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surface term at spatial infinity. The total Hamiltonian of the composed ‘‘shell� gravity’’ system is then
calculated. Known results for the dust matter are recovered as particular cases. The above ‘‘surface
renormalization’’ of the Hilbert action may be used for any spatially flat spacetime.
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I. INTRODUCTION

In his seminal paper [1], Werner Israel considered the
dynamics of a self-gravitating thin matter shell as the
simplest toy model describing gravitational collapse.
Since field equations for realistic collapse are very difficult
to handle, these models prove useful to analyze many
aspects of this phenomenon (see e.g. [2,3]). The dynamics
of such a system indeed reduces to a proper ‘‘tailoring’’ of
the two different spacetimes, describing the two sides of
the shell.

Both the variational and the canonical (Hamil-
tonian) formulations of the dynamics of the composed
‘‘shell� gravity’’ system were constructed in [4,5], start-
ing from first principles, without assuming any symmetry
of the system. Recently, a considerable simplification of
this theory was obtained via a consistent use of the theory
of distributions (see [6] for lightlike shells and [7] for
massive shells).

In the case of a spherically symmetric shell in vacuum,
this formulation leads to a simple Hamiltonian system with
1 degree of freedom. The configuration variable is the area
of the shell, whereas the canonical momentum equals the
hyperbolic angle between the surfaces ftSchwarzschild �
constg on one side and the surfaces ftMinkowski � constg
on the other side of the shell (cf. [5] for a shell composed
of the dust matter; the general result, valid for an arbitrary
ideal fluid, is proved in the present paper). Transformations
of this Hamiltonian structure due to changes of a time
variable were thoroughly discussed in [8].

The spherically symmetric shell is, therefore, well
understood as a special case of an arbitrary shell. Never-
theless, an intriguing puzzle persists: ‘‘imposing spherical
symmetry of the model’’ and ‘‘performing variation of the
action’’ seem to be noncommuting procedures, at least in
the simplest version, when the variation is performed

within the family of configurations in which an internal
Minkowski geometry is tailored to an external Schwarzs-
child geometry of a fixed but arbitrary mass parameter.
Indeed, the standard Hilbert action (with appropriate mod-
ifications, necessary to handle singular—Dirac deltalike—
objects), restricted to those configurations only, does not
imply the correct dynamics of the ‘‘shell� gravity’’ sys-
tem. As will be seen in the sequel, this is due to the fact that
the Arnowit-Deser-Misner (ADM) mass at infinity, which
later plays the role of the Hamiltonian of the system, is
fixed a priori within the above family of configurations
instead of being a function of the configuration variables.

To obtain the missing relation between the energy (i.e.
the ADM mass) and the configuration of the system, one
has to extend the family of admissible configurations in
such a way that the ADM mass is no longer fixed a priori
but is also subject to variation. This leads to an even more
difficult problem: the total action diverges at infinity.

In the present paper we propose a simple remedy for this
disease. It consists in improving the Hilbert action by an
appropriate boundary term at spatial infinity. This solution
is suggested by the analysis of boundary terms in canonical
relativity, which was given in [9].

The above boundary term may also be used as a remedy
for the standard difficulty in general relativity, consisting in
the fact that the integral of the Hilbert action over an
asymptotically flat spacelike surface is infinite when cal-
culated for a generic metric g � �� h (where � is the flat
Minkowski background), if standard falloff conditions
(h� 1

r and @h� 1
r2) are imposed. The divergence of this

integral at spatial infinity does not lead to any difficulty in
classical theory, where we only need a local version of the
action to derive the field equations. Global problems arise
however on the canonical level, when we want to define
the global Hamiltonian of the gravitational field. Here,
appropriate ‘‘boundary Legendre transformations’’ are
necessary. But, as shown in [9], all of these boundary
manipulations may always be performed on finite two-
surfaces S. As a result we obtain quasilocal Hamiltonians
HS (see also [10]). For this purpose no boundary improve-

*Electronic address: kijowski@cft.edu.pl
†Electronic address: magli@mate.polimi.it
‡Electronic address: malafarina@mate.polimi.it

PHYSICAL REVIEW D 74, 084017 (2006)

1550-7998=2006=74(8)=084017(11) 084017-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.084017


ments of the action are necessary, because the boundary
manipulations are always performed on the Hamiltonian
level and are related to an appropriate choice of the control
of the boundary data for the Hamiltonian field dynamics.
Finally, the global Hamiltonian H1 can be directly ob-
tained by simply shifting the surface S to infinity. In this
procedure no ‘‘global action’’ is necessary. However, if we
think about quantization of gravitational field and want to
implement the idea of Feynman path integrals, the (spa-
tially) global action is necessary as a building block for the
field propagator. The techniques proposed by us in the
present paper may be used for this purpose.

