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Towards noncommutative quantum black holes
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In this paper we study noncommutative black holes. We use a diffeomorphism between the
Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to non-
commutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the
thermodynamics of the black hole, in particular, we calculate the Hawking’s temperature and entropy for

the noncommutative Schwarzschild black hole.
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I. INTRODUCTION

The search for a quantum theory of gravity has been a
long and difficult one; a direct quantization of general
relativity using the tools of quantum field theory gives a
theory with an ill ultraviolet behavior, and a lack of a
fundamental physical principle to construct the theory
makes matters worst. One can think that the black hole
plays a similar role in quantum gravity as the atom played
in the development of quantum mechanics and quantum
field theory. We may use it as a starting point for testing
different constructions that include quantum aspects of
gravity. Research on black hole physics has uncovered
several mysteries: Why is the statistical black hole entropy
proportional to the horizon area? What happens to the
information in black hole evaporation? The answer to these
questions and others have been extensively studied in the
literature particularly in the two main proposals to build a
quantum theory of gravity, namely, string theory [1], and
loop quantum gravity [2].

Since the birth of general relativity people started
searching for solutions to Einstein’s field equations and
very powerful and sophisticated methods have been devel-
oped. For some time it has been known that changing the
causal structure of space time (i.e. interchanging the coor-
dinates r < t), changes a static solution for a cosmological
one. The best known case is the Schwarzschild metric that
under this particular diffeomorphism transforms into the
Kantowski-Sachs metric [3]. This interchange of variables
has been used recently as a method to generate new cos-
mological solutions [4—6]. Later in an independent way in
[7,8], it has been suggested that by interchanging r < it we
can get time dependent solutions from stationary solutions
in string theory. In this way we may relate D p-brane (black
hole like) solutions to S-brane solutions, i.e. time-
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dependent backgrounds of the theory. On the other side,
there are proposals to obtain S-brane solutions [6,9-11];
thus, if cosmological solutions (S-branes) can be generated
from stationary ones (D p-branes), we can expect that this
procedure works the other way around.

In the past a lot of work has been done in relation with
cosmology and quantum cosmology [12,13], so one can
expect that the classical exchange of t < r can be applied
at quantum level, that is, use the WDW (Wheeler-DeWitt)
equation of the cosmological (time-dependent) models and
from it obtain the corresponding quantum equation for the
stationary ones.

In the last years, noncommutativity (NC) has attracted a
lot of attention [14,15]. Although most of the work has
been in the context of Yang-Mills theories, noncommuta-
tive deformations of gravity have been proposed [16,17]. In
[18], the Seiberg-Witten map is used consistently to write a
noncommutative theory of gravity, which only depends on
the commutative fields and their derivatives. If we attempt
to write down the field equations and solve them, it turns
out to be technically very difficult, due to the highly non-
linear character of the theory. In [19], an alternative to
incorporate noncommutativity to cosmological models has
been proposed, by performing a noncommutative deforma-
tion of the minisuperspace. The authors applied this idea to
the Kantowski-Sachs metric and were able to find the exact
wave function for the noncommutative model.

Further, we know that from quantum mechanics we can
get the thermodynamical properties of a system. This al-
ready has been used in connection with black holes [20]. In
[21] the authors use the Feynman-Hibbs path integral
procedure [22], to calculate the thermodynamical proper-
ties, temperature and entropy, of a black hole, in agreement
with previous results [23].

