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We perform numerical simulations of black-hole binaries to study the exchange of spin and orbital
angular momentum during the last, highly nonlinear, stages of the coalescence process. To calculate the
transfer of angular momentum from orbital to spin, we start with two quasicircular configurations, one
with initially nonspinning black holes, the other with corotating black holes. In both cases the binaries
complete almost two orbits before merging. We find that, during these last orbits, the specific spin (a=m)
of each horizon increases by only 0.012 for the initially nonspinning configuration, and by only 0.006 for
the initially corotating configuration. By contrast, the corotation value for the specific spin should increase
from 0.1 at the initial proper separation of 10M to 0.33 when the proper separation is 5M. Thus the spin-
orbit coupling is far too weak to tidally lock the binary to a corotating state during the late-inspiral phase.
We also study the converse transfer from spin into orbital motion. In this case, we start the simulations
with parallel, highly-spinning nonboosted black holes. As the collision proceeds, the system acquires a
non-head-on orbital motion, due to spin-orbit coupling, that leads to the radiation of angular momentum.
We are able to accurately measure the energy and angular momentum losses and model their dependence
on the initial spins.
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I. INTRODUCTION

With the advent of new methods to evolve black-hole
binaries for several orbits [1–7] we can now pose questions
of physical interest about the details of their interactions
and the generation of gravitational radiation, and find
answers that allow us to better understand the astrophysical
properties of black-hole binaries.

The coalescence of unequal-mass black-hole binaries
with randomly oriented individual spins is expected to be
one of the strongest astrophysical sources of gravitational
radiation. The first numerical simulations of nonspinning
unequal-mass black-hole binaries, along with the calcula-
tion of the merger kicks, were reported in Refs. [8–10].

In a preceding paper [11] we performed the first fully-
nonlinear simulations of highly-spinning black-hole bi-
naries and showed that the spin-orbit coupling leads to
significant changes in the orbital dynamics, as well as
gravitation radiation emitted, in the final stages of a
black-hole binary. In this paper we study in more detail
the mechanisms that transfer orbital angular momentum to
spin and vice versa.

It is of astrophysical interest to know if tidal effects
could lock the spin of black-hole binaries to a corotating
state, i.e. a state where the spins of the individual horizons
are aligned with orbital angular momentum, and the spin
magnitudes are such that the horizon frequency �H (�H is
the angular speed of locally-non-rotating observers as they
pass through the horizon, as seen by stationary observers at
infinity) is nearly equal to the orbital frequency �O. For a
Kerr hole with mass m and specific spin a=m the horizon
frequency takes the value

 �H �
1

2m

�
a=m

1�
������������������������
1� �a=m�2

p
�
: (1)

See Ref. [12] for a first post-Newtonian (1PN) correction to
the corotation condition �O � �H. Note that in this paper
we consider both the spin (or more accurately, the spin
angular momentum) S of a black hole, which has units of
M2, and the specific-spin a=m (m is the horizon mass),
which is dimensionless. The two are related by S � am.
We will also make use of the following relationships
between the spin, specific spin, horizon frequency, and
irreducible mass (mIR):

 S �
4m3

IR�H��������������������������������
1� 4�mIR�H�

2
p ; (2)

 a=m � 4mIR�H

��������������������������������
1� 4�mIR�H�

2
q

; (3)

where 16�m2
IR is the horizon surface area.

There are two competing scales in this problem: one is
the time for tidal effects to act to spin-up (or down) the
black holes to the orbital frequency and the other is the rate
of change of the orbital frequency due to gravitational
radiation.

In the early stages of the orbital motion of black-hole
binaries, tidal effects are small and can be described by
Newtonian theory; these effects decay strongly with the
binary separation r (as �=r3, with � the reduced mass of
the system). Tidal effects will be stronger as the holes get
closer, but this will also increase the orbital frequency

(roughly like �O �
�����������
�=r3

p
). In order to be correctly quan-
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tified, these effects need to be evaluated dynamically with a
fully nonlinear numerical simulation of the final orbital
stage of black-hole binaries. Despite this, several compu-
tations of quasicircular sequences of initial data for black-
hole binaries have assumed corotating spins from larger
separations down to the estimated location of the innermost
stable circular orbit (ISCO) [12–14]. Corotation has a
notable effect on the location of the ISCO in all these
calculations; fortunately, recent numerical evolutions of
equal-mass black-hole binaries [4–6] do not find any
particular physical effect associated with the location of
the ISCO.

Bildsten and Cutler [15] (see also [16]) studied neutron
star (NS) and black hole (BH) systems. They conclude that,
for the NS-NS binary the viscosity is too low to tidally
synchronize the stars as they inspiral, and that there is
simply not enough time during the gravitational radiation
driven inspiral of NS-BH binaries to tidally lock the spin of
the neutron star to the orbital period. Additionally, when
the NS-BH binaries are close enough for the tidal effects to
be strong, the neutron stars are disrupted in a few orbits.
Since these arguments do not strictly apply to black-hole
binaries, it is interesting to explore these tidal interactions
dynamically with fully nonlinear numerical techniques.
This spin-up of NS-NS binaries has also been analyzed
in Ref. [17].

We will study in Sec. III the tidal spin-up of two equal-
mass, initially nonspinning, black holes starting from a
quasicircular orbit (as determined by 3PN trajectories)
with nearly two orbits left before merger, as well as a
similar configuration with initially corotating black holes.
These equal-mass configurations involving the very last
stages of the inspiral should nearly maximize the tidal
effects.

