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We consider bulk fields coupled to the graviton in a Lorentz violating fashion. We expect that the overly
tested Lorentz symmetry might set constraints on the induced Lorentz violation in the brane, and hence on
the dynamics of the interaction of bulk fields on the brane. We also use the requirement for Lorentz
symmetry to constrain the cosmological constant observed on the brane.

DOI: 10.1103/PhysRevD.74.084020 PACS numbers: 04.50.+h, 12.10.Dm

I. INTRODUCTION

Lorentz invariance is one of the most well-tested sym-
metries of physics. Nevertheless, the possibility of viola-
tion of this invariance has been widely discussed in the
recent literature (see e.g. [1]). Indeed, the spontaneous
breaking of Lorentz symmetry may arise in the context
of string/M theory due to the existence of nontrivial solu-
tions in string field theory [2], in loop quantum gravity [3],
in noncommutative field theories [4,5], or via the space-
time variation of fundamental couplings [6]. This putative
breaking also has implications in ultrahigh energy cosmic
ray physics [7,8]. Lorentz violation modifications of the
dispersion relations via five-dimensional operators for fer-
mions have also been considered and constrained [9]. It has
also been speculated that Lorentz symmetry is connected
with the cosmological constant problem [10]. However, the
main conclusion of these studies is that Lorentz symmetry
holds up to about two parts in 2� 10�25 [1,8].

Efforts to examine a putative breaking of Lorentz in-
variance have been concerned mainly with the phenome-
nological aspects of the spontaneous breaking of Lorentz
symmetry in particle physics and only recently have the
implications for gravity been more closely studied [11,12].
The idea is to consider a vector field coupled to gravity that
undergoes spontaneous Lorentz symmetry breaking by
acquiring a vacuum expectation value in a potential.

Moreover, recent developments in string theory suggest
that we may live in a braneworld embedded in a higher
dimensional universe. In the context of the Randall-
Sundrum cosmological models, the warped geometry of
the bulk along the extra spatial dimension suggests an
anisotropy which could be associated with the breaking
of the bulk Lorentz symmetry.

In this paper we study how spontaneous Lorentz viola-
tion in the bulk repercusses on the brane and how it can be
constrained. We consider a vector field in the bulk which
acquires a nonvanishing expectation value in the vacuum
and introduces spacetime anisotropies in the gravitational
field equations through the coupling with the graviton. For

this purpose, we derive the field equations and project them
parallel and orthogonal to the brane. We then establish how
to derive brane quantities from bulk quantities by adopting
Fermi normal coordinates with respect to the directions on
the brane and continuing into the bulk using the Gauss
normal prescription.

We parametrize the world sheet in terms of coordinates
xA � �tb;xb� intrinsic to the brane. Using the chain rule,
we may express the brane tangent and normal unit vectors
in terms of the bulk basis as follows:

 ê A �
@

@xA
� X�A

@
@x�

� X�A ê�;

êN �
@
@n
� N� @

@x�
� N�ê�;

(1)

with

 g��N�N� � 1; g��N�X�A � 0; (2)

where g is the bulk metric,
 

g�g��ê�� ê�

�gABêA� êB�gANêA� êN�gNBêN� êB�gNNêN� êN:

(3)

To obtain the metric induced on the brane we expand the
bulk basis vectors in terms of the coordinates intrinsic to
the brane and keep the doubly brane tangent components
only. It follows that

 gAB � X�AX
�
Bg�� (4)

is the �3� 1�-dimensional metric induced on the brane by
the �4� 1�-dimensional bulk metric g��. The induced
metric with upper indices is defined by the relation

 gABg
BC � �A

C: (5)

It follows that we can write any bulk tensor field as a linear
combination of mutually orthogonal vectors on the brane,
êA, and a vector normal to the brane, êN . We illustrate the
example of vector B� and tensor T�� bulk fields as follows:

 B � BAêA � BNêN; (6)
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T�TABêA� êB�TANêA� êN�TNBêN� êB�TNNêN� êN:

(7)

Derivative operators decompose similarly. We write the
derivative operator r as

 r � �X�A � N
��r� � rA �rN: (8)

Fixing a point on the boundary, we introduce coordinates
for the neighborhood, choosing them to be Fermi normal.
All the Christoffel symbols of the metric on the boundary
are thus set to zero, although the partial derivatives do not,
in general, vanish. The nonvanishing connection coeffi-
cients are

 rAêB � �KABêN; rAêN � �KABêB;

rNêA � �KABêB; rNêN � 0;
(9)

as determined by the Gaussian normal prescription for the
continuation of the coordinates off the boundary. For the
derivative operator rr we find that

 rr � g��r�r�

� gAB��X�Ar���X
�
Br�� � X

�
A �r�X

�
B�r�	

� gNN��N�r���N
�r�� � N

��r�N
��r�	

� gAB�rArB � KABrN	 � rNrN: (10)