In this paper we apply some of these ideas to obtain
thermodynamical properties for a quantum black hole and
its noncommutative counterpart. We propose a quantum
equation for the Schwarzschild black hole, starting from
the WDW equation for the Kantowski-Sachs cosmological
model. We apply the Feynman-Hibbs method to calculate
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the thermodynamical properties. As we will show the
temperature of the black hole and its entropy get corrected,
one of the corrections to the entropy is a logarithmic
correction that already has been obtained by other means
[23]. We extend this procedure to include noncommutativ-
ity by making the same kind of ansatz as in [19], namely,
imposing that the minisuperspace variables do not com-
mute; from this we are able to define the WDW equation
for the noncommutative Schwarzschild black hole and
following a similar procedure as in [21], we find the non-
commutative wave function, the temperature and entropy
of the “noncommutative Schwarzschild black hole.” As we
will see apart of the presence of the factor e 3% that
multiplies the commutative entropy and temperature, the
functional form of the corrections are of the same kind. We
also show how the minisuperspace coordinate () is
changed by noncommutativity, allowing us to infer the
noncommutative entropy, if one uses the well-known
Euclidean calculation. The result agrees with the most
relevant term of the entropy calculated from the noncom-
mutative WDW equation and the Feynman-Hibbs proce-
dure followed here.

The paper is organized as follows: In Sec. II we exhibit
the WDW equation for the Schwarzschild metric and the
corresponding wave function. In Sec. III we review the
proposal of introducing noncommutativity in the minisu-
perspace and obtain the noncommutative Wheeler-DeWitt
(NC-WDW) equation for the Schwarzschild black hole. In
Sec. IV we use the Feynman-Hibbs method on the WDW
equation to calculate the entropy of the Schwarzschild
black hole, and apply the method to calculate the entropy
of the noncommutative black hole. And finally Sec. V is
devoted to conclusions and outlook.

II. AWHEELER-DEWITT EQUATION FOR THE
SCHWARZSCHILD BLACK HOLE

Let us begin by reviewing the relationship between
the cosmological Kantowski-Sachs metric and the
Schwarzschild metric [3]. The Schwarzschild solution
can be written as

2 2!
ds? = —(1 - —m>dt2 + <1 - —m> dr?
r

’
+ r2(d6?* + sin*0d ¢?). (1)
For the case r <2m, the g, and g,, components of the

metric change in sign and 9, becomes a spacelike vector. If
we make the coordinate transformation ¢ < r, we find

2 -1 2
ds? = —(Tm ~ 1) dr + (Tm - 1>dr2
+ 12(d6? + sin*6d ¢?), 2)

when compared with the parametrization by Misner of the
Kantowski-Sachs metric

PHYSICAL REVIEW D 74, 084024 (2006)
ds> = —N*di* + >3V dr?
+ e(—Z\/gV)e(—Z\/gQ)(dQZ + sinzﬁdgoz), (3)

we identify

M\
N =(Z=—1)
()

23y — 2_M_ 1,

t 4)
e~ 2By 230 — 2,

where this metric with the identification of the N, y, and ()
functions is also a classical solution for the Einstein equa-
tions. The metric (3) can be introduced into de ADM
(Arnowitt-Deser-Misner) action and a consistent set of
equations for N, vy, and () can be obtained by varying
the action. These equations can be shown to be equivalent
to the Einstein equations. The corresponding Wheeler-
DeWitt equation for the Kantowski-Sachs metric, with
some particular factor ordering, is

% o

The solution of this equation is given by [24]
P, = =YK, (dem R, (©6)

where v is the separation constant and K, are the modified
Bessel functions. In [25] it has been shown that this wave
function describes quantum planck size states.

III. NONCOMMUTATIVE QUANTUM
COSMOLOGY AND THE QUANTUM BLACK
HOLE

The noncommutative deformation for this cosmological
model has been proposed in [19]. We begin by modifying
the simplectic structure in minisuperspace, by assuming
that the coordinates () and y obey the commutation rela-
tion

[Q, y] =i, (7
in a similar fashion as in noncommutative quantum me-

chanics. As usual this deformation can be reformulated in
terms of the Moyal product

£, y) # g(Q, y) = F(Q, y)el®/D(Fas,=0,d0) (0, ).
)

Now the Wheleer-DeWitt equation for the noncommuta-
tive theory will be

[—P} + P2 — 48723 (Q, 9) = 0. (9)

