2; �� � �6��� ��2;

�in � �6�2:
(9)

-3 -2 -1 0 1 2 3

-20

-10

0

10

FIG. 1 (color online). Energy density (continuous), gravita-
tional zero mode (dashed) and fermion zero mode (dotted) for
the double branes with �> 0, � � 0, 
 � 4, s � 11, � � 4�,
and arbitrary normalization.
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Accordingly, the new warp factor is from (2)

 

~A��� � A��� � ��: (10)

As long as we keep �< �, the gravitational zero modes
remain localized, but now they are exponentially sup-
pressed for � > 0

 

~ g
0 	  

g
0e
�2��; (11)

so that the graviton zero-mode function gets shifted to-
wards the region with a smaller cosmological constant, i.e.
with ��.

Fermion modes behave in exactly the opposite way, they
are now

 

~ f
0 	  

f
0e

2��; (12)

so that they are shifted towards the larger cosmological
constant region, i.e. with ��. In other words, the gravitons
are localized on the sub-brane situated at ��, henceforth
the Planck brane, while the fermion zero modes do the
opposite, they live in the opposite sub-brane around ��, the
weak brane. The situation is depicted in Fig. 2.

The Planck masses in the Planck brane, MPlanck
Pl , and in

the weak brane, MWeak
Pl , are approximately related by

 MPlanck
Pl � MWeak

Pl e�2��; (13)

with � the inter-sub-brane separation. Since � here is a
coordinate-dependent quantity, Eq. (13) should be made
precise by calculating and comparing the gravitational
potential on both sub-branes, which we do in the next
section.

As the thickness of the sub-branes approaches zero, this
solution amounts to having a thick domain wall with two
infinitely-thin sub-branes, the Planck brane and the weak
brane, situated at different edges (in the transverse direc-
tion) of the wall. Clearly, the crucial role here is played by

the double-brane solution, for which BPS stability argu-
ments apply [6].

III. EXPLICIT SOLUTIONS

A. Double branes

Solutions to the system (2) with unshifted superpotential
(3) (i.e. reflection symmetry) have been found in [13] by
switching to the so-called ‘‘gauge’’ coordinates, where the
metric is written as

 ds2 � e2A�y����dx�dx� � e2H�y�dy2: (14)

The field equations can be integrated to give
 

H�y� � �
1

2s
ln
�

1�
�
�y



�
2s
�
; A�y� � 
H�y�

V��� � 3�2�sin��=�0��
2�2=s




�
2s� 4
� 1

2

cos2��=�0� � 2

�

��y� � �0 arctan
�
�y



�
s
; �0 �

�����������������������
3
�2s� 1�

p
s

: (15)

The parameter 
 gives the thickness of the wall. For s �
1, this is just the brane of Ref. [8], and it can be rigorously
shown that the distributional limit 
! 0 gives the RS
spacetime [17]. But for nonzero 
 and s > 1, the energy
density has two maxima, as can be seen in Fig. 1. Other
double-wall systems have been found in [14,18].

These walls have been studied in detail in a series of
papers, their thin wall limit 
! 0 in [13], localization of
gravity in [15] and of chiral fermion modes in [16]. For

 � 1, there is a normalizable zero mode and a continuous
of massive states that asymptote to plane waves as y!
�1. This continuum of modes decouple, in the sense that
they generate small corrections to the Newtonian potential
of the wall, at scales larger than the fundamental length-
scale of the system, ��1.

Let us consider the double domain wall (14) and (15) for
s� 1. The separation between the sub-branes, i.e. the
distance between the maxima of the energy density, is
given by

 � � 2


�

�
s� 1

s� 2


�
1=2s

; (16)

which behaves as 2
=� for s� 1, while their thickness �
is approximately given by

 �	
1

�


s

ln
�
s



�
�O�s�2�; (17)

from which follows that �	 0 for s� 1. Note that the
double wall is lost in the 
! 0 limit [13], as expected
from the fact that the distributional geometry 
! 0 may
be identified with the asymptotic behavior (i.e. far away
from the wall) of the domain wall spacetime [19].
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FIG. 2 (color online). Energy density (continuous), gravita-
tional zero mode (dashed) and fermion zero mode (dotted) for
the double branes with �> 0, � � 0:8�, 
 � 4, s � 11, � �
4�, and arbitrary normalization.
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Following [17], the distributional limit s! 1 of the
Einstein tensor is found to be
 

lim
s!1
�Ga

b ��gab� � �3��
�y� y�� � 
�y� y���


 �@adtb � @bxidx
i
b�; (18)

with � given by

 �
�

6
�

�
�2; jyj> 
=�
0; jyj< 
=�

: (19)

Hence for s� 1 we have two infinitely thin walls located
at y� � 
=� and y� � �
=�, with tensions �� � �� �
3�> 0. On the other hand, we find that the limit s! 1 of
the metric tensor gives the line element

 ds2 �

8><
>:
�


�y

�
2

��dt2 � dxidxi� �

�


�y

�
2
dy2; jyj> 
=�

�dt2 � dxidxi � dy2; jyj< 
=�
;

(20)

and the distributional Einstein tensor (18) turns out to be
the Einstein tensor of the limit metric (20).