The plan of the paper is as follows. In Sec. II we briefly
summarize the framework of the singular Riemann tensor
related to the tailoring of the spacetime and show how the
use of the tensor-densities simplifies the entire formalism.
In Sec. III we restrict ourselves to the spherically symmet-
ric case and calculate the (hyperbolic) angle� between the
Schwarzschild and the Minkowski foliations on both sides
of the shell. This angle later plays the role of the momen-
tum canonically conjugate to the volume of the shell. In
Sec. IV we show that the simplest Hilbert action principle
does not lead to the correct description of the dynamics of
the ‘‘shell� gravity’’ system: the dependence of the total
mass of the system upon the configuration variables is still
missing. In Sec. V we show how to improve the above
variational principle by taking into account boundary terms
at spatial infinity. Finally, in Sec. VI we show that the angle
� is indeed the canonical momentum of our theory and
prove that the Hamiltonian function of the system is nu-
merically equal to the ADM mass at spatial infinity. We
stress that the Legendre transformation between the veloc-
ity and the momentum of the physical system in question is
not univocal. Indeed, to one velocity there correspond in
general two different values of the momentum. Hence,
only the canonical variables, position and momentum
(and not position and velocity), provide the global coor-
dinate chart on the phase space of the system. Detailed
calculations are found in the Appendices.

II. SINGULAR CURVATURE TENSOR

We consider a spacetime M consisting of two parts:
M �M� [M�, tailored together along their common
boundary � � @M� � �@M�. The 3-dimensional hy-
persurface � describes the history of a moving 2-
dimensional matter shell. Tailoring means that the induced
metric gab on � is continuous, whereas its derivatives (i.e.
also the four-dimensional connection coefficients ����)
may be discontinuous across �. We assume that the matter
distributed on � is massive. This means that the intrinsic
metric gab of � is one-timelike and two-spacelike, i.e. has
signature ��;�;��.

As shown in [7], a considerable simplification of the
theory of thin shells is obtained if we use only such
coordinate systems (x�), � � 0, 1, 2, 3; on M, for which

not only the induced metric gab on � but also all the 10
components g�� of the spacetime metric are continuous.
This is not a physical restriction imposed on possible
configurations of the system, but merely a gauge condition,
which can be always satisfied. Indeed, it is easy to see that
starting from any field configuration which does not fulfill
our gauge condition (i.e. only 6 components of the metric
along � are continuous), there exists a transformation of
variables which also makes the remaining 4 components
(transversal to �) continuous. We stress, however, that our
formulation of the dynamics of the system contains only
intrinsic geometric quantities, which do not depend upon
any choice of coordinates. Hence, our results may be
translated to any coordinate system, also those not ful-
filling our gauge condition; however, the mathematical
formalism which leads to Lagrangian and Hamiltonian
formulations of the dynamics becomes much simpler in
this gauge. Indeed, for a metric g�� satisfying this condi-
tion, we may use Einstein tensor density: G�

� ����������
detg
p

�R�
� �

1
2�

�
�R�, where the Riemann tensor R is

defined via the standard geometric formulas, with deriva-
tives of the connection coefficients ���� understood in the
sense of distributions. Because of discontinuities of �’s
across � it contains a singular part

 

singG�
� � G�

��� (2.1)

proportional to the Dirac delta �� on �. It may be easily
proved (see [7]) that G is the 3-dimensional tensor-density
living on �, whose components transversal with respect to
� vanish identically. Moreover, its components tangent to
� are given by the following identity:

 G a
b � �Q

a
b�; (2.2)

where Qa
b denotes the extrinsic curvature of � (written in

the ADM representation) and square brackets denote its
jump between both sides of �.

Formula (2.1) shows the reason why the theory simpli-
fies considerably if we use consequently tensor densities
instead of tensors: all the singular four-dimensional den-
sities which arise in the theory, factorize in a natural way
into products of: (i) three-dimensional densities on � and
(ii) the Dirac delta �� which, in fact, is a one-dimensional
density in the direction transversal to �. No such factori-
zation exists for tensors.

The entire dynamics of the gravitational field interacting
with the shell is described by the Einstein equations:
singG�

� � 8�T �
�, where T denotes the energy momen-

tum tensor density of the matter. In case of a matter shell,
T vanishes outside of � and, again, factorizes into the
product of the Dirac delta and a three-dimensional tensor
density T on �:

 T � T��: (2.3)

Of course, components of T transversal with respect to �
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vanish identically. Consequently, the singular part of
Einstein equations may be expressed in terms of 3-
dimensional intrinsic objects living on �: Ga

b � 8�Ta
b.

The remaining dynamical equations of the theory are the
vacuum Einstein equations outside of � and the mechani-
cal equations of motion for the matter, implied by its
constitutive equation.

III. SPHERICAL SYMMETRY

In the present paper we consider the simplest, spheri-
cally symmetric case. Assuming the trivial R3 topology of
each Cauchy surface ft � constg and the S2 	 R1 topology
of the world tube �, we conclude that the interior of the
shell (i.e. the component M�) must be a portion of the flat
Minkowski space

 ds2
� � �d�2 � d�2 � �2d�2 (3.1)

corresponding to � 
 	���, with the shell located at � �
	���, whereas the exterior (i.e. the component M�) must
carry a Schwarzschild geometry

 ds2
� � �

�
1�

2M
r

�
dt2 �

�
1�

2M
r

�
�1
dr2 � r2d�2

(3.2)

for r �  �t� and some value M � 0, with the shell located
at r �  �t�. As the time variable we choose the external
Schwarzschild time t, measured at spatial infinity by an
external observer.1 Consequently, we treat the value of the
Minkowski time � on the shell as a (monotonic) function of
t:

 � � f�t�: (3.3)

Matching conditions for the metric on the shell imply that
the function 	 is fully determined by f and  :

 	�f�t�� �  �t�: (3.4)

The remaining matching conditions are equivalent to the
fact that the four-velocity @