We can now decompose the Riemann tensor, R����, along
the tangent and the normal directions to the surface of the
brane as follows:

 RABCD � R�ind�
ABCD � KADKBD � KACKBD; (11)

 

RNBCD � KBC;D � KBD;C; (12)

 

RNBND � KBCKDC � KBC;N; (13)

from which we find the decomposition of the Einstein
tensor, G��, obtaining the Gauss-Codacci relations

 GAB � G�ind�
AB � 2KACKCB � KABK � KAB;N

� 1
2gAB�3KCDKDC � K

2 � 2K;N�; (14)

 

GAN � KAB;B � K;A; (15)

 

GNN �
1
2��R

�ind� � KCDKDC � K
2�: (16)

II. BULK VECTOR FIELD COUPLED TO GRAVITY

We consider a bulk vector field B with a nontrivial
coupling to the graviton in a five-dimensional anti-de
Sitter space. The Lagrangian density consists of the
Hilbert term, the cosmological constant term, the kinetic
and potential terms for B, and the B-graviton interaction
term, as follows:

 

L �
1

�2
�5�

R� 2�� �B�B�R��

�
1

4
B��B

�� � V�B�B� 
 b
2�; (17)

where B�� � r�B� �r�B� is the tensor field associated
with B� and V is the potential which induces the breaking
of Lorentz symmetry once the B field is driven to the
minimum at B�B� 
 b2 � 0, b2 being a real positive
constant. As discussed in the Introduction, this model has
been proposed in order to analyze the impact on the
gravitational sector of the breaking of Lorentz symmetry
[11,12]. Furthermore, in the present model �2

�5� �

8�GN � M3
Pl, MPl is the five-dimensional Planck mass

and � is a dimensionless coupling constant that we have
inserted to track the effect of the interaction. In the cos-
mological constant term � � ��5� ���4�, we have in-
cluded both the bulk vacuum value ��5� and that of the
brane ��4�, described by a brane tension � localized on the
locus of the brane, ��4� � ���N�.

By varying the action with respect to the metric, we
obtain the Einstein equation

 

1

�2
�5�
G�� ��g�� � �L�� � ���� �

1

2
T��; (18)

where

 L�� �
1
2g��B

�B�R�� � �B�B�R�� � R��B�B��; (19)

 

��� �
1
2�r�r��B�B

�� � r�r��B�B
��

� r2�B�B�� � g��r�r��B
�B��	 (20)

are the contributions from the interaction term and

 T�� � B��B�� � 4V0B�B� � g����
1
4B��B

�� � V	

(21)

is the contribution from the vector field for the stress-
energy tensor. For the equation of motion for the vector
field B, obtained by varying the action with respect to B�,
we find that

 r��r�B� �r�B�� � 2V0B� � 2�B�R�� � 0; (22)

where V 0 � dV=dB2.
We now proceed to project the equations parallel and

orthogonal to the surface of the brane. Following the
prescription used in the derivation of the Gauss-Codacci
relations, we derive the components of the stress-energy
tensor and of the interaction terms. Similarly, the equation
of motion for the vector field B decomposes as follows:
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rC�rCBA �rABC� � rN�rNBA �rABN�

� 2KAC�rCBN �rNBC� � K�rNBA �rABN� � 2V0BA

� 2��BC�R
�ind�
AC � 2KADKDC � KACK � KAC;N�

� BN�KAC;C � K;A�	 � 0; (23)
 

rC�rCBN �rNBC� � 2V0BN

� 2��BC�KCD;D � K;C� � BN�KCDKCD � K;N�	 � 0;

(24)

parallel and orthogonal to the brane, respectively, which
we include here for the purpose of illustration.

Next we proceed to derive the induced equations of
motion for both the metric and the vector field in terms
of quantities measured on the brane. The induced equations
on the brane are the �AB� projected components after the
singular terms across the brane are subtracted out by the
substitution of the matching conditions. Considering the
brane as a Z2-symmetric shell of thickness 2� in the limit
�! 0, derivatives of quantities discontinuous across the

brane generate singular distributions on the brane.
Integration of these terms in the coordinate normal to the
brane relates the induced geometry with the localization of
the induced stress energy in the form of matching condi-
tions. First we consider the Einstein equations and then the
equations of motion for B which, due to the coupling of B
to gravity, will also be used as complementary conditions
for the dynamics of the metric on the brane.