While the transfer of orbital angular momentum to the
spin of the members of a binary system is of astrophysical
relevance, we can also study the conversion of spin into
orbital angular momentum and verify the importance of its
dynamical effects. To this end, we evolve binaries consist-
ing of nonboosted, equal-mass black holes, with the black
holes aligned along the y axis and the individual spins
aligned along the�z axis, and measure the radiated energy
and angular momentum. This simple set-up clearly dis-
plays the transfer of spin to orbital motion. For nonspin-
ning holes this set-up produces purely head-on collisions,
leading to the radiation of energy but not angular momen-
tum. For spinning holes, the spin-orbit coupling causes the
holes to acquire non-head-on orbital motion, leading to the
radiation of angular momentum. Thus, an accurate mea-
sure of the angular momentum radiated would allow us to
estimate the correct magnitude of this effect.

The leading post-Newtonian spin-orbit and spin-spin
corrections to the acceleration of two equal-mass black
holes (each of massm), with spins ~S1 and ~S2 perpendicular
to the motion, in a nearly head-on collision are

 ~a SO � �
18

r3 � ~vr � �
~S1 � ~S2��; (4)

 ~a SS � �
6

mr4 �
~S1 � ~S2�r̂; (5)

where ~r is the binary separation, ~vr is the relative velocity,
and SO and SS denote spin-orbit and spin-spin coupling
terms, respectively. While the spin-spin acceleration adds
an attractive term along the radial direction (for parallel
spins; repulsive for antiparallel), the spin-orbit acceleration
is perpendicular to both the mostly-radial (along r̂) head-
on velocity and the spin, and hence leads to a nonvanishing
orbital component of the binary motion.

In Sec. IV we will study this nonlinear coupling using
fully nonlinear numerical evolutions and show that our
method is able to extract meaningful results for this nu-
merically demanding relatively small effect.

II. TECHNIQUES

We use the Brandt-Brügmann puncture approach [18]
along with the TWOPUNCTURES [19] and BAM_ELLIPTIC

[20] thorns to compute initial data. In this approach the
3-metric on the initial slice has the form �ab � � BL �
u�4�ab, where  BL is the Brill-Lindquist conformal factor,
�ab is the Euclidean metric, and u is (at least) C2 on the
punctures. The Brill-Lindquist conformal factor is given by
 BL � 1�

Pn
i�1 mi=�2ri�; where n is the total number of

‘‘punctures,’’ mi is the mass parameter of puncture i (mi is
not the horizon mass associated with puncture i), and ri is
the coordinate distance to puncture i. In all cases below, we
evolve data containing only two punctures with equal
puncture mass parameters, and we denote this puncture
mass parameter by mp. We evolve these black-hole-binary
data sets using the LAZEV [21] implementation of the
moving puncture approach [2,3]. In our version of the
moving puncture approach [2] we replace the BSSN
[22–24] conformal exponent �, which has logarithmic
singularities at the punctures, with the initially C4 field
� � exp��4��. This new variable, along with the other
BSSN variables, will remain finite provided that one uses a
suitable choice for the gauge. An alternative approach uses
standard finite differencing of � [3]. Note that both ap-
proaches have been used successfully by several other
groups [9,25,26].

We obtain accurate, convergent waveforms and horizon
parameters by evolving this system in conjunction with a
modified 1� log lapse, a modified Gamma-driver shift
condition [2,27], and an initial lapse ��  �4

BL . The lapse
and shift are evolved with �@t � �i@i�� � �2�K, @t�a �
Ba, and @tBa � 3=4@t~�

a � 	Ba. These gauge conditions
require careful treatment of� near the puncture in order for
the system to remain stable [2,4]. In Ref. [28] it was shown
that this choice of gauge leads to a strongly hyperbolic
evolution system provided that the shift does not become
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too large. For our version of the moving puncture ap-
proach, we find that the product � ~Aij@j� initially has to
be C4 on the puncture. In the spinning case, ~Aij is O�r3� on
the puncture, thus requiring that � / r3 to maintain differ-
entiability. We therefore choose an initial lapse��t � 0� �
2=�1�  4

BL� which is O�r4� and C4 on the puncture and
reproduces the isotropic Schwarzschild lapse at large dis-
tances from the horizons. The initial values of�i and Bi are
set to zero.

Hannam et. al. [26] examine the smoothness of the
evolved fields at late times at the puncture. They find
that, in the case of Schwarzschild, � transitions from an
initially C4 field to a C2 field at late times. Although we
require that the fields are initially C4, this late-time drop in
smoothness does not appear to leak out of the horizon
(which is consistent with the analysis in [26]).

We use a ‘‘multiple transition’’ fisheye transformation
[4] to push the boundaries to 100M, while maintaining a
resolution of up toM=40 in the central region, for the head-
on runs; for orbital runs we push the boundaries to 215M,
with a central resolution of up to M=31:5.

We use a locally modified version of the
AHFINDERDIRECT thorn [29] to find the individual apparent
horizon, and we measure the angular momentum of the
horizons using our implementation of the isolated horizon
algorithm detailed in [30]. (The isolated horizon formalism
used here is extended to the dynamical case in [31].) In the
isolated horizon approach, the horizon spin is given by

 S �
1

8�

I
AH
�’aRbKab�d2V; (6)

where ’a is an approximate Killing vector on the horizon,
Kab is the extrinsic curvature, d2V is the natural area
element intrinsic to the horizon, and Ra is the outward
pointing unit vector normal to the horizon on the 3D slice.
(See the appendix for a comparison of the isolated horizon
technique for finding the horizon spin to the more common
horizon circumference technique.) We confirm that our
version of the algorithm produces the correct spin for
various coordinate distortions of Kerr, as well as for
Bowen-York binary initial data (both with and without
linear momentum).