@t of the particles constituting the
shell has the same length with respect to both metric
tensors. This velocity is given by the following vectors,
which must coincide:

 

d

dt

���������:�
@
@t
� _ 

@
@r
;

d

dt

���������:�
d�
dt
�

d

d�
� _f

�
@
@�
� _	

@
@�

�
� _f

@
@�
� _ 

@
@�

:

Equating the length of this vector on shell, calculated with

respect to (3.2)

 �

�����@@t� _ 
@
@r

�����2

� �

�
1�

2M
 

�
� _ 2

�
1�

2M
 

�
�1
;

(3.5)

and with respect to (3.1), respectively,

 �

����� _f
@
@�
� _ 

@
@�

�����2

� _f2 � _ 2; (3.6)

we obtain the remaining matching condition for the metric:

 

_f 2 � 1�
2M
 
�

1� 2M
 �

_ 2

1� 2M
 

: (3.7)

An important role in further calculations is played by the
hyperbolic angle � between surfaces ft � constg on the
Schwarzschild side and surfaces f� � constg on the
Minkowski side of the shell. More precisely, we take the
four-vector

 

~n :�
�
1�

2M
r

�
��1=2� @

@t
;

(ortho)normal with respect to the first (Schwarzschild)
foliation and the four-vector

 

~m :�
@
@�
;

(ortho)normal to the latter (Minkowski) foliation.
Consequently, we define the angle (see also [5]): j�j :�
arcoshj� ~nj ~m�j. Similarly as in Euclidean geometry, the
sign of the angle may be chosen arbitrarily. A convenient
choice is the sign of the velocity _ . So, we define

 � :� �sign _ �arcoshj� ~nj ~m�j � �sign _ �arcoshf�� ~nj ~m�g
(3.8)

[remember that both vectors are timelike and belong to the
future light cone; their scalar product � ~nj ~m� :� g��n�m�

is, therefore, negative]. To use the above formula we need,
in principle, a system of coordinates in a neighborhood of
�, such that the metric g is continuous across �. Before we
construct such coordinates (see Appendix A), we may
calculate � using the following method. Take the normal-
ized velocity vector written in Schwarzschild coordinates:

 

~v :�
@
@t�

_ @
@r

k @@t�
_ @
@r k

;

or, equivalently, written in Minkowski coordinates:

 

~v :�
_f @
@��

_ @
@�

k _f @
@��

_ @
@� k

:

Now, we may use (3.2) [together with (3.5)] to calculate

1This way we are able to cover only this portion of the
evolution of the shell which lies outside of the event horizon.
To cover e.g. the collapse, we have to pass to a different time
variable. The transition between different times in the
Hamiltonian description of the shell dynamics was thoroughly
discussed in [8].
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 cosh�� � j�~vj ~n�j �
�1� 2M

 ���������������������������������
_ 2 � �1� 2M

 �
2

q (3.9)

and (3.1) to calculate

 cosh�� � j�~vj ~m�j �
_f�1� 2M

 �
3=2��������������������������������

_ 2 � �1� 2M
 �

2
q : (3.10)

Finally, we calculate � � �� �� according to formula

 cosh��� ��� � cosh�� cosh��  sinh�� sinh��;

(3.11)

equivalent to the following identity:

 � ~nj ~m�2 � 2� ~nj ~m�� ~mj~v�� ~nj~v� � � ~mj~v�2 � � ~nj~v�2 � 1 � 0;

(3.12)

valid for any triple � ~m; ~n; ~v� of normalized, timelike four-
vectors.

For a given value of configuration variables � ; _ � of the
shell, there are two possible values of � (see Fig. 1),
corresponding to the two possible solutions (3.11) of iden-
tity (3.12) treated as a quadratic equation for � ~nj ~m�. Using
(3.9) and (3.10) for � ~mj~v� and � ~nj~v�, one may derive the
following version of (3.12):

 cosh 2�� 1 �
_ 2

�1� 2M
 �

2

�
cosh��

�����������������
1�

2M
 

s �
2
; (3.13)

which, according to the convention (3.8) concerning the
sign of �, may be rewritten as the following constraint
equation:

 

sinh�

cosh��
��������������
1� 2M

 

q �
_ 

1� 2M
 

: (3.14)

IV. VARIATIONAL PRINCIPLE

In order to obtain the dynamics of the above
‘‘matter� gravity’’ system consider first the Hilbert action
A composed of the two parts: the gravitational part Agrav

being the integral over the four-dimensional domain D �
ft1 
 t 
 t2g of the scalar curvature and the matter part
Amat concentrated on the hypersurface and carrying the
information about the matter content of the shell:

 A �Agrav �Amat �
Z
D
Lgrav �

Z
D\�

Lmat: (4.1)

The gravitational Lagrangian splits into two parts: a regular
part outside of the shell and a singular (Dirac deltalike) part
on the shell

 L grav �
1

16�

���������
detg

p
R � Lsing

grav �Lreg
grav (4.2)

with R � Rreg �Rsing.