B. Asymmetric double branes

Now shifting the superpotential as in (8) results in a
solution with

 

~H�y� � H�y� ~A�y� � A�y� � �yF �y�

~V��� � V��� � 6���� 2��sin��=�0��
2�1=s�

~��y� � ��y�;

(21)

where F �y� �2 F1�1=2s; 1=2s; 1� 1=2s;���y=
�2s� is
the hypergeometric function. For j�y=
j  1, i.e. inside
the double brane, and large s, 2F1 	 1 is a very good
approximation, although we have used the exact solution
whenever performing numerical integrations.

The equation for the gravitational zero modes is found as
usual. In the axial gauge h�y � 0, writing the transverse-
traceless part of the metric perturbations h�� as

 h�� � eip�xeH=2 ��; (22)

one obtains

 

�
�
d2

dy2 �U�y�
�
 �� � m2e�2 ~A�2H ��; (23)

with

 U�y� � e�2 ~A�H=2�e2 ~A�H=2�00: (24)

As usual, in order to get a Schrödinger-like equation, one
must change to conformal coordinates. However, from (23)
we see that the zero mode is normalizable

  g0 	 e
2 ~A�H=2; (25)

and since U ! 0 at jyj ! 1, there is no gap between the

massless and the massive modes. This can be seen by
writing U in terms of W

 U�y� � eH=2�e�H=2�00 � e2H
�

6
�
d ~W
d�

�
2
� 4 ~W2

�
: (26)

Clearly, shifting W by a constant does not change the
asymptotic behavior of U and the massive modes are
therefore expected to decouple [20]. The zero mode, in
proper length coordinates, is shown in Fig. 2. It follows that
the graviton zero mode gets localized on the subwall
located at the edge of the wall close to the region of smaller
AdS5 curvature, thus defining the Planck subwall. A simi-
lar localization of the graviton zero mode on a rather
different asymmetric double-wall system was found in
[18].

C. Adding fermions

Fermion confinement in the double walls (14) and (15)
was studied in [16]. In these coordinates, 5-dimensional
spinors coupled to the scalar field by a Yukawa term of the
form

 � �  � (27)

give confined chiral fermion modes on the wall

  f0 	 e
�2 ~A�y�e��

R
��y�eH�y�dy; (28)

for sufficiently large �. It was found in [16] that in general
thin walls require large Yukawa couplings, which in the
asymmetric case are bounded from below by the largest
cosmological constant, in order to confine fermions. For
the double-brane system (23), however, the Yukawa cou-
pling depends also on 
 and we get

 � >
2
�����������
j��j

p
3	

s�����������������������

�s� 1=2�

p : (29)

Therefore, the Yukawa coupling can be kept at reasonable
values if the thickness of the sub-branes � is decreased
(recall that �! 0 for s� 1) while the separation between
them (the brane thickness 	
=�) is increased.

The equation for the fermion zero modes was integrated
numerically, and results are given in Fig. 2. As argued
above, the fermion zero modes get located in the opposite
subwall to the Planck subwall, thus defining the weak
brane.

D. Newtonian potential

In order to have an effective four-dimensional gravity on
the weak subwall, we should demonstrate that the massive
graviton modes decouple. Before presenting the results for
the double-wall system, it is instructive to consider the case
s � 1, a single wall without reflection symmetry, with
different cosmological constants �� and �� on both sides.
A similar case was studied in [15] in the limit of a very
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small asymmetry. In the general case, the massive modes in
the small m=

��������
��

p
approximation are given by

  m � 
m5=2

�5=4
�

�
6m2

��
�

� ��������
��
��

s
� 1

��
�1
; (30)

with  of order one for any value of the parameters. In the
reflection-symmetric case �� � ��, this modes give the
well-known contributions to the Newtonian potential be-
tween masses separated by a 4-D distance r proportional to
1=r3. However, in the asymmetric brane the modes behave
as m5=2, and their contributions are proportional to 1=r7,
the equivalent of having 6 extra compact dimensions. We
expect that the double asymmetric walls exhibit a similar
behavior.