We measure the proper distance between the horizons by
shooting geodesics from the origin to a horizon, and then
finding the geodesic with the minimum proper distance as
described in Refs. [32,33] (the proper distance between the
two holes is then double this distance). This technique will
work in cases where there is (at least) Pi-symmetry on the
equatorial plane and reflection symmetry across the plane.

III. TIDAL SPIN-UP OF BLACK-HOLE BINARIES

The spin of the individual horizons in a black-hole
binary will become tidally locked to the orbital frequency
if the nonlinear spin-orbit coupling is sufficiently strong
that the time scale for tidally induced spin-up (or down) is

smaller than the time scale for change in the orbital period.
In order to obtain an accurate measure of the strength of
this coupling we examine the cases of initially nonspinning
and initially corotating close binaries, denoted by S0 and
SC, respectively, where the binary separation is small
enough that the spin-orbit coupling is large, but large
enough that the binaries complete at least �1:75 orbits
before merging. The initial data parameters for these con-
figuration are provided in Table I and have been obtained
by finding quasicircular orbits with the 3PN equations of
motion. We originally studied the S0 nonspinning configu-
ration in Ref. [11]. While in [11] we were interested in the
spin of the remnant horizon and plunge times as a function
of the initial spin of the individual horizons, here we are
interested only in the premerger spin-up of the individual
horizons. It is then crucial to have an appropriate measure
of the individual spin of the holes. We employ the isolated
horizon spin algorithm detailed in [30] [see Eq. (6)].
Strictly speaking, isolated horizon techniques are only
valid for noninteracting horizons. However, they do pro-
vide an excellent approximation to the horizon spin even in
the case of relatively close binaries. We confirmed that our
implementation gives accurate evaluations of the horizon
spins for closely separated Bowen-York binary data. For
this test we constructed a sequence of initial data using the
TWOPUNCTURES thorn [19] with fixed orbital angular mo-
mentum L � 0:876M2 (the value for the S0 case above)
and ADM mass of �1:0000	 0:0005�M. We set the spin of
the individual holes (aligned along the �z axis) to S �
0M2, S � 0:001M2, and S � 0:0001M2, and measured the
spins of the horizons with our implementation of the
isolated horizon algorithm. The results of these calcula-
tions are summarized in Table II. From the table we see that
spins as low as 10�4M2 can be measured with an accuracy
of better than 20% even when the holes are separated by a
proper distance of l� 3M, and can be measured with an
accuracy of 1% or better when the holes are separated by
l 
 4:6M. Interestingly, accurate measurement of this spin
can be obtain even with coordinate separations as small as
0:5M.

We evolved the S0 and SC configurations with 3
different resolutions, h � M=22:5, h � M=27, and

TABLE I. Initial data for quasicircular, equal-mass black-hole
binaries. The binaries have an ADM mass of �1:0000	
0:0005�M, with orbital frequency M� fixed to 0:500, total
angular momentum (orbital� spin) given by �0; 0; J�, and proper
horizon separation l. The punctures are located at �0;	Y; 0�,
with mass parameter mp, momentum ��P; 0; 0�, spin angular
momentum �0; 0; S�, and specific spin a=m (m is the horizon
mass).

Name S=M2 Y=M P=M J=M2 a=m mp=M l=M

S0 0.000 3.280 0.1336 0.876 0.0000 0.4848 10.01
SC 0.025757 3.2534 0.1330 0.917 0.1001 0.4831 9.93
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h � M=31:5, where h is the central grid-spacing, and
calculated the horizon spins after every 1M of evolution.
The results of measuring the spin of the individual holes
during the orbital motion until the formation of a common
apparent horizon (CAH) (See Table III) for the S0 configu-
ration are displayed in Fig. 1, while the results for the SC
configuration are displayed in Fig. 2. The upper panel in
both figures shows the specific spin of the individual holes
for the three resolutions. We observe that in both cases the
specific-spin increase during the evolution is small (0.012
for S0 and 0.006 for SC). The lower panels show essen-
tially third-order convergence as expected from our use of
third-order-accurate interpolators with AHFINDERDIRECT.
The late-time error in the S0 specific spin for the lowest
resolution run appears to show a very large error compared
to the actual value of the specific spin. This ‘‘error’’ is
actually a phase error resulting from the lower resolution
runs merging sooner. However, in a specific spin versus
proper separation plot, the curves from all three resolutions
lie on top of each other (see Fig. 3) at late-times (i.e. at
small proper distance). This dichotomy, between the late-
time convergence break-down of a=m versus t and the
excellent late-time agreement between resolutions in
a=m versus l, is similar to the results previously seen in
the waveforms of inspiraling binaries [5,11,34]. In that
case it was observed that  4�t� lost convergence due to

large phase errors induced by the lower resolution runs
merging sooner, while the phase-corrected  4 showed ex-
cellent agreement between resolutions. In this case the
‘‘phase error’’ is in l�t�, and by plotting a=m versus l we
effectively removed the phase error.

The values that we obtained for the spin-up of the binary
holes are much smaller than those expected for a corotation
state [35]. In order to visualize this we have displayed in
Fig. 4 the measured spin during the orbital motion, this
time against the proper separation of the apparent horizons.
The S0 configuration forms a common apparent horizon
(CAH) at a proper separation of lCAH � 1:75M, while the
SC configuration forms a common apparent horizon at a
proper separation of lCAH � 1:69M. In order to have a
measure of what the corresponding corotation spin is, we
considered the family of corotating binaries in quasiequili-
brium of Ref. [14] (we have used Eq. (3) to convert the �H
and mi provided in [14] into a=m). From the plot we see
that the SC is initially corotating, but the specific spin
remains flat for most of the run. Thus the spin-orbit cou-
pling is far too small to keep this system tidally locked. It is
interesting to note that the spin-up for the S0 configuration
is slightly larger than the spin-up for the SC configuration.
Both configuration show essentially no spin-up above
proper separations of �4M.