Taking into account only configurations obtained by
tailoring the external Schwarzschild solution with the in-
ternal Minkowski, we automatically annihilate the regular
part of the curvature: Rreg � 0. What remains is, therefore,
only the singular part, which we calculate according to the
identity G�

� �
���������
detg
p

�R�
� � 2R� � �

���������
detg
p

R. Hence,
using (2.1) and (2.2), we obtain

 

���������
detg

p
Rsing � �G�

��� � ��Qa
a���: (4.3)

Calculating the jump of the extrinsic mean curvature Qa
a

of �, it can be shown (see Appendix B for the proof) that
the following formula for the total value of the gravita-
tional part of the Hilbert action holds:
 

Agrav �
Z t2

t1

�
2M

cosh�

cosh��
��������������
1� 2M

 

q ��2 

�  _ ��
3M
2

�
dt�

�
 2

2
�
�
t2

t1

; (4.4)

where � � �� ; _ � is any of the two solutions of the
constraint equation (3.14).

To calculate the matter part of the action we assume
the simplest—hydrodynamical—model for matter. Con-
sequently (cf. [4,11]), the matter Lagrangian is equal to the
rest-frame energy density of the matter. The dust case
corresponds, e.g., to the constant function m��� � m0,
where the specific rest-frame energy m0 of the matter

(Minkowski)             (Schwarzschild)

FIG. 1. Given the shell position  and velocity _ , there are two
possible values of the angle �, satisfying constraint (3.14).
Consequently, the Schwarzschild spacetime (see foliation ft �
constg on the right-hand side) may be tailored with the
Minkowski spacetime in two different ways (see possible two
foliations f� � constg on the left-hand side).
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(i.e. calculated per unit amount of matter) does not depend
upon its specific volume �, because it is equal to the sum of
the rest-frame masses of the noninteracting dust particles.
For a generic fluid the total energy contains also the
interaction energy of the fluid particles, depending upon
the local density of the fluid or, equivalently, upon �. We
assume, therefore, that the rest-frame energy of the fluid is
a given function m � m���, which plays the role of the
constitutive equation and implies all the mechanical prop-
erties of the fluid composing the shell.

The fluid is homogeneous and, therefore, its specific
volume � equals the total (two-dimensional) volume
4� 2 of the shell, divided by the total amount of the fluid.
To simplify further our notation, we choose units in such a
way that the total amount of the fluid contained in the shell
equals 8�. This leads to the following formula:

 � :� 1
2 

2:

To calculate the matter part of the action, we multiply the
specific rest-frame energy m��� by the matter density J0

and integrate it over the shell (cf. [11]). Because m��� does
not depend upon angular variables �
;’� and the integra-
tion of the matter density over the shell gives the total
amount of the fluid which is constant in time, we conclude
that, modulo an appropriate choice of units, we have to
integrate m��� with respect to the time only:

 A mat �
Z
D\�

J0m���d
d’dt �
Z t2

t1
m���ds

�
Z t2

t1
m

�����@@t� _ 
@
@r

�����dt
�
Z t2

t1
m

����������������������������������������������
1�

2M
 

�
�

_ 2

�1� 2M
 �

vuut dt: (4.5)

Finally, adding (4.4) and (4.5) we obtain

 A �
Z t2

t1
L dt� F�t2� � F�t1�; (4.6)

with

 L � m���

�������������������������������������������
1�

2M
 

�
�

_ 2

1� 2M
 

vuut �
3M
2

�
2M cosh�

cosh��
��������������
1� 2M

 

q � 2 �  _ �; (4.7)

where F�t� � � 1
2 

2�. Of course, the boundary term
F�t2� � F�t1� can be neglected.

In the above variational principle the status of the (arbi-
trarily chosen) value M of the Schwarzschild mass is
highly unclear. Physically, being equal to the ADM mass,
it describes the total mass (i.e. the total energy) of the
interacting ‘‘matter� gravity’’ system and, therefore, we
would expect it to be equal to the Hamiltonian of the

system, which is not the case here. Indeed, to obtain the
corresponding Hamiltonian formulation, we first evaluate
the momentum canonically conjugate to the variable  
from p �

@L
@ _ 

. From (3.14) we get

 

@ _ 
@�
�

�
1�

2M
 

� 1�
��������������
1� 2M

 

q
cosh�

�cosh��
��������������
1� 2M

 

q
�2
; (4.8)

and, consequently, formula (4.7) implies
 

p �  ��
 sinh���������������

1� 2M
 

q
	

�
m���
 

1�������������������������������������������������������
2� 2M

 � 2 cosh�
��������������
1� 2M

 

qr � 1
�
: (4.9)

The Hamiltonian function is then obtained via the usual
Legendre transformation: H � ; p � � p _ � L. Hence,
instead of the total energyM we obtain the following value
of the Hamiltonian function:
 

H � �
m���

��������������
1� 2M

 

q
��������������������������������
1�

_ 2

f1���2M�= �g2

r �  �  

�����������������
1�

2M
 

s
cosh�

� �m���

�����������������
1�

2M
 

s
cosh��

��������������
1� 2M

 

q
�������������������������������������������������������
2� 2M

 � 2 cosh�
��������������
1� 2M

 

qr

�  �  

�����������������
1�

2M
 

s
cosh�: (4.10)

We conclude that fixing a priori the value of M does not
lead to a true Hamilton principle but rather to an analog of
the Maupertuis-Lagrange variational principle in classical
mechanics, where the total energy of the system is given in
advance. However, this is not a genuine Maupertuis-
Lagrange approach since the relation between � ; _ � and
the energy M is still missing and cannot be retrieved from
the above formula. Many authors have noticed these diffi-
culties, but a correct variational formula for matter shells
has never been derived from first principles. In the follow-
ing, we are going to prove that only those configurations
for which the parameter M equals a well-defined function
M �H � ; _ � [see formula (4.4)], withH playing the role
of Hamiltonian, are physical.