As is known in noncommutative quantum mechanics, the
original phase space is modified. It is possible to reformu-
late in terms of the commutative variables and the ordinary
product of functions, if the new variables ) — () + %0Py
and y — vy — %QPQ are introduced. The momenta remain
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the same. As a consequence, the original WDW equation
changes, with a modified potential V(£2, y) [26],

V(Q, y) = p(Q, y) = V<Q _0

0
Pyt 5P9>¢(9, ),

(10
so the NC-WDW equation takes the form

R
+ — + 48e(72BLHVIP) (), ) = 0. (11
|~ 5an+ 48 2 e,y =0, an
We solve this equation by separation of variables with the
ansatz

P(Q, y) = V37 x(Q), (12)

where /3 is the eigenvalue of P.,. Thus x({) satisfies the
equation [19],

d*
[ PToE 48e(2V30H0) — 3,2 }((Q) =0. (13)

The solution of the NC-WDW equation is
Pu(Q, y) = eVIVE [dem PO (14)

In [19] the consequences of this wave function have been
analyzed. As a result of noncommutativity the probability
density has several maxima, which correspond to new
stable states of the Universe, opposite to the commutative
case where only one stable state exists. Following the
previous section, this wave function could describe non-
commutative quantum black holes. We can find the non-
commutative temporal evolution of ) and 7y through a
WKB type method; this yields the classical noncommuta-
tive solutions of the Kantowski-Sachs universe [27,28].

IV.NONCOMMUTATIVE BLACK HOLE ENTROPY

In this section we compute the temperature and entropy
for the black hole using the Feynman-Hibbs procedure for
statistical mechanics, and then we apply it to the non-
commutative black hole.

Following Sec. II, we consider Eq. (5). This equation
depends on two variables (£}, y), but after the separation of
variables we have (), y) = eV3"? y(Q). Thus, the de-
pendence on the variable vy is the one of a plane wave and is
eliminated when computing the thermodynamical observ-
ables. Therefore, we could consider this as a suitable
approach for the black hole, described by the following
equation:

2

[— 44 Zﬁﬂ}((ﬂ) =320(Q).  (15)
dQ?

Now that we have this quantum equation, we can use the

Feynman-Hibbs procedure to compute the partition func-

tion of the black hole. This procedure has the advantage

that the relevant information is contained in the potential
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function
V(Q) = 48e V3, (16)

This exponential potential can always be expanded, in
particular, the calculations are simplified for small ().
After expanding to second order in (), we make the change

of variable @ = /60 — 1/+/2, multiply Eq. (15) by %,
and finally rename o = 7. We get the familiar form,

[ lop & 4B }(x) [42—2}(()0. (17)

2P dx 2 12
When comparing with the usual harmonic oscillator we
identify hw = &EW in order to obtain the correct

Hawking temperature for the black hole [29].

Further, the Feynman-Hibbs procedure allows us to in-
corporate the quantum corrections to the partition function
through the corrected potential, which results in [22]

U(x )—4 2 [x /3112 } (18)

Thus, the corrected partition function is given by

3 o~ (BE}/16m)
Zop = |7, (19)
Q

27 BE,

from which we can proceed to calculate the thermodynam-
ics of interest. The internal energy of the black hole is

_ 9 1 1
E=——1InZ,=—BFE:+—= Mc%. 20
8,8n 9 87TB p B ¢ ( )

Solving for B in terms of the Hawking temperature By =

8mMc?
2
Ep

o= [ sl 1= 5]

21

, the corrected temperature of the black hole is

In order to calculate the entropy we use
= InZ, + BE, (22)

from which we arrive to the corrected entropy. In terms of
the Bekenstein-Hawking entropy St — 477'("”—0)2 =2

41%’
the black hole entropy takes the 51mple form,
S _Ssu_ 1. [Sgu
—=——=In + O(S 23
L il R S