TABLE III. Merger time, TCAH=M, for the S0 and SC configu-
rations versus resolution. Horizon searches were performed
every 0:3M and 0:2M for the S0 and SC configuration, respec-
tively.

Resolution S0 SC

M=22:5 160:7	 0:3 168:6	 0:2
M=27 166:0	 0:3 174:2	 0:2
M=31:5 168:3	 0:3 176:6	 0:2
Extrapolation 172	 2 179	 2
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FIG. 1 (color online). The measured instantaneous specific
spin of the individual horizons, for the S0 configuration, starting
from vanishing spin at t � 0 and up to the merger time. The top
panel shows a=m versus time for three resolutions with grid-
spacings h � M=22:5, h � M=27, and h � M=31:5, while the
lower panel shows the differences in a=m between the low and
medium resolutions and the medium and high resolutions (the
latter rescaled by 1.9662 to demonstrate third-order conver-
gence). The differences between the low and medium resolutions
and medium and high resolutions become large at late times due
to the lower resolution runs merging sooner. The curves in the
top panel have been cut off at the approximate merger value of
a=m (which is independent of resolution).

TABLE II. The isolated horizon spin of a sequence of Bowen-
York data with given spins and ADM mass �1:0000	 0:0005�M.
Here �	x; 0; 0� are the coordinate locations of the punctures, S is
the measured spin (the Bowen-York spin parameter is given in
parentheses), and l is the proper distance between horizons. In all
cases the linear momentum is given by ~P �
�0;	0:8764M2=�2x�; 0� (to reproduce the S0 orbital angular
momentum), and the spins are aligned with the z axis.

x=M S=M2�10�3� S=M2�10�4� S=M2�0� l=M

3.280 1:000� 10�3 1:003� 10�4 3:0� 10�7 10.0
3.0 1:011� 10�3 1:011� 10�4 1:1� 10�6 9.4
2.0 9:998� 10�4 9:97� 10�5 3:4� 10�7 7.0
1.0 1:001� 10�3 1:011� 10�4 1:13� 10�6 4.6
0.5 1:01� 10�3 1:11� 10�4 1:08� 10�5 3.4
0.25 1:02� 10�3 1:17� 10�4 1:7� 10�5 3.0
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The relatively low ‘‘spin up’’ that we measure during the
last couple of orbits prior to the merger indicates that the
time-scale for tidal locking is much larger than the time-
scale of orbital decay due to gravitational radiation emis-
sion. We also note that in the leading relevant post-
Newtonian order, the change of the spin, averaged over a
circular orbit, which is given by [36]
 

_~Si �
1

2r3

�
� ~LN � ~Si�

�
4� 3

mj

mi

�
� ~Sj � ~Si

� 3�L̂N � ~Sj�L̂N � ~Si

�
�j � i�; (7)

vanishes for all configurations with the spins aligned with
the orbital angular momentum. In Eq. (7) ~LN is the
(Newtonian) orbital angular momentum, ~Si is the spin of
black hole i, mi is its mass, and j denotes the other black
hole. Will [37] also points out that the radiation reaction
interaction does not modify the spin up to 3.5PN order.
First effects of the flattening of the bodies should actually
be seen at 4.5PN order.

IV. SPIN-ORBIT COUPLINGS IN BLACK-HOLE
BINARIES

We continue our study of the relevance of spin-orbit
coupling to the orbital dynamics of black-hole binaries
by choosing initially head-on (vanishing transverse linear
momentum) configurations that single out the converse
transfer of spin into orbital angular momentum. Purely
head-on collisions do not radiate angular momentum to

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5
l/M

0

0.1

0.2

0.3

a/
m

S0
SC

FIG. 4 (color online). The spin-up of the horizons versus
proper binary separation. The continuous line shows a=m for
the S0 configuration, the dotted line shows a=m for the SC
configuration (initially corotating), and the dot-dash line shows
the corotation value for the spin. Note that the S0 configuration
shows a slightly larger spin-up and that both spin-ups are much
smaller than what is required to tidally lock the binary.
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FIG. 3 (color online). The specific spin a=m for the SC con-
figuration versus proper binary separation l for three resolutions
with grid-spacings h � M=22:5, h � M=27, and h � M=31:5.
Note that the large late-time phase errors seen in a=m versus
time are not present in this plot. The vertical line shows the
proper distance at merger.
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FIG. 2 (color online). The measured instantaneous specific
spin of the individual horizons, for the SC configuration, starting
from a=m � 0:1 at t � 0 and up to the merger time. The
top panel shows a=m versus time for three resolutions with
grid-spacings h � M=22:5, h � M=27, and h � M=31:5, while
the lower panel shows the differences in a=m between the low
and medium resolutions and the medium and high resolutions
(the latter rescaled by 1.9662 to demonstrate third-order con-
vergence). The differences between the low and medium
resolutions and the medium and high resolutions become large
at late times due to the lower resolution runs merging
sooner. The curves in the top panel have been cut off at the
approximate merger value of a=m (which is independent of
resolution).
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infinity. Thus, in these configurations, the radiated angular
momentum is an indicator of the extent to which these
systems deviate from head-on motion (i.e. the extent to
which they acquire transverse motion). The energy and
angular momentum radiated are functions of the spins of
the two horizons, the initial inward momentum of each
hole, and the proper separation. To simplify the analysis,
we choose head-on binaries with zero initial linear mo-
mentum and with a fixed initial proper separation of
12:24M. All spins are aligned along the z axis, with the
binaries initially separated along the y axis. We report the
initial data parameters in Table IV.

