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In this paper we have constructed a coordinate space (or geometric) Lagrangian for a point particle that
satisfies the exact doubly special relativity (DSR) dispersion relation in the Magueijo-Smolin framework.
Next we demonstrate how a noncommutative phase space is needed to maintain Lorentz invariance for the
DSR dispersion relation. Lastly we address the very important issue of velocity of this DSR particle.
Exploiting the above noncommutative phase space algebra in a Hamiltonian framework, we show that the
speed of massless particles is c and for massive particles the speed saturates at c when the particle energy
reaches the maximum value �, the Planck mass.

DOI: 10.1103/PhysRevD.74.084019 PACS numbers: 02.40.Gh, 03.30.+p, 98.80.Cq

Motivated by ideas from quantum gravity [1], an exten-
sion of special theory of relativity known as doubly (or
deformed) special relativity (DSR) [2] has been proposed.
Indeed, it should be emphasized that, (as in special theory
of relativity), DSR is also based on the sacred (Einsteinian)
relativity principle of inertial observers that automatically
removes the idea of a preferred reference frame (see for
example [3]). However, unlike special theory of relativity
that has a single observer-independent scale—the velocity
of light c—in DSR there are two observer-independent
scales: a length scale, (� Planck length?) and the velocity
of light c. This construction generalizes the conventional
energy-momentum dispersion relation to p2 �
m2 � F��; ::� where m is the rest mass and the extension
function F depends on a new parameter � (besides the
existing variables and parameter). � is related (maybe) to
the Planck mass. However, in the limit �! 1 one recov-
ers the relation p2 � m2.

This additional mass scale � plays crucial roles in two
very different contexts: The new dispersion relation is
useful in explaining observations of ultrahigh energy cos-
mic ray particles and photons that violate the Greisen-
Zatsepin-Kuzmin bound [4]. Note that one can ‘‘solve’’
these threshold anomaly problems by introducing explic-
itly Lorentz symmetry violating schemes but this is pos-
sible only at the cost of abandoning the relativity principle.
At the same time, existence of a length scale is directly
linked to the breakdown of spacetime continuum and the
emergence of a noncommutative (NC) spacetime (below
e.g. Planck length) [5–7]. Once again, this is in accord with
the relativity principle since all inertial observers should
agree to the (energy) scale that signals the advent of new
physics, (maybe) in the form of an underlying NC space-
time structure and its related consequences. In this paper
we will focus on the second aspect, after constructing a
dynamical model for a DSR particle.

The theoretical development in this area so far has been
mainly kinematical in the sense that various forms of the
generalized dispersion relation (i.e. forms of F) have been
suggested that are consistent with �-dependent extensions

of Poincaré algebras [8–10]. However, a satisfactory geo-
metrical picture of the model, in terms of a coordinate
space Lagrangian, so far has not appeared. In the present
work we have provided such a Lagrangian that can de-
scribe a particular form of DSR dispersion relation, known
as the Magueijo-Smolin (MS) relation [9],

 p2 � m2

�
1�
���p��

�

�
2
; (1)

where �0 � 1, ~� � 0. In (1), p0 � � provides the particle
energy upper bound, which can be identified with the
Planck mass. A first step in model building was taken in
[11] where the system described the MS particle only for
m � �. The model presented here is valid for the exact MS
relation (1).

The other important issue is the connection between this
particle model with a NC spacetime (or more generally
phase space) [7–10]. Exploiting the notion of duality in the
context of quantum group ideas, it has been demonstrated
[8–10] that each DSR relation is uniquely associated with a
particular form of NC phase space. More precisely, a DSR
relation is Casimir of a particular �-deformed Poincaré
algebra and the latter is connected to a NC phase space
in a unique way. In particular, the MS relation is related to a
specific representation of �-Minkowski NC phase space
[8–10].