This result has the interesting feature that the coefficient of
the first correction, the logarithmic one, agrees with the one
obtained in string theory [30] as well as in loop quantum
gravity [31]. The form of this correction had been known
already from other works [23], where it was obtained by
other considerations.
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In order to calculate the thermodynamics of the non-
commutative black hole, we follow the same method as
before, and we start by considering Eq. (13). A straightfor-
ward calculation, using the same steps as in the commuta-
tive case, shows that Eq. (13) can be cast to the simple
expression,

1 d? E
(——12E + 4—pe3”9x2>)((x)

27 TR
2
= E,,(Z - 2€3V0>X(x). (24)

Thus noncommutativity gives a modified version of
Eq. (17), with modified potential

E
Vnelx) =4 1—2” eix?, (25)
p

and a ‘““frequency,”

[3
hwne = ﬁEpe”e/Q, (26)

which coincides with the commutative case for 8 = 0.
Now we can directly apply the Feynman-Hibbs method
to Eq. (24) and obtain the corrected partition function,

277.6—(31/0/2) B2E2€3V9
Zne = | —exp( - 22 )@
NC 3 BE, exp< Tom ) 27

from which we calculate the temperature of the noncom-
mutative black hole in terms of the commutative Hawking
temperature,

1 e3v0
— —3v0
= Bye 1—— . 28
B=pue 1= 5 1] 28)
If we define the noncommutative Hawking temperature
NC = Bue 3", the black hole temperature takes the
same form as in the commutative case,

11

— pgNcl 1 —
B =By [1 B W} (29)
The entropy is calculated following the previous steps. If
we define the noncommutative Hawking-Bekenstein en-

tropy as Sxcgu = Spue 7Y, we get

Sxe S 1 s _
% = —NEBH -3 h{ NZBH} + O(Sndpy)- (30)

It has the same form as the commutative case; again the
logarithmic correction to the entropy appears with a —%
factor. Also it is clear that we get the commutative entropy
in the limit 8 — 0.

We may infer some properties for the temperature and

entropy, using Eq. (4), we arrive to

(1 — e 237)e 37,30 — oy, 31
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We can construct a similar expression for the noncommu-
tative metric by replacing the functions vy, ), and the mass
parameter M by their noncommutative counterparts [28]
Ynes Ones and Myce. To relate the noncommutative theory
with the commutative one, we substitute the classical
solutions from [27,28] in Eq. (31) and in its noncommuta-
tive version. From this we can find a simple relationship

between the masses Myc = M 3Py From the relation

between the temperature and entropy and the mass of the
black hole [32], we arrive to

V30P,,

(32)

\/§0P70’

Bneeu = Baue Snxcea = Sue

Thus, we have the same behavior for the noncommutative
temperature and entropy as in (29) and (30).

V. CONCLUSIONS AND OUTLOOK

Black holes are natural candidates to probe aspects of
quantum gravity, in particular, noncommutative effects.

In principle, in order to study noncommutative black
holes, we would require a noncommutative version of
general relativity, and then solve its field equations to
find the noncommutative metric. This is a very difficult
task.

However, it is possible to circumvent these difficulties as
we show in this paper. With this idea in mind, we have
extended the proposal of noncommutativity in [19] to the
Schwarzschild black hole by using the diffeomorphism
between the Kantowski-Sachs and Schwarzschild metrics.
The corresponding NC-WDW equation is used as the
quantum equation for the noncommutative black hole.

We use the Feynman-Hibbs formalism to calculate the
thermodynamics of the Schwarzschild black hole and ob-
tain the Hawking-Bekenstein temperature and then the
entropy which has the logarithmic correction with the
coefficient —1/2. This value has been recently predicted
by string theory [30] and loop quantum gravity [31].

Finally, these ideas are applied to the noncommutative
black hole, and the corresponding entropy and temperature
are obtained. As a result, these thermodynamic quantities
are modified due to the presence of the noncommutative
parameter. In particular, noncommutativity decreases the
value of the entropy, which can be understood from the fact
that noncommutativity decreases the available physical
states.

These ideas could be applied to other singular static
solutions, i.e. black hole type solutions.
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