We measure the radiated energy and angular momentum
by solving for the final hole remnant horizon mass and
spin, and then subtracting these quantities from the ADM
mass and angular momentum (as determined from the
initial data). To avoid confusion with the initial black-
hole mass and spins, we denote the mass and spin of the
final remnant horizon with MH and JH respectively. The
radiated mass and angular momentum then are

 Erad � MADM �MH; (8)

 Jrad � JADM � JH; (9)

where in these head-on cases JADM is the sum of the spins
of the two initial black holes. For notational convenience
we introduce the symbol j0 defined by

 j0 �
JADM

M2
ADM

: (10)

In previous papers [4,11] we found that the horizon pro-
vided a very accurate measurement of these quantities.
Additionally, when using isolated horizon techniques, we
can obtain the horizon parameters accurately within 30M
after the merger. In all cases the radiated energy and
angular momentum are very small. In order to accurately
obtain these numbers we need to evolve all configurations
at three different resolutions (see Table V for the grid-
spacings) and then use a Richardson extrapolation of the
radiated energy and angular momentum. The measured
convergence rates for the radiated angular momentum are
3.9 and 3.7 for the HS++ and MS++ configurations, re-
spectively, while the measured convergence rates for the
radiated energy are 4.0, 3.7, and 3.9 for the HS++, MS++,
and 0S++ configurations, respectively. The lower conver-
gence rates for the MS++ configuration may simply indi-
cate only that higher resolution is needed. Alternatively it
is possible that small third-order errors (possibly from the
interpolators) are present in all configurations, but are only
observed in the MS++ configuration due to its finer effec-
tive resolution. [The effective grid-spacing is heff � h=mp,
where h is the actual grid-spacing and mp is the puncture
mass parameter (see [11] for details)]. For the Richardson
extrapolation we use both the forms f�h� � f1 � eh

4 �
gh5 and f�h� � f1 � dh3 � eh4, and, using results from
the three resolutions, solve for f1. We take the difference
between these two extrapolation to be indicative of the
error in our extrapolated numbers. In Figs. 5 and 6 we show
the HS++ final remnant black-hole horizon mass and spin
versus time for three resolutions, as well as the two ex-

TABLE IV. Initial data for nonboosted black-hole binaries.
The binaries have an ADM mass of �1:0000	 0:00005�M,
with total angular momentum �0; 0; J�, and proper horizon sepa-
ration l. The punctures are located at �0;	Y; 0�, with mass
parameter mp, spins angular momentum �0; 0; S�, and specific
spin a=m (here m is the horizon mass).

Name S=M2 Y=M P=M J=M2 a=m mp=M l=M

HS++ 0.200 4.000 0.000 0.4 0.7581 0.3444 12.24
MS++ 0.100 4.2422 0.000 0.2 0.3775 0.469755 12.24
0S++ 0.000 4.2924 0.000 0.0 0.0000 0.5000 12.24

TABLE V. The radiated mass and angular momentum as well as the merger time (TCAH) and final specific spin for the head-on
configurations. The reported error intervals in TCAH are a function of how often a horizon search was performed. In all cases TCAH does
not appear to vary with resolution.

Case Resolution Erad=MADM Jrad=JADM TCAH=M a=MH

HS++ M=25 �0:16	 0:02�% �2:37	 0:02�% 36:7	 0:2 0:3918	 0:002
M=30 �0:136	 0:009�% �1:44	 0:01�% 36:6	 0:2 0:39532	 0:00008
M=40 �0:123	 0:004�% �0:832	 0:003�% 36:7	 0:2 0:39765	 0:00003

Extrapolation �0:118	 0:002�% �0:546	 0:002�% 36:7	 0:2 0:39876	 0:00002
MS++ M=25 �0:065	 0:004�% �1:038	 0:008�% 39:5	 0:2 0:19817	 0:00003

M=30 �0:063	 0:003�% �0:7698	 0:0040�% 39:6	 0:2 0:19868	 0:00003
M=35 �0:062	 0:002�% �0:6567	 0:0069�% 39:5	 0:2 0:19891	 0:00003

Extrapolation �0:060	 0:002�% �0:4986	 0:0086�% 39:5	 0:2 0:19920	 0:00007
0S++ M=22:5 0:0616	 0:0032 0 40:4	 0:2 0

M=25 �0:0595	 0:0025�% 0 40:4	 0:2 0
M=30 �0:057	 0:002�% 0 40:4	 0:2 0

Extrapolation �0:054	 0:002�% 0 40:4	 0:2 0
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trapolations of these quantities and convergence plots. It is
evident from the very close agreement between the two
extrapolations that we obtain highly accurate measure-
ments of both the horizon mass and spin, and consequently,
the radiated mass and angular momentum.

In Table V we summarize the results for these configu-
rations. Note that the errors reported in the table for a given
resolution are of the uncertainty in measurement of JH and
MH at that resolution (i.e. a measure of the flatness of the
late-time plateaus of JH and MH). Thus the error interval
reported for e.g. J radiated at a resolution ofM=25 will not
necessarily contain the final extrapolated value. On the
other hand, the error intervals for the extrapolated values
are our best estimate for the true value of each quantity. A
fit of the Richardson-extrapolated values of the radiated
angular momentum to the initial spins of the individual

black holes has the form:

 