V. IMPROVED VARIATIONAL PRINCIPLE

We propose the following, simple remedy for all these
problems, which leads to the correct variational and
Hamiltonian formulation of the model. Our method is
based on an analysis of the boundary phenomena (usually
neglected) arising in the Hilbert variational principle,
which was proposed in [9] (see also references herein). It
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was noticed that the variation of the gravitational
Lagrangian (4.2) contains, besides the standard volume
part responsible for the field equations, also the boundary
part, containing the variation of the extrinsic curvature of
the boundary @D of the domain D in question. More
precisely, taking into account also the matter Lagrangian,
we have

 �A �
Z
D

�L
�g

�g�� �
Z
D\�

�L
�’

�’��
1

16�

	
Z
@D
gab�Qab; (5.1)

where ’ denotes a generic matter field on the shell, Qab ��������������
j detĝj

p
�Lĝab � Lab�, Lab is the extrinsic curvature of @D,

and ĝab is its three-dimensional inverse metric.
For purposes of the present paper, we apply the above

formula to a spatially bounded, cylindric domain DR �
ft1 
 t 
 t2; r 
 Rg and denote t � x0 and r � x1,
whereas xA are angular coordinates, A, B � f2; 3g. The
value of the parameter R (later irrelevant, because the limit
R! 1will be considered) is chosen in such a way thatDR
contains our shell, i.e.  �t�<R for t1 
 t 
 t2 (see Fig. 2).

The boundary @DR splits into: (i) the cylindric surface
CR :� fr � Rg, and (ii) the two covers Ki :� ft � tig, i �
1, 2. Moreover, due to the deltalike singularity of the
external curvature Qab at the 2-dimensional ‘‘corners’’
CR \ Ki, the last (surface) integral in (5.1) contains also
two corner integrals. To simplify our notation, we marry
the corner terms together with the cover terms and write

 

Z
@DR

�
Z
CR

�
Z
K2

�
Z
K1

: (5.2)

We do not change the last two (‘‘cover� corner’’) terms
because their variations vanish if we keep fixed the initial
and the final field configurations (see also [9] for the
discussion of the canonical content of these integrals).
Instead, we perform a Legendre transformation on the
cylinder CR. For this purpose observe that, because of the
spherical symmetry of the field configuration, we have
g0A � 0, Q0A � 0, and, consequently,

 gab�Qab � g00�Q00 � gAB�QAB

� g00�Q00 �QAB�gAB � ��gABQAB�:

Now, we define a new improved action by adding to the
Einstein-Hilbert action (5.1), a boundary term, given by the
last term above:

 A tot �
Z
DR

Lgrav �
Z
DR\�

Lmat �
Z
CR

Lboundary; (5.3)

where

 L boundary �
1

16�
gABQAB: (5.4)

Of course, the new action implies the same field equations,
because the volume part of (5.1) does not change. However,
the quantity gab�Qab in the last (boundary) term of (5.1) is
now replaced on the cylinder CR by g00�Q

00 �QAB�gAB.
Hence, ‘‘variation with fixed boundary’’ of Atot means
something different than before, for A. Indeed, to kill the
boundary term when varying Atot, the following quantities
must be kept fixed on the cylinder CR: Q00 [as before, in
(5.1)] and the two-geometry gAB [instead of QAB as (5.1)].
As will be seen in the sequel, this approach gives us free-
dom to consider a much less restricted family of field
configurations. Consequently, we shall have more Euler-
Lagrange equations, one of them providing the missing
relation M �H � ; _ � between configuration variables
� ; _ � and the total energy (the ADM mass) of the
‘‘shell� gravity’’ system.

For this purpose we consider now in M�, instead of the
external Schwarzschild geometry (3.2), a ‘‘Schwarzschild-
like’’ geometry parametrized by an arbitrary function of
time M � M�t�:

 ds2
� � �

�
1�

2M�t�
r

�
dt2 �

�
1�

2M�t�
r

�
�1
dr2 � r2d�2

(5.5)

for r �  �t�. This family of configurations is useless for
the previous variational principle because the extrinsic
curvature QAB of CDR depends upon the function M�t�
and, therefore, does not correspond to the ‘‘variation with
fixed boundary values’’ QAB. Instead, the quantity r2d�2,
i.e. the angular part gAB of the above metric, is fixed.
Miraculously, also the value Q00 on CR, calculated for the

D

R

R
t

FIG. 2. Schematic view of the variation region DR.
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above metric, is fixed and equal to the corresponding value
for the flat metric M � 0. We conclude that the boundary
term of �Atot vanishes and we really obtain this way a
genuine variation principle for two arbitrary functions  �t�
and M�t�.