Combining the Gauss-Codacci relations with the projec-
tions of the stress-energy tensor and the interaction source
terms, we integrate the �AB� component of the Einstein
equation in the coordinate normal to the brane to obtain
the matching conditions for the extrinsic curvature across
the brane, i.e. the Israel matching conditions. From the
Z2 symmetry it follows that BA���� � �BA���� but
that BN���� � �BN���� and, consequently, that
�rNBA��������rNBA����� and �rNBN������
��rNBN�����. Moreover, gAB�N������gAB�N�
��� implies that KAB�N � ��� � �KAB�N � ���.
Hence, we find for the �AB� matching conditions that

 

1

�2
�5�

��KAB � gABK	 �
1

2

Z ��
��

dN��gAB��4�	

�
�
2
�rA�BBBN� � rB�BABN� � rN�BABB� � 4�BABCKCB � KACBCBB� � 2KABBNBN

� gAB��2rC�BCBN� � rN�BNBN� � KCDBCBD � KBNBN�	: (25)

These provide boundary conditions for 10 of the 15 degrees
of freedom. Five additional boundary conditions are pro-
vided by the junction conditions for the �AN� and �NN�
components of the projection of the Einstein equations.
From inspection of the �AN� component, we note that

 GAN � KAB;B � K;A � �rB

�Z ��
��

dNGAB

�

� ��2
�5�rBT AB � 0 (26)

which vanishes due to conservation of the induced stress-
energy tensor T AB on the brane. From integration of the
�NN� component in the normal direction to the brane, we
find the following junction condition:

 rC�BCBN� � 3KBNBN � KCDBCBD � �; (27)

which we substitute back in, obtaining
 

1

�2
�5�

1

2
��R�ind� � KCDKCD � K2� �

1

2

�
�

1

4
BCDBCD � V

�

�
1

2
��rCrD�BCBD� � rCrC�BNBN� � 12BNrCrCBN � 20V 0BNBN

� 2�KCD � gCDK�rC�BDBN� � 2KCDBD�rCBN� � KCD;CBDBN

� �7KCDKCD � K
2�BNBN � �7KCEKED � KKCD�BCBD	: (28)

However, the Israel matching conditions also contain terms
which depend on the prescription for the continuation of B
out of the brane and into the bulk, namely rNBA and
rNBN. The five additional boundary conditions required
are those for the vector field B. In Ref. [13] the boundary
conditions for bulk fields were derived subject to the
condition that modes emitted by the brane into the bulk
do not violate the gauge defined in the bulk. Here, however,

we integrate the �A� and �N� components of the equation of
motion for B [Eqs. (23) and (24), respectively] to find the
corresponding junction condition for BA and for BN across
the brane. From Eq. (23) we have that
 Z ��
��

dN�rN�rNBA �rABN� � 2KAC�rNBC�

� 2�BCKAC;N	 � 0: (29)
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If � is sufficiently small, the difference between KAB;N and
KAB;N is negligibly small. It follows that, in the limit where
�! 0, we can assume that rN � @N . It then follows that

 rNBA �rABN � 2KACBC � 0: (30)

Similarly, from Eq. (24) we find that

 

Z ��
��

dN��rNrCBC � �rN�KBN�	 � 0; (31)

which becomes

 rCBC � �KBN � 0: (32)

The junction conditions Eqs. (30) and (32) offer the re-
quired �4� 1� boundary conditions, respectively, for BA
and BN on the brane. Substituting the junction condition
for BA back in Eq. (23) and using the result from GAN � 0,

we find for the induced equation of motion for BA on the
brane that
 

rC�rCBA �rABC� � 2KAC�rCBN� � 2V 0BA

� 2�BC�R
�ind�
AC � 2KADKDC� � 0: (33)

Similarly, substituting the junction condition for BN back
in Eq. (24), we obtain

 rCrCBN � 2V 0BN � ��K�rNBN� � BNKCDKCD	 � 0:

(34)

Thus, Eq. (30) provides the value at the boundary forrNBA
and Eq. (34) provides that for rNBN . Using the results
derived above in the Israel matching conditions, we find
that

 

1

�2
�5�

��KAB � gABK	 �
1

2
��gAB�� �

1

2
��rABB�BN � �rBBA�BN	 � BABCKCB � KACBCBB � KABBNBN

� gAB

�
�rC�BCBN� �

1

2
KCDBCBD �

1

2
KBNBN

�
1

K
�BNrCrCBN � 2V 0BNBN � BNBNKCDKCD�

�
: (35)