Jrad

M2 � �4:8	 0:1� � 10�3j0

� �4:0	 0:9� � 10�3j3
0 �O�j

5
0�; (11)

where j0 � 2S=M2
ADM (see Table IV). The linear term is

the dominant one for these configurations (the HS++ con-
figuration radiates �20% more momentum than expected
from the linear behavior alone). Equation (11) contains
only odd powers of j0 since the magnitude of Jrad must be
independent of j0 (i.e. the physics would not change if the
two spins were aligned along the �z axis), and the sign of
Jrad must match the sign of j0.
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FIG. 5 (color online). The final remnant horizon mass versus
time for the HS++ configuration. The top panel shows the
horizon mass for the three resolutions with grid-spacings h �
M=25, h � M=30, and h � M=40, and the two Richardson
extrapolations based on leading third-order and leading fourth-
order errors. The bottom panel shows the differences in the
horizon mass for the h � M=25 and h � M=30 runs as well
as the differences in the mass for the h � M=30 and h � M=40
runs. This latter difference is rescaled by 1.57052 to demonstrate
3.7-order convergence. The accurate extrapolations (as evident
by the agreement of the two extrapolations) to infinite resolution
allows for a sufficiently precise determination of the radiated
energy to model its dependence on the initial spins.
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FIG. 6 (color online). The angular momentum of the final
remnant black hole for the HS++ configuration measured by
the isolated horizon method. The top panel shows the horizon
spin for the three resolutions with grid-spacing h � M=25, h �
M=30, and h � M=40, as well as the two Richardson extrap-
olations based on leading third-order and leading fourth-order
errors. The bottom panel shows the differences in the horizon
spin for the h � M=25 and h � M=30 runs as well as the
differences in the spin for the h � M=30 and h � M=40 runs.
This latter difference is rescaled by 1.54 to demonstrate 4th-
order convergence. The accurate extrapolations (as evident by
the agreement of the two extrapolations) to infinite resolution
allows for a sufficiently precise determination of the radiated
angular momentum to model its dependence on the initial spins.
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An analysis of the radiated energy versus spin is com-
plicated by the fact that the binary radiates energy in the
zero-spin configuration as well. After subtracting the zero-
spin radiated energy we find that the HS++ configuration
radiates 0:064	 0:003M more energy than the zero-spin
configuration, while the MS++ configuration only radiates
0:006	 0:002M more. Thus the HS++ configuration radi-
ates 12:2	 4:6 times as much as the MS++ configuration
(after subtracting off the zero-spin radiated energy). From
these results it appears that the radiated energy scales with
j3

0 or j4
0. A close-limit analysis [See Eq. (19)] also indicates

that there is a small j2
0 contribution as well. Although not

obvious in the total radiated energy, this quadratic depen-
dence on J can be seen in the imaginary part of the �‘ �
2; m � 	2� components of the radiated energy E�t� (i.e.
the amount of radiation emitted up to time t), where E�t� �P
‘;m�R‘m�t� � I‘m�t��,

 R‘m�t� �
1

4�

Z t

0
Re�N‘m�
�2d
; (12)

 I‘m�t� �
1

4�

Z t

0
Im�N‘m�
�

2d
; (13)

N‘m�t� � �r� 2M�=2
R
t
0

� 4;‘m�
�d
, and  4 is calculated
using the quasi-Kinnersley tetrad method [38]. Figure 7
shows R‘m�t� and I‘m�t� for the ‘ � 2 components of the
waveform for the HS++ and MS++ configurations. Note
that I2	2 (which vanishes in the zero-spin case) is 4.3 times
larger in the HS++ configuration than in the MS++ con-
figuration. This is consistent with a quadratic dependence
on the spin plus smaller higher-order dependencies.

Finally, if we fit the radiated energy to the polynomial
dependence E0 � E2j2

0 � E4j4
0 we obtain

 

Erad

M
� �0:052	 0:02� � �0:065	 0:033�j2

0

� �2:08	 0:21�j4
0 �O�j

6
0�: (14)

Note that the coefficient of the quadratic term is 2 orders of
magnitude smaller than the coefficient of the quartic term
(and thus was not apparent in our initial analysis above).
There are only even terms in Eq. (14) because the Erad

cannot depend on the sign of j0 (i.e. Erad must be the same
for configurations with the spins aligned on the�z axis and
with the spins aligned on the �z axis).

The Bowen-York initial data family contains ‘‘spurious‘‘
radiation that does not represent any physical history of the
binary. In addition, the spinning case does not have the
Kerr limit when the two black holes are far apart. (For a
data set with the right Kerr limit see [39,40].) While this
extra radiation is of relatively small magnitude in orbiting
black-hole binaries (See [11]), it is relevant in the highly-
spinning head-on collisions considered here. This can be
observed in Fig. 7. The first plateau in the radiated energy
(t � 40M� 70M) for the observer location at r � 35M is
due to the radiated ‘‘spurious‘‘ energy. This ‘‘spurious’’

energy contributes up to 25% of the total energy radiated of
the HS++ configuration, but strongly decreases for the
MS++ and 0S++ configurations.

One can use the lowest relevant post-Newtonian expan-
sion to support (qualitatively) our results. A look at the
Post-Newtonian equations of motion [36] shows that the
leading spin-orbit interaction is of 1.5PN order, while the
leading spin-spin interaction is of 2PN order. Kidder [36]
gives the radiated energy and momenta of the point-
particle spin-orbit and spin-spin couplings up to 2PN order.
The relevant equations for our nearly head-on collisions
are
 

_EN � �
8 �m4

15r4 v
2
r ; (15a)

_EPN � �
2 �m4

105r4

�
�110v4

r � 452
�m
r
v2
r

�
; (15b)

_ESO � 0; � ~LN � 0�; (15c)