It is easy to see that the matching condition (3.7) and the
constraint equation (3.14) remain unchanged for the time-
depending parameter M � M�t�. Moreover, we prove
(Appendix C) the following formula:
 

Atot �
Z t2

t1
Ltotdt� F�t2� � F�t1� �G�t2� �G�t1�

�
R
2
�t2 � t1�; (5.6)

where

 L tot � m���

�������������������������������������������
1�

2M
 

�
�

_ 2

1� 2M
 

vuut �M

�
2M cosh�

cosh��
��������������
1� 2M

 

q � 2 �  _ �; (5.7)

and
 

G�t� � _M
�

R2

2�1� 2M
R �

2
�

 2

2�1� 2M
 �

2
� 2M�R�  �

� 12M2 ln
�

2M� R
2M�  

�
� 2M2

�
4

�1� 2M
R �

�
1

�1� 2M
R �

2
�

4

�1� 2M
 �
�

1

�1� 2M
R �

2

�	
: (5.8)

We see that the dependence upon the (arbitrarily chosen)
radius R enters only in the boundary (both spatial and
temporary) terms which may be simply neglected. Since
the bulk term (5.7) does not depend upon R, we may pass to
the limit R! 1. As a result we obtain Ltot as the total
Lagrangian function of the ‘‘shell� gravity’’ system.

A simple but remarkable feature of this Lagrangian is
that it does not depend upon the time derivative _M, since it
enters only into the boundary term (5.8), which is ne-
glected. Hence, variation with respect to the function
M�t� leads to an algebraic (instead of differential) equa-
tion:

 

�Ltot

�M
�
@Ltot

@M
� 0:

We show in Appendix D that this equation can be solved
explicitly with respect to M. As a result we obtain

 M� ;�� �
 
2

�
1�

�
cosh��

����������������������������������
m� 

2

2 �
2

 2 � sinh2�

vuut �
2
	
:

(5.9)

Unlike in the previous approach, the total mass M of the

system, seen by an observer at infinity, is not fixed a priori
but is now defined as a function of the configuration
variables  ; _ [remember that � is also treated as a func-
tion of  and _ defined implicitly by (3.14)]. Substituting
(5.9) into (5.7) we express the total Lagrangian only in
terms of  and _ . The following final result is proved in
Appendix D:

 L tot� ; _ � �  _ �� ; _ � �M� ;�� ; _ ��: (5.10)

VI. HAMILTONIAN FORMULATION OF THE
DYNAMICS

To obtain the Hamiltonian version of the above model,
we first calculate the momentum p canonically conjugate
to the variable  . The following result is proved in
Appendix D:

 p :�
dLtot

d _ 
�  �: (6.1)

Performing the standard Legendre transformation and us-
ing (5.10), we conclude that the numerical value of the
Hamiltonian function of the system is equal to its ADM
mass at infinity:

 H � ; p � :� p _ � Ltot � M: (6.2)

Its conservationM�t� � const is now implied by the energy
conservation in Hamiltonian mechanics. We stress that the
total mass conservation is not postulated a priori in our
approach, but derived as a consequence of the dynamics of
the total ‘‘shell� gravity’’ system.

The phase space of the theory is thus globally parame-
trized by the configuration variable  and the correspond-
ing canonical momentum p . We remember that the
Lagrangian variables � ; _ � were not global since we
have two different values of � � �� ; _ � satisfying
Eq. (3.14). The canonical structure of the phase space
may also be described in terms of the symplectic form:

 ! � dp ^ d � d� �� ^ d � d� ^ d�12 
2�

� d� ^ d�: (6.3)

We see that the hyperbolic angle � can be interpreted as
the momentum canonically conjugate to the proper volume
� � 1

2 
2 of the shell. Because of (5.9) and (6.2), we may

write the Hamiltonian in terms of these canonical varia-
bles:

 H ��; �� �
���
�
2

r �
1�

�
cosh��

���������������������������������
m���2

2�
� sinh2�

s �
2
	
:

(6.4)

For the dust matter [m��� � m0] the canonical structure
(6.3) and the Hamiltonian (6.4) have been already derived
in [5] by a different method. Namely, the Hamiltonian
structure for a generic ‘‘shell� gravity’’ system (not nec-
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essarily spherically symmetric) was first obtained (cf. also
[7]); next, this structure was reduced to the spherical
symmetry. (The dependence of the Hamiltonian structure
upon a specific choice of the time parametrization was later
discussed in [8].) A direct derivation of the correct
Lagrangian (5.10) for the spherical shell, starting from
the standard Hilbert variational principle reduced to the
spherical case, however, was never performed before.
Moreover, the present result is much more general because
it is true for any constitutive equation m � m��� of the
fluid and not only for dust.

Formula (6.4) implies that the evolution equations of the
system may be written as

 _� �
@H
@�

; (6.5)

 _� � �
@H
@�

; (6.6)

the first of which being nothing but the constraint equation
(3.14), while the second one gives the remaining informa-
tion about the dynamics of the system.

APPENDIX A: CONSTRUCTION OF REGULAR
COORDINATES

Consider internal space M� equipped with the flat
Minkowski metric (3.1) for � 
 	��� and the external
space M� equipped with the ‘‘Schwarzschild-like’’ ge-
ometry (5.5) for r �  �t�. It is immediately seen that the
compatibility condition for the internal three-metric gab on
� � @M� � �@M� implies that formulas (3.4), (3.5),
(3.6), (3.7), (3.8), (3.9), (3.10), (3.11), (3.12), (3.13), and
(3.14) remain valid also for the case of M which is no
longer constant in time.