The Israel matching conditions provide an equation for the trace of the extrinsic curvature, K. Finally, using Eq. (28) in the
�AB� Einstein equation, we find for the Einstein equation induced on the brane
 

1

�2
�5�

�
G�ind�
AB � 2KACKBC � KABK �

1

2
gAB��R�ind� � 4KCDKCD � 2K2�

�
� gAB��5�

�
1

2

�
�BACBBC � 4V0BABB �

1

2
gAB�BCDBCD � 6V�

�

�
1

2
gAB��2rCrD�BCBD� � rCrC�BNBN� � 12BNrCrCBN � 20V 0BNBN

� 4�KCD � gCDK�rD�BCBN� � 6KCDBD�rCBN� � KBC�rCBN�

� BCBDR
�ind�
CD � 9KCDKCDBNBN � 14KCEKDEBCBD � K�	

�
1

2
�rArC�BBBC� � rBrC�BABC� � rCrC�BABB� � 2KACrC�BBBN�

� 2KAC�BBrCBN � BCrBBN� � 2KBCrC�BABN� � 2KBC�BArCBN � BCrABN�

� KBN�rABB �rBBA� � 2KABBN�rCBC� �
8

K
KAB�rCrCBN � 2V 0BN � BNKCDKCD�

� 2BABC�R
�ind�
CB � 2KCDKBD� � 2BBBC�R

�ind�
CA � 2KADKCD� � �KAC;B � KBC;A � 2KAB;C�BNBN

� �KACBB � KBCBA���5KDCBD � KBC� � 6KACKBDBCBD � 2KAB�3KBNBN � ��	: (36)

The results obtained above show both the coupling of the
bulk to the brane and the coupling of the vector field B to
the geometry of the spacetime. The first is manifested in
the dependence on normal components in the induced
equations; the latter is manifested in the presence of terms
of the form �RABBCBD�. Terms of the form �KABBN�
illustrate both couplings, where BN relates with K and
BA by Eq. (32). The directional dependence on the N
direction is encapsulated in the extrinsic curvature. In the
fourth line we can substitute the Israel matching condition

found above. However, the derivatives of the extrinsic
curvature along directions parallel to the brane which
appear in the ninth line are not reducible to quantities
intrinsic to the brane.

III. BULK VECTOR FIELD WITH A
NONVANISHING VACUUM EXPECTATION VALUE

In this section we particularize the formalism developed
above for the case when the bulk vector field B acquires a
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nonvanishing vacuum value by spontaneous symmetry
breaking akin to the Higgs mechanism. The vacuum value
generates the breaking of the Lorentz symmetry by select-
ing the direction orthogonal to the plane of the brane. The
tangential part of the vector field with respect to the brane
will acquire an expectation value, hBAi � 0, whereas the
expectation value of the normal component is chosen, for
simplicity, to vanish on the brane, hBNi � 0, as we are
interested in the effect that Lorentz symmetry breaking in
the bulk has on the brane. Choosing instead hBAi � 0 and
hBNi � 0 would also violate Lorentz symmetry on the
brane. However, the implied matching conditions would
be incompatible with the condition for the covariant con-
servation of the vacuum expectation value of the field B,
rAhBCi � 0 [11,12]. Moreover, the vacuum value is at a
zero of both the potential V and its derivative V 0. The
junction conditions from the equations for BA, BN, GNN ,
and GAB reduce, respectively, to

 rNhBAi � 2KAChBCi � 0; (37)

 rChBCi � 0; (38)

 � KCDhBCihBDi � �; (39)

 

1

�2
�5�

��KAB � gABK	 � �gAB�

� hBAihBCiKCB � hBBihBCiKAC;

(40)

and the induced equations of motion become

 rC�rChBAi � rAhBCi� � 2hBCi�R
�ind�
AC � 2KADKDC� � 0

(41)

for BA,

 

1

�2
�5�

1

2
��R�ind� � KCDKCD � K

2�

�
1

2

�
�

1

4
hBCDihBCDi � rCrD�hBCihBDi�

� 7KCEKEDhBCihBDi � K�
�

(42)

for GNN , and finally

 

1

�2
�5�

�
G�ind�
AB � 2KACKBC �

1

2
KABK �

1

2
gAB�R

�ind� � KCDKCD � K
2�

�
� gAB��5� �

1

2
hBACihBBCi

�
1

2

�
1

4
hBAirC�5rChBBi � 9rBhBCi� �

1

4
hBBirC�5rChBAi � 9rAhBCi� � rArC�hBBihBCi� � rBrC�hBAihBCi�

� 2�rChBAi��rChBBi� �
5

2
hBAihBCiR

�ind�
CB �

5

2
hBBihBCiR

�ind�
AC � 6KACKBDhBCihBDi � 2KAB�

�

�
1

2
gAB�hBCihBDiR

�ind�
CD � 2K�	 (43)

fromGAB, where we also used the previous results, namely,
the GNN equation, the Israel matching condition, and the
BA equation.