_ESS �
32 �m2

5r6
� ~S1 � ~S2�v

2
r ; (15d)

where r is the binary separation, 2 �m � m1 �m2, ~vr is the
relative velocity, N denotes Newtonian terms, PN denotes
(non-spin-orbit and non-spin-spin) post-Newtonian terms,
SO denotes spin-orbit coupling terms, and SS denotes
spin-spin coupling terms. Note that the lowest-order spin-
correction to the radiated energy is quadratic in S. Likewise
we can obtain the radiated angular momentum
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FIG. 7 (color online). The gravitational energy radiated up to
time t as measured by an observer at r � 35M for the ‘ � 2
modes of the HS++ and MS++ configurations (for our configu-
rations R22 � R2�2, and I22 � I2�2). The energy from the spu-
rious initial burst leads to the first plateaus centered at t � 60M.
These initial bursts of energy, while significant, are dominated
by the total emitted radiation. We multiply I2	2 from the MS++
configuration (S � 0:1M2) by 4.3 to demonstrate that quadratic
(plus smaller higher-order terms) dependence of I2	2 on S.
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_~JN � 0; � ~LN � 0�; (16a)
_~JPN � 0; � ~LN � 0�; (16b)
_~JSS � 0 � ~aN � ~aSS � r̂�; (16c)

_~J
��
SO � �

4 �m2

15r3
~vr � � ~vr � � ~S1 � ~S2��

�

�
v2
r �

2 �m
r
�

1

v2
r

4 �m2

r2

�
; (16d)

which displays the leading linear dependence on the spin,
and the radiated linear momentum
 

_~PN � 0; ��m � m1 �m2 � 0� (17a)
_~PPN � 0; ��m � m1 �m2 � 0� (17b)
_~PSS � 0 �at this order� (17c)

_~P
��

SO � �
8 �m3

15r5
vr� ~vr � ~�� � 0;

� ~� � 2� ~S1 � ~S2� � 0�: (17d)

Note that Eq. (17d) gives a nonvanishing linear momen-
tum radiated for antiparallel spins. The spin-orbit interac-
tion is the only one that reverses signs when spins change
signs. This explains the different stability and radiation
properties of parallel and antiparallel configurations. We
plan to report the results of this spin up-spin down case
leading to radiated linear momentum in a forthcoming
paper.

These spinning-black-hole-binary scenarios were also
studied in the complementary regime of the close-limit
approximation by Gleiser and Domı́nguez [41]. They ex-
amined the behavior of nonboosted, slowly rotating holes
to second perturbative order. In that approximation the
second-order terms proportional to the spin and the square
of the proper distance, l, give rise to radiation of the
angular momentum, J, proportional to the spin

 Jrad � 0:0023�2S��l=M�4: (18)

The analysis also predicts that the radiation of energy can
be expanded as
 

Erad

M
� 7:8� 10�4�2S=M2�4 � 9:8� 10�5�l=M�4

� 2:8� 10�5�2S=M2�2�l=M�2

� 1:3� 10�3�2S=M2�2�l=M�4; (19)

The first term, being proportional only to S4, is generated
by the radiation content of the BY initial data. The second
term, proportional to l4, is the radiation for two nonspin-
ning masses in a head-on collision. The third term is
second-perturbative-order spin-orbit coupling term, and
is the one that leads to the radiation of angular momentum.

V. DISCUSSION OF RESULTS

We have studied the spin-up of initially nonspinning and
initially corotating black-hole binaries during the last
stages of the inspiral orbital motion and found that it is
much smaller than that needed to achieve tidal locking.
This means that the time scale of tidal effects to spin up the
black holes is much longer than the time scale for gravita-
tional radiation to drive the merger (and hence increase the
orbital frequency). This also implies that in an astrophys-
ical scenario, black holes with low spin merge with essen-
tially the same spin magnitude they had when the binary

formed (note that Eq. (7) implies that j _~Sj � 0). We also
note that it is this short time scale for gravitational radia-
tion during the last few orbits that is responsible for the
absence of an ISCO (innermost stable circular orbit) when
the two holes have comparable masses. The concept of the
ISCO arises naturally in the extreme mass ratio limit,
where there is a cutoff between stable and unstable orbits.
In this limit, the instability of orbits inside the ISCO is not
driven by gravitational radiation, but by nonradiative terms
in the particle’s equation of motion. Thus the particle very
slowly inspirals due to the emission of weak gravitational
radiation, and then plunges when it reaches the ISCO. On
the other hand, in the comparable mass regime, there is no
such cutoff because gravitational radiation dominates the
dynamics during the entire late-time inspiral and plunge
phases.

In Fig. 8 we show the tracks of the horizon centroids in
the S0 and SC configurations. Although coordinate depen-
dent, the tracks help illustrate the lack of an ISCO in the
comparable mass regime. Rather than showing an abrupt
change near the last orbit, the tracks show a smooth in-
crease in plunge velocity over the entire evolution. Note
that the SC track is a tighter spiral than the S0 track, which
is consistent with the results found previously by the
authors [11]. Additional horizon tracks for multiorbit non-
spinning binaries can be found in Refs. [4,5], while tracks
for highly-spinning binaries can be found in Ref. [11].