To construct a regular coordinate system on the entire
spacetime M, we first introduce in (3.2) a new variable
x � r�  �t� for which we have � � fx � 0g. Under this
coordinate transformation, the Schwarzschild-like metric
(5.5) assumes the following form:

 

ds2
� �

1

�1� 2M�t�
�x� ��

��
_ 2 �

�
1�

2M�t�
�x�  �

�
2
�
dt2

� dx2 � 2 _ dtdx
	
� �x�  �2d�2; (A1)

Now, we want to extend coordinates (x�), where x0 � t,
x1 � x, x2 � #, and x3 � ’, to M� in such a way that the
metric g�� is continuous. Because of the spherical sym-
metry, coordinates (xA), A � 2, 3 may be left unchanged.
Hence, our coordinate transformation is described by two
functions:

 � � A�t; x�; (A2)

 � � B�t; x�; (A3)

where we may choose arbitrarily the value of x correspond-
ing to the center of M�. The Minkowski metric (3.1)
assumes now the following form:
 

ds2
� � �� _A2 � _B2�dt2 � �B2

;x � A
2
;x�dx

2

� 2� _BB;x � _AA;x�dxdt� B
2d�2: (A4)

Continuity of gAB at x � 0 implies

 	��� � B�t; 0� �  �t�: (A5)

Denoting

 A�t; 0� � f�t� (A6)

we recover equation _f _	 � _ . Now, denoting

 

@A
@x
�t; 0� � a�t�; (A7)

 

@B
@x
�t; 0� � b�t�; (A8)

the matching conditions for g00, g11, and g01 (the coeffi-
cients multiplying dt2, dx2, and dxdt, respectively) be-
tween (A1) and (A4) read

 

_ 2 � _f2 �
_ 2

1� 2M
 

�

�
1�

2M
 

�
; (A9)

 b2 � a2 �
1

1� 2M
 

; (A10)

 

_ b� _fa �
_ 

1� 2M
 

; (A11)

of which the first one is equivalent to the constraint equa-
tion (3.7).

In fact if we obtain a and _f from (A10) and (A11) and
substitute them into (A9) we obtain

 

�
1�

2M
 

�
2
�

�b� 1�2

b2 � 1
1���2M�= �

_ 2: (A12)

Now the hyperbolic angle � between the constant time
slices on the Minkowski side and the constant time slices
on the Schwarzschild side can be easily calculated in
Minkowskian coordinates as the angle between the vector
tangent to both foliations

 � � �sign _ �arcosh
� @@r j

@
@��

k @
@r kk

@
@� k

: (A13)

But @
@r �

@�
@r

@
@��

@�
@r

@
@� � a @

@�� b
@
@� , evaluated on shell in

Minkowskian coordinates. Now � @@r j
@
@�� � b, k @

@� k � 1,

and k @
@r k �

�����������������
b2 � a2
p

� 1�������������������
1���2M�= �
p so that
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 � � �sign _ �arcosh
� �����������������

1�
2M
 

s
b
�
: (A14)

Once� is given as a solution (3.14), then the values of _f, a
and b are uniquely determined from Eqs. (A10), (A11), and
(A14). Now every pair of functions A and B satisfying (A7)
and (A8) may be chosen as regular coordinates �t; x� on the
Minkowski side of the shell.

APPENDIX B: GRAVITATIONAL LAGRANGIAN
FOR M � const

To calculate the second fundamental form of � �M�,
we use the new variable x � r�  �t� for which the shell is
placed at x � 0. Consequently, the Schwarzschild metric
reduces to (A1) with M � const. It has, therefore, the
following form:

 ds2 � gtt�t; x�dt
2 � gxt�t; x�dtdx� gxx�t; x�dx

2

� gAB�t; x�dxAdxB; (B1)

with A, B � #, ’ and the extrinsic curvature of � can be
written as

 Kab � �
1�������
gxx
p �xab; (B2)

with a, b � t, #, ’ so that the ADM momentum of Kab is

 Qab �
�����������������
j detgcdj

q
�ĝabK � Kab�; (B3)

where ĝab � gab � gxagxb

gxx is the three-dimensional inverse
of the induced metric gab on the shell and Kab �
ĝacĝbdKcd. So we obtain

 Q � Qabgab � �2
�����������������
j detgcdj

q
ĝabKab

� 2
������������������
j detg��j

q
ĝab�xab: (B4)

Plugging (B1) into (B4), we obtain

 Q �
1������
jJj

p f�g##gtt;x � 2gttg##;x� � ��g##gtx;t

� 2gtxg##;t�g sin
; (B5)

with J � gttgxx � g2
tx. It is easy to check that g##gtx;t and

gtxg##;t are the same both on the Minkowski and the
Schwarzschild side so that we have �g##gtx;t� �
�gtxg##;t� � 0. Consequently, the jump of Q reduces to

 �Q� �
�

1������
jJj

p �g##gtt;x � 2gttg##;x�
�

sin
: (B6)

But, on the Schwarzschild side we have

 g

@xgtt � �2M
�

1�
_ 2

�1� 2M
 �

2

�
; (B7)

 gtt@xg

 �
2 

�1� 2M
 �

�
_ 2 �

�
1�

2M
 

�
2
�
; (B8)

and J � �1. On the Minkowski side we take the metric
given by (A4) and obtain

 g

@xgtt � 2 2
_b
a
�

2M�b� 1
�1�2M

 �
�

�b� 1�2
; (B9)

 gtt@xg

 �
2b 

�1� 2M
 �

�
_ 2 �

�
1�

2M
 

�
2
�
; (B10)

and J � �� _BA;x � _AB;x�2 � ��a _ � b _f�2 � �1. The
jump of Q across � is then easily evaluated as