From a different perspective, one can directly obtain the
phase space algebra of a point particle model simply by
studying its symplectic structure (in a first order phase
space Lagrangian formulation [12]) or by performing a
constraint analysis in a Hamiltonian framework [13]. The
most popular example in this connection is the canonical
NC Moyal plane that one gets in studying the planar
motion of a charge in a large perpendicular magnetic field
[7]. Generation of NC phase space with Lie algebraic
forms of noncommutativity have appeared in [14]. The
motivation of our work is also to see in an explicit way
how the connection between a DSR relation and a specific
NC phase space is uniquely established, in a dynamical
framework, as an alternative to the quantum group duality
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approach [8–10]. The conclusion drawn from our present
analysis of an explicit model is quite interesting. We find
that for a modified dispersion relation (such as DSR mass-
energy law) appearance of a modified phase space algebra
(or an NC phase space) is necessary, but the association
between a DSR relation and a NC phase space is not
unique. The first assertion is originated from a subtle inter-
play between Lorentz invariance and the DSR dispersion
relation in question. The nonuniqueness in the choice of
NC phase space is due to the gauge choice and relative
strengths of the parameters. In the present work we dem-
onstrate that the MS law is consistent with a NC phase
space algebra that is more general than the �-Minkowski.
This is a new and mixed form of NC phase space algebra
that interpolates between two Lie algebraic structures:
Snyder [6] and �-Minkowski (in MS base) [8,10].

The important question of three velocity of the particle is
answered very clearly in our dynamical framework. Our
results show that the massless particles move with c and the
maximum speed of massive particles is also c, when their
energy reaches the upper bound � and there are subtle �
effects for the general case. These conclusions agree with
[15].

Let us start with the Lagrangian of our proposed model
of a MS particle,

 

L �
m�������������������

�2 �m2
p

�
g�� _x� _x� �

m2

�2 �m2 �g�� _x����2
�

1=2

�
m2�

�2 �m2 g�� _x���

�
m�������������������

�2 �m2
p ��

m2�

�2 �m2 � _x��: (2)

Here g�� represents the flat Minkowski metric g00 �

�gii � 1. We have adopted the shorthand notation �AB� �
g��A�B� and c � 1.

First we derive the DSR dispersion relation. The con-
jugate momentum is

 p� �
@L
@ _x�

�
m�������������������

�2 �m2
p

� _x� �
m2

�2�m2 � _x�����

�
�

m2�

�2 �m2 �
�:

(3)

It is straightforward to check that (3) satisfies the MS
dispersion law (1). The structure of a point particle model
of the kind (2) is new and is one of our main results. We
note that the last term (although being a total derivative)
and the specific overall scale factor in (2) is required to
yield the MS relation (1).

Let us now discuss why the NC phase space is necessary.
To begin with, one can construct the above Lagrangian
from the first order form,

 L � � _xp� �
�
2

�
p2 �m2

�
1�
��p�
�

�
2
�
; (4)

by eliminating � and p�. In (4) � plays the role of a
multiplier that enforces the MS mass-shell condition. The
symplectic structure in (4) clearly suggests a canonical
phase space with the only nontrivial Poisson bracket
fx�; p�g � �g��. But notice that the MS law is not com-
patible with Lorentz invariance if one employs a canonical
phase space. Quite obviously the Lorentz generator J�� �
x�p� � x�p� transforms x� and p� properly,

 fJ��; x�g � g��x� � g��x�;

fJ��; p�g � g��p� � g��p�;
(5)

but it fails to keep the MS dispersion law invariant,

 

�
J��;

�
p2 �m2

�
1�
��p�
�

�
2
��

� �
2

�

�
1�
��p�
�

�
���p� � ��p��: (6)

The remedy is to introduce a modified or NC phase space
algebra that is consistent with the present Lagrangian
structure (2) and keeps the MS relation invariant.