To calculate the contribution of the massless and mas-
sive modes to the Newtonian potential, we switch to con-
formal coordinates

 ds2 � e2A�z���dt2 � dxidxi � dz2�; (31)

and consider the s! 1 limit, i.e. the infinitely-thin sub-
wall idealization of (21). This limit is not as straightfor-
ward as (20) for the symmetric case (15), due to the
presence of the hypergeometric function in the warp factor.
However, it can be approximated by

 eA�z� �

8><
>:
�e��
=� � ��� ���z� z���

�1; z� < z
�cosh�
=�� �z��1; z� < z< z�
�e��
=� � ��� ���z� z����1; z < z�

;

(32)

with z� � ���1 sinh�
=�, 0<�< � and 
 > 0. For
�! 0 we obtain (20), the limit s! 1 of the symmetric
double wall (14) and (15), written in conformal
coordinates.

The Einstein tensor of (31) and (32) is given by

 Ga
b ��gab � ��@

adtb � @bxidx
i
b����
�z� z��

� ��
�z� z���; (33)

with � given in each region by (9) and where the sub-brane
tensions are�� � 3�e��
=� and�� � 3�e��
=�. Notice
that although this resembles the two positive tension three-
branes scenario of [10], in our case the two branes separate
AdS5 slices with different cosmological constants.
Furthermore, the weak brane is not a so-called probe brane
since its tension is not small (in fact, in proper length
coordinates both subwall tensions are equal).

Now, writing the transverse-traceless part of the metric
perturbations h�� as

 h���x; z� � eip�xeA�z�=2 g���z�; (34)

with h�z � 0, one finds that the gravitational modes  g��
satisfy the Schrödinger equation

 

�
�
d2

dz2 � VQM

�
 g���z� � m2 g���z�; (35)

where

 VQM � �e3A�z�=2�00e�3A�z�=2: (36)

For m2 � 0 the solution is

  g0 �z� � Ng
0e

3A�z�=2; (37)

with

 Ng
0 �

�
e2�
=�

2��� ��
�

e�2�
=�

2��� ��
�

1

�
sinh�2�
=��

�
�1=2

:

(38)

The massive modes of (35) are given by

  gm�z� � Ng
m

8><
>:
�k�1
� � jz� z�j�

1=2�Y2�m�k�1
� � jz� z�j�� � C�J2�m�k�1

� � jz� z�j���; z� < z
�k�1

0 � z�
1=2�AY2�m�k

�1
0 � z�� � BJ2�m�k

�1
0 � z���; z� < z< z�

�k�1
� � jz� z�j�1=2�Y2�m�k�1

� � jz� z�j�� � C�J2�m�k�1
� � jz� z�j���; z < z�

; (39)

where Y2 and J2 are the Bessel functions of order two,
k� � ��� �� expf��
=�g, k0 � ��cosh��
=����1 and
C�, C�, A, B are constants determined by the matching
conditions.

The contribution of the massive modes to the Newtonian
potential can be now calculated by expanding around
masses smaller than the smaller scale of the system, which
is of order �e��
=� (notice that the symmetric case � � 0
has to be treated separately). The normalized wave func-
tions for the massive modes in the weak and Planck branes
are found to be

  gm�z�� �
�
4

�
�
5

�
1�

�2

�2

��
1=2
�

m

�e��
=�

�
5=2

(40)

  gm�z�� �
�
4

�
�
5

�
1�

�2

�2

��
1=2
�

m

�e��
=�

�
5=2
e3�
=2�;

(41)

to leading order in e��
=�, were � are functions of � and
� of order unity. Here, in order to obtain the correct
normalization constant for the wave function of the mas-
sive modes, we have used two regulator branes with posi-
tions at �zr with zr > jz�j and taking the limit zr ! 1 at
the end of the calculation, extending to our two brane
system, as close as possible, the single brane treatment of
[21]. We can see that the modes behave as m5=2, as in the
single asymmetric brane, and therefore for r < rc the
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Newtonian potential behaves as in a scenario with six extra
dimensions.

The Newtonian potential in the weak brane is

 V��r� �
GWm1m2

r

�
1� 2

�

�
rc
r

�
6
�
; (42)

and in the Planck brane

 V��r� �
GPm1m2

r

�
1� 2

�

�
rc
r

�
6
�
; (43)

to leading order in e��
=�, where rc � ��1 exp�5�
=3��
and the four-dimensional gravitational constants are given
by

 GW
N �G5�N

g
0 �

2e�3�
=�; GP
N �G5�N

g
0 �

2e3�
=�: (44)

The ratio of the Planck masses on both branes is then

 MWeak
Pl =MPlanck

Pl � e3�
=�; (45)

and we can now refine our result (13). For MPlanck
Pl of order

TeV, we would get a Planck mass in the weak brane of
order 1019 GeV by setting

 

�
�

 ’ 12: (46)

IV. SUMMARY AND OUTLOOK

We have shown that the large hierarchy between the
Planck and the weak scales can be attributed to the ten-
dency of gravitons and fermions to localize at different
edges of an asymmetric double domain wall. The embed-
ding in a five-dimensional anti-de Sitter geometry which is
not reflection-symmetric determines which sub-brane is
the weak brane and which one is the Planck brane.
Fermions of one chirality are localized by their Yukawa
interactions with the scalar field, but the warped metric
forces them to live in a different wall than the gravitons,
without need for additional assumptions. By calculating
the massive mode contributions in this system, we have

shown that Newtonian gravity is recuperated in the subwall
where the matter is located.