Imposing that rAhBCi � 0, it follows that hBACi �
rAhBCi � rChBAi � 0, which enables us to further sim-
plify Eq. (43):
 

1

�2
�5�

�
G�ind�
AB � 2KACKBC �

1

2
KABK

�
1

2
gAB�R�ind� � 2KCDKCD � K2�

�
� gAB��5�

�
1

2

�
5

2
hBAihBCiR

�ind�
CB �

5

2
hBBihBCiR

�ind�
AC

� 6KACKBDhBCihBDi � 2KAB�
�

�
1

2
gAB�hBCihBDiR

�ind�
CD � 2K�	: (44)

Hence, in order to obtain a vanishing cosmological con-

stant and ensure that Lorentz invariance holds on the brane,
we must impose, respectively, that

 ��5� � K� (45)

and that
 

2KACKBC �
1
2KABK �

1
2gAB�R

�ind� � 2KCDKCD � K2�

� �2
�5��

5
4hBAihBCiR

�ind�
CB �

5
4hBBihBCiR

�ind�
AC

� 3KACKBDhBCihBDi � KAB�

� 1
2gABhBCihBDiR

�ind�
CD 	: (46)

We observe that there is a close relation between the
vanishing of the cosmological constant and the keeping
of the Lorentz invariance on the brane. These conditions
are enforced so that the higher dimensional signatures
encapsulated in the induced geometry of the brane cancel
the Lorentz symmetry breaking inevitably induced on the
brane, thus reproducing the observed geometry. The first
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condition, Eq. (45), can be modified to account for any
nonvanishing value for the cosmological constant, as ap-
pears to be suggested by the recent Wilkinson Microwave
Anisotropy Probe data, by defining the observed cosmo-
logical constant � such that ��5� � �� ~��5�. A much
more elaborate fine-tuning, however, is required for the
Lorentz symmetry to be observed on the brane, as de-
scribed by the condition in Eq. (46). To our knowledge
this is a new feature in braneworld models, as in most
models Lorentz invariance is a symmetry shared by both
the bulk and the brane. We shall examine further implica-
tions of this mechanism elsewhere [14]. In this future study
the inclusion of a scalar field will also be discussed.

IV. DISCUSSION AND CONCLUSIONS

In this paper we analyzed the spontaneous symmetry
breaking of Lorentz invariance in the bulk and its conse-
quent effect on the brane. For this purpose, we considered a
bulk vector field subject to a potential which endows the
field with a nonvanishing vacuum expectation value, thus
allowing for the spontaneous breaking of the Lorentz
symmetry. This bulk vector field is directly coupled to
the Ricci tensor, so that after the breaking of Lorentz
invariance the loss of this symmetry is transmitted to the
gravitational sector of the model. For simplicity, we as-
sumed that the vacuum expectation value of the component

of the vector field normal to the brane vanishes. The
complex interplay between matching conditions and the
Lorentz symmetry breaking terms was examined. We
found that Lorentz invariance on the brane can be made
exact via the dynamics of the graviton, vector field and the
geometry of the extrinsic curvature of the surface of the
brane. As a consequence of the exact reproduction of
Lorentz symmetry on the brane, we found a condition for
the matching of the observed cosmological constant in four
dimensions. This tuning does not follow from a dynamical
mechanism but is imposed by phenomenological reasons
only. From this point of view, both the value of the cos-
mological constant and the Lorentz symmetry seem to be a
consequence of a complex fine-tuning. We aim to further
study the implications of our mechanism by also consid-
ering the inclusion of a scalar field in a forthcoming
publication [14].
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[2] V. A. Kostelecký and S. Samuel, Phys. Rev. D 39, 683
(1989); Phys. Rev. Lett. 63, 224 (1989); V. A. Kostelecký
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[12] O. Bertolami and J. Páramos, Phys. Rev. D 72, 044001
(2005).

[13] M. Bucher and C. Carvalho, Phys. Rev. D 71, 083511
(2005).

[14] O. Bertolami and C. Carvalho (unpublished).

ORFEU BERTOLAMI AND CARLA CARVALHO PHYSICAL REVIEW D 74, 084020 (2006)

084020-6