This is possible thanks to the �-reparameterization in-
variance of the Lagrangian (2), which is evident from the
vanishing Hamiltonian,

 H � �p _x� � L � 0: (7)

This local gauge invariance allows us to choose appropriate
gauge fixing conditions such that specific forms of NC
phase space structures are induced via Dirac brackets
[13]. In the terminology of Dirac, the noncommuting con-
straints are termed as second class constraints (SCC) and
the commuting constraints, that induce local gauge invari-
ance are first class (FCC). In the presence of SCCs � 1;  2�
that do not commute, f 1;  2g � 0, the Dirac brackets are
defined in the following way:

 fA;Bg� � fA;Bg � fA; igf i;  jg�1f j; Bg; (8)

where f i;  jg refers to the constraint matrix. From now on
we will always use Dirac brackets and refer to them simply
as fA;Bg. In the present instance, the MS mass-shell con-
dition (1) is the only FCC present and there are no SCC.
We choose the gauge

  1 � �xp� � 0; (9)

that has been considered before [14,16] in similar circum-
stances. Together with the mass-shell condition (1),  2 �
p2 �m2�1� ��p�=��2 � 0 they constitute a SCC [13]
pair with the only nonvanishing constraint matrix element
f 1;  2g � �m2�1� ��p�=��. Hence the Dirac brackets
follow:
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fx�; x�g �
1

�
�x��� � x����

�
1

m2�1� ��p�=��
�x�p� � x�p��;

fx�; p�g � �g�� �
1

�
��p� �

p�p�
m2�1� ��p�=��

;

fp�; p�g � 0: (10)

Performing an (invertible) transformation on the variables,

 ~x � � x� �
1

�
�x��p�; (11)

we find an interesting form of algebra that interpolates
between Snyder [6] and �-Minkowski [2,8,10]:
 

f~x�; ~x�g �
1

�
�~x��� � ~x���� �

�2 �m2

�2m2 �~x�p� � ~x�p��;

f~x�; p�g � �g�� �
1

�
�p��� � p���� �

�2 �m2

�2m2 p�p�;

fp�; p�g � 0: (12)

In absence of the 1=� term or the ��2 �m2�=��2m2� term,
one obtains the Snyder [6] or the �-Minkowski algebra
[8,10], respectively.

We now show that the novel phase space algebra (12) is
indeed consistent with Lorentz invariance. With J�� �
~x�p� � ~x�p� and using (12), one can easily compute,

 

�
J��;

�
p2 �m2

�
1�
��p�
�

�
2
��

� 2
�
p2 �m2

�
1�
��p�
�

�
2
�
	  2���p� � ��p��;

(13)

so that the MS relation is Lorentz invariant on shell. Next,
using (12), we check that the Lorentz algebra is intact,

 fJ��; J�	g � g�	J�� � g��J	� � g�	J�� � g��J�	:

(14)

This, in itself, is expected since individually both Snyder
[6] and �-Minkowski [8] algebras do not modify the
Lorentz sector, but all the same it is reassuring to note
that the mixed form (12) also has this property. However,
Lorentz transformations of x� and p� are indeed affected,

 fJ��; ~x
g � g�
~x� � g�
~x� �
1

�
���J
� � ��J
��;

fJ��; p
g � g�
p� � g�
p� �
1

�
���p� � ��p��p
:

(15)

Notice that only the �-Minkowski part of the algebra (12)
is responsible for the above modified forms and also that
the extra terms appear only for J0i and not for Jij so that
only boost transformations are changed. This concludes

our discussion on the construction of MS particle
Lagrangian and its associated NC phase space.

We now address the very important issue of speed of the
� particle [15]. We stress that since we have an explicit
Lagrangian construction, the definition of velocity is very
natural and unambiguous in this scheme. We extract the
Hamiltonian p0 from the MS mass-shell condition (1),

 p0 �
�

��2 �m2�
��m2 � ��2m2 � ��2 �m2� ~p2�1=2�

(16)

with p0 �
������������������
m2 � ~p2

p
as �! 1. Next, exploiting the NC

algebra (12), we derive the particle dynamics:

 

_~x0 � f~x0; p0g �
~p2

m2 ;