 �Q� � 2 sin

�
 2

_b
a
� 3M

2b� 1

b� 1
� 4 

�
: (B11)

Consider

 cosh� �

�����������������
1�

2M
 

s
b; (B12)

for which

 � _� sinh� �

�����������������
1�

2M
 

s
_b�

M

 2

_ 

�1� 2M
 �

cosh�: (B13)

From (A10) we have

 a �

�����������������������������
b2 �

1

�1� 2M
 �

vuut �
sinh���������������
1� 2M

 

q : (B14)

Hence, from (B11), we get

 �Q� � 2 sin

�
� 2 _��

4M cosh�

cosh��
��������������
1� 2M

 

q � 3M� 4 
�
:

(B15)

The gravitational part of the Lagrangian is given only by its
singular part:

 A sing
gravjM � �

1

16�

Z
D\�
�Q�dtd#d’: (B16)

So that integrating by parts we finally obtain (4.4).

APPENDIX C: GRAVITATIONAL LAGRANGIAN
FOR M�t�

As seen in Sec. V, the total Hilbert action is given by

 A tot �
Z
DR

Lgrav �
Z
DR\�

Lmat �
Z
CR

Lboundary: (C1)

The gravitational Lagrangian is now divided into its sin-
gular part, given once again by [Q], and the regular part
which in this case is not vanishing:
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Z
DR

Lgrav �
Z
DR\�

Lsing
grav �

Z
DR

Lreg
grav

�
Z
DR\�

�Q� �
Z
DR

���������
detg

p
Rreg: (C2)

Evaluation of [Q] is analogous to the case M � const and
the only term which shows dependence on _M is (B9)

 g

@xgtt � 2 2
_b
a
�

2M

�b� 1�2

�
b�

1

�1� 2M
 �

�

� 2
_M 

�1� 2M
 �

�b� 1
�1��2M�= ��

a�b� 1�
; (C3)

so that
 

�Q� � 2 sin

�
 2

_b
a
� 3M

2b� 1

b� 1
� 4 

�
_M 

�1� 2M
 �

2

b�1� 2M
 � � 1

a�b� 1�

�
: (C4)

Now substituting again � � arcosh
��������������
1� 2M

 

q
b we get

 A sing
grav �

Z
DR\�

Lsing
grav �Asing

gravjM �
1

2

Z t2

t1

_M _  

�1� 2M
 �

2
dt:

(C5)

For the regular part of the gravitational Lagrangian we get

 R reg � �
2

�1� 2M�t�
r �

3

�
4

_M�t�2

r2 �

�
1�

2M�t�
r

� �M�t�
r

�
;

(C6)

so that

 

Z
DR

���������
detg

p
Rreg �

Z
DR

r2 sin
Rregdtdrd
d’

� 4�
Z t2

t1
dt
Z R

 �t�
r2Rregdr; (C7)

and so

 A reg
grav � �

1

16�

Z
DR

���������
detg

p
Rreg

�
1

2

Z t2

t1

_M _  

�1� 2M
 �

2
dt� �G�t��t2t1 ; (C8)

where G�t� is given by (5.8). Finally, evaluating

 gABQAB � �2R2 sin
��rttgtt � �r

g


�

� 2 sin
�R�M�t��; (C9)

we see that the boundary contribution to the action equals

 

Z
CR

Lboundary �
1

2

Z t2

t1
�R�M�t��dt

�
R
2
�t2 � t1� �

1

2

Z t2

t1
M�t�dt: (C10)

Adding together different contributions to the Hilbert ac-
tion we get Eq. (5.6).

APPENDIX D: MOMENTUM CANONICALLY
CONJUGATE TO  

Considering � as an implicit function of � ; _ ;M; _M�
given by the constraint Eq. (3.14), we have

 

@�
@M
�

1

 

sinh��2 cosh��
��������������
1� 2M

 

q
�

�1� 2M
 ��1�

��������������
1� 2M

 

q
cosh��

; (D1)

so that the equation of motion @Ltot

@M � 0 gives
 

m���
 �1�

_ 2

f1���2M�= �g2���������������
1� 2M

 

q ��������������������������������
1�

_ 2

f1���2M�= �g2

r � �
cosh��

��������������
1� 2M

 

q
��������������
1� 2M

 

q

	

�
1�

_ 2

�1� 2M
 �

2

�
: (D2)

But we have

 

�����������������������������
1�

_ 2

�1� 2M
 �

2

vuut �

����������������������������������������������������������������
1� 2 cosh�

��������������
1� 2M

 

q
� 1� 2M

 

r
cosh��

��������������
1� 2M

 

q ;

(D3)

whence

 �
m���
 
�

��������������������������������������������������������������������
1� 2 cosh�

�����������������
1�

2M
 

s
� 1�

2M
 

vuut ; (D4)

from which (5.9) easily follows. Equation (5.10) is then
obtained substituting (D3) and (D4) into Eq. (5.7).

Finally Eq. (6.1) is simply obtained from (5.7) noting
that

 p �
@Ltot

@ _ 
�

�
@Ltot

@�
�
@Ltot

@M
@M
@�

�
@�

@ _ 
; (D5)

with @Ltot

@� �  _ , @Ltot

@ _ 
�  �, @Ltot

@M � �1, and @M
@� �  _ .
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