After the merger, the final remnant black hole formed
from the S0 configuration has a specific spin of a=MH �
0:688	 0:001 (where MH is the remnant horizon mass)
while remnant formed from the SC configuration has a
specific spin of a=MH � 0:717	 0:001. Using these val-
ues in conjunction those found in Ref. [11] (see Table VI),
we find (from a least-squares fit) that the specific spin of
the final remnant horizon �a=MH�jR varies with the initial
specific spins of the two (equal-mass, equal-spin) black
holes �a=m�jI according to

 �a=MH�jR � 0:6879� 0:2952��a=m�jI�

� 0:0374��a=m�jI�
2; (20)

with an error of 	0:001 in the range (� 0:757<
�a=m�jI < 0:757). From this fit we extrapolate that the
remnant horizon will have a specific spin no smaller than
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0.355 (for the case of initially-maximal, antialigned spins)
and no larger than a=MH � 0:946 (for the case of initially-
maximal, aligned spins), which supports our assertion in
[11] that the cosmic censorship conjecture is not violated
by the merger of two black holes. A least-squares fit of the
energy radiated versus the initial individual spins yields

 

Erad

M
� 0:0348� 0:0297��a=m�jI� � 0:0170��a=m�jI�2;

(21)

with an error of 	0:001 in the range (� 0:757<
�a=m�jI < 0:757). Based on this fit we extrapolate that a
quasicircular binary will radiated no more than 8.1% of its
mass during the final few orbits and merger.

We have also found that the tidal coupling in black-hole
binaries responsible for the transfers of angular momentum
from the individual spins to orbital is relatively small.
Nevertheless, we have been able to compute this transfer
with sufficient accuracy to model its dependence on the
initial spin. We find that the radiated angular momentum,
which is a measure of the angular momentum transferred
from spin to orbit, has a linear-plus-cubic dependence on
the initial spins; in qualitative agreement both with the
post-Newtonian [see Eq. (16d)] and close-limit [see
Eq. (18)] predictions. The radiated energy has a
quadratic-plus-quartic dependence on the initial spin;
again, in qualitative agreement with the post-Newtonian
[see Eqs. (15)] and close-limit [see Eq. (19)] predictions.

Unfortunately the speculations of Price and Whelan [42]
suggesting this spin-up effect might be strong, and even
dominant, are not confirmed by our computations. We see
neither the possibility of a binary stalling by this effect nor
the dominance of the ‘ � 3 mode suggested in Ref. [42].
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APPENDIX: ISOLATED HORIZON SPIN AND
HORIZON CIRCUMFERENCES

The most common technique for evaluating the spin of a
numerically evolved black hole is to use the ratio of the
polar to equatorial circumferences [43]. For a Kerr hole
this ratio Cr � Cp=Ceq is given by

 Cr �
1�

������������������������
1� �a=m�2

p
�

E
�
�

�a=m�2

�1�
������������������������
1� �a=m�2

p
�2

�
;

(A1)

where a=m (m being the horizon mass) is the specific spin
and E�x� is the complete elliptic integral of the second
kind. After a common horizon forms, Cr displays quasi-
normal ringing with a constant offset. To obtain the specific
spin in finite time one uses a nonlinear least-squares fit of
Cr versus time to Cr � C0 � C1 exp��C2t=M�
sin�C3t=M� C4 to obtain C0; � � � ; C4 (C0 being the

TABLE VI. The measured remnant horizon specific spin
�a=MH�jR and energy radiated Erad, as well as the predicted
remnant horizon specific spin �a=MH�jpred and energy radiated
Erad=Mjpred (based on a least-squares fit) for quasicircular, equal-
mass, equal-spin binaries with initial specific spins �a=m�jI.

�a=m�jI �a=MH�jR �a=MH�jpred Erad=M Erad=Mjpred

�0:757 0:443	 0:001 0.4430 �2:2	 :01�% 2.20%
0.000 0:688	 0:001 0.6878 �3:5	 0:1�% 3.48%
0.1001 0:717	 0:001 0.7169 �3:8	 0:1�% 3.79%
0.757 0:890	 0:001 0.8900 �6:7	 0:2�% 6.70%
�1:0 . . . 0.355 . . . 2.2%
�1:0 . . . 0.946 . . . 8.1%
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FIG. 8 (color online). The horizon tracks for the S0 and SC
configurations with tick marks every 10M of evolution (we
display only one of the SC tracks for clarity). Note that the S0
and SC tracks agree well for the first 100M, and that after 100M
the SC tracks show a tighter spiral and orbit longer before
merging. The S0 configuration completes slightly less than
1.75 orbits, while the SC configuration completes slightly more.
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asymptotic value of Cr), and then a=m is obtained by
inverting Eq. (A1). The authors have used this technique
to obtain highly-accurate evaluations of the remnant spin in
Refs. [2,4,11]. However, in the premerger case this tech-
nique is not accurate. There are two reasons for this. First,
one cannot separate the large oscillations in Cr from the

secular growth because the behavior of the oscillations is
not know a priori. Thus, there is a large error in the
calculated spin. Second, the distortions on the horizon
that lead to Cr � 1 are due to both the spin as well as tidal
distortion of the horizon, and when the black holes are
close, the tidal distortion dominate. Thus even if one can
obtain an accurate measurement of the secular part of Cr,
one would then need to disentangle the spin component of
Cr from the tidal distortion component. Finally, the horizon
circumference calculations are not coordinate invariant and
lead to errors when the coordinate are distorted (i.e. when
the coordinate circles used in the calculations do not
correspond to the correct coordinate circles in Boyer-
Lindquist coordinates).

In Fig. 9 we show a=m for the SC orbiting-binary
configuration calculated using the isolated horizon method
and the circumference method. In the plot we show a=m
calculated using the ratios of the xz and yz polar circum-
ferences to the equatorial (i.e. xy) circumference, as well
a=m derived from the isolated horizon technique. Note that
the initial values for the spin 0.03 and 0.07 for the two
circumference-based calculations are significantly smaller
than the expected 0.1, while the isolated horizon technique
gives the correct value. The difference between the spin
calculated from the two circumferences is a measure of the
error. In this case that error is larger than the effect we want
to measure. Note also that the spin derived from the
circumferences shows a much stronger increase with
time. This strong increase is driven by the increasing tidal
distortion of the horizon (as can be inferred from the
increase in amplitude of the oscillations).
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