_~xi � f~xi; p0g �

������������������������������������������
1�
��2 �m2�

�2m2 ~p2

�s
pi
m
:

(17)

As a consistency check, note that (17) can be directly read
off from the f~x�; p�g bracket given in (12). The natural
definition for three velocity [15], vi � _~xi= _~x0, is not naı̈vely
applicable in the present case as it does not lead to normal
particle velocity in the �! 1 limit. However, this is not
surprising since we have used a nonstandard gauge choice
(9) and further redefinitions (11). Let us insist that all the
physical quantities in the limit �; �m! 1 should reduce
to normal particle properties since then the algebra (12)
becomes completely canonical. Keeping this in mind, we
define a new variable,

 X �
�
��2 �m2�

�2 �
m2

~p2

�
~x0; (18)

and hence obtain,

 vi � _~xi= _X � pi=

�������������������������������������������
m2 �

��2 �m2�

�2
~p2

s
;

~v2 � ~p2=
�
m2 �

��2 �m2�

�2
~p2

�
:

(19)

First of all, we justify our choice of X by noting that

 fX; p0g � 1�
��2 �m2�

�2m2
~p2 	 1�O

�
1

�2m2

�
; (20)

so that in the canonical limit X behaves as a conjugate
variable to p0, the Hamiltonian, as it should. The velocity
in (19) has the correct �! 1 canonical limit. Moreover,
m2 � 0) ~v2 � 1 showing that massless DSR particles
move with c irrespective of their energy. On the other
hand, for massive particles, the MS relation (1) saturates
at p0 � � for which ~p2 � �2. Putting this back in (19) we
find once again j v j� 1. Lastly, m � �)j v j�j p j =m
so that Planck mass particles appear to be nonrelativistic,
which agrees with their dispersion relation (1). All these
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conclusions are in accord with [15]. In the two Figs. 1(a)
and 1(b) for m � 1, � � 1:5 and m � 1, � � 3, respec-
tively, we plot ~p2 � A�x�, ~v2 � C�x� against energy p0 �
x for the MS particle and compare them with the normal
particle ~p2 � B�x�, ~v2 � D�x�. The MS energy upper
bound p0 � x � � is used in the graphs. They indicate
that MS particles can survive for smaller energy than
normal particle (for the same mass) and are always faster
than normal particles of same energy. However, the veloc-
ity of massive MS particles is also bounded by c that occurs
at p0 � �. Figure 1(b) shows that, for larger �, the MS
particle tends towards its normal cousin very quickly. We
emphasize that although we have worked in a particular
gauge, the above limiting results are general since they
involve only �-relativistic invariants.

It is interesting to consider generalization of the invari-
ant ‘‘length’’ l2 in our geometry,

 fJ��; l2g �
�
J��;

�
~x2

�
1�
��p�
�

�
2
�
�
�~xp�2

m2

��

�
2�~xp�

m2�

�
p2 �m2

�
1�
��p�
�

�
2
�
�~x��� � ~x����:

(21)

We find that in this type of phase space geometry the notion
of an absolute coordinate space length is replaced by a
combination of both ~x� and p� that is invariant only on

shell (for MS law), and for �! 1 one recovers the length
for Snyder geometry. For Snyder algebra, this is also con-
sistent with the interpretation,

 fxS�; p�g � �g�� �
1

m2 p�p� � �G
S
��;

�l2�s � GS
���x

S���xS��;
(22)

where, as noted before, the Snyder algebra (and metric) is
obtained from (12) in the limit �! 1. However, this
interpretation does not work if one includes the
�-Minkowski component of the algebra.

We conclude by noting that more dramatic changes in
our perception are awaiting us, as and when we are able to
construct a quantum field theory with the underlying
�-Minkowski NC spacetime structure and with fundamen-
tal excitations obeying DSR kinematics. To that end, it is
essential that one has a clear understanding of the physics
involved in the classical and quantum mechanical scenario.
We hope that the present work is a first step in this
direction.
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