The double-wall systems are straightforward general-
izations of single, reflection-symmetric BPS walls, and
while here we have considered the case of the simplest
one, the confinement of graviton and fermion zero modes
on different subwalls of the system is presumably generic
to other double solutions without reflection symmetry. The
generalization consists simply in taking a power of the fake
superpotential, and then adding a constant to it. Since the
double asymmetric walls are also BPS and therefore have a
topological charge (which is in fact the same as the original
wall), stability is guaranteed, and no additional fields or
stabilization mechanism are required. Fine-tuning of the
surface tension in order have a zero 4-D cosmological
constant is performed as usual.

While we believe this to be an interesting effect, many
questions would have to be answered before attempting to
use it as a solution to the hierarchy problem. For example, a
mechanism for confinement of the gauge fields would be
required, in particular, one that makes use of the fermionic
fields to achieve localization such as in [22] would be well-
suited, since then gauge fields will be confined to the
matter wall. Scalar fields are also a problem, since the
asymmetry drives them to the graviton’s wall, their modes
being proportional to the warp factor. An adequate cou-
pling with the wall’s scalar field could help. We hope to
address these issues in a future publication.
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Rafael Torrealba for enlightening discussions, and W.
Bietenholz for useful comments on the manuscript. This
work was supported by CDCHT-UCLA project No. 006-
CT-2005, by CDCHT-ULA project No. C-1267-04-05-A
and by FONACIT projects No. S1-2000000820 and F-
2002000426. A. M. thanks ICTP for hospitality during
the completion of this work.

[1] V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. 125B,
136 (1983).

[2] K. Akama, Lect. Notes Phys. 176, 267 (1982); Prog.
Theor. Phys. 60, 1900 (1978).

[3] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690
(1999).

[4] B. Bajc and G. Gabadadze, Phys. Lett. B 474, 282 (2000).
[5] K. Behrndt and M. Cvetic, Phys. Lett. B 475, 253 (2000).
[6] K. Skenderis and P. K. Townsend, Phys. Lett. B 468, 46

(1999).
[7] O. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karch,

Phys. Rev. D 62, 046008 (2000).
[8] M. Gremm, Phys. Lett. B 478, 434 (2000).

[9] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370
(1999).

[10] J. D. Lykken and L. Randall, J. High Energy Phys. 06
(2000) 014.

[11] P. Kanti, K. A. Olive, and M. Pospelov, Phys. Rev. D 62,
126004 (2000).

[12] W. D. Goldberger and M. B. Wise, Phys. Rev. Lett. 83,
4922 (1999); P. Kanti, K. A. Olive, and M. Pospelov, Phys.
Lett. B 538, 146 ( 2002).

[13] A. Melfo, N. Pantoja, and A. Skirzewski, Phys. Rev. D 67,
105003 (2003).

[14] D. Bazeia, C. Furtado, and A. R. Gomes, J. Cosmol.
Astropart. Phys. 02 (2004) 002; See also D. Bazeia, J.

GUERRERO, MELFO, PANTOJA, AND RODRIGUEZ PHYSICAL REVIEW D 74, 084025 (2006)

084025-6



Menezes, and R. Menezes, Phys. Rev. Lett. 91, 241601
(2003).

[15] O. Castillo-Felisola, A. Melfo, N. Pantoja, and A.
Ramirez, Phys. Rev. D 70, 104029 (2004).

[16] A. Melfo, N. Pantoja, and J. D. Tempo, Phys. Rev. D 73,
044033 (2006).

[17] R. Guerrero, A. Melfo, and N. Pantoja, Phys. Rev. D 65,
125010 (2002).

[18] R. Guerrero, R. O. Rodriguez, and R. Torrealba, Phys.
Rev. D 72, 124012 (2005).

[19] N. Pantoja and A. Sanoja, J. Math. Phys. (N.Y.) 46,
033509 (2005).

[20] C. Csaki, J. Erlich, T. J. Hollowood, and Y. Shirman, Nucl.
Phys. B581, 309 (2000).

[21] P. Callin and F. Ravndal, Phys. Rev. D 70, 104009 (2004).
[22] G. R. Dvali and M. A. Shifman, Phys. Lett. B 396, 64

(1997); 407, 452(E) (1997); For recent work and refer-
ences, see e.g. G. A. Palma, Phys. Rev. D 73, 045023
(2006).

HIERARCHY IN A DOUBLE BRANEWORLD PHYSICAL REVIEW D 74, 084025 (2006)

084025-7


