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We study theories with 16 supercharges and a discrete energy spectrum. One class of theories has
symmetry group SU�2j4�. They arise as truncations of N � 4 super Yang-Mills theory. They include the
plane-wave matrix model, 2� 1 super Yang-Mills theory on R� S2 and N � 4 super Yang-Mills theory
on R� S3=Zk. We explain how to obtain their gravity duals in a unified way. We explore the regions of the
geometry that are relevant for the study of some 1=2 BPS and near BPS states. This leads to a class of two
dimensional (4,4) supersymmetric sigma models with nonzero H flux, including a massive deformed
WZW model. We show how to match some features of the string spectrum with the Yang-Mills theory.
The other class of theories are also connected to N � 4 super Yang-Mills theory and arise by making
some of the transverse scalars compact. Their vacua are characterized by a 2D Yang-Mills theory or 3D
Chern-Simons theory. These theories realize peculiar super-Poincaré symmetry algebras in 2� 1 or 1� 1
dimensions with ‘‘noncentral’’ charges. We finally discuss gravity duals of N � 4 super Yang-Mills
theory on AdS3 � S
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I. INTRODUCTION

In this paper we study an interconnected family of
theories with 16 supercharges. All these theories share
the common feature that they have a mass gap and a
discrete spectrum of excitations. In most examples we
have a dimensionless parameter which allows us to inter-
polate between weak and strong coupling. In the weakly
coupled description we have a gauge theory. These theories
have many vacua. We describe smooth gravity solutions
corresponding to all these vacua. For some particular vacua
we study the ’t Hooft limit and we examine the properties
of strings at large ’t Hooft coupling.

In the first part of this paper we study theories with 16
supercharges whose symmetry algebra is an SU�2j4�
supergroup. These theories are closely related to each
other. Their BPS states can be conveniently studied by a
Witten index [1,2]. The first example is the plane-wave
matrix model [3]. The second example is 2� 1 SYM on
R� S2 [4] and a third example is N � 4 super Yang-
Mills theory on R� S3=Zk. We construct their gravity
duals. We give a general method for constructing the
gravity solutions, and provide a few explicit solutions.

The plane-wave matrix model is a nice example of the
gauge theory/gravity correspondence because it is an ordi-
nary quantum mechanical system with a discrete energy
spectrum. The theory has a large number of vacua, and a
correspondingly large number of gravity solutions. Strictly
speaking we can trust the gravity approximation only for a
suitable subset of solutions. The generic solution, though
formally smooth, has curvature of the order of the planck
or string scale. In the ’t Hooft largeN limit we can focus on
just one of these vacua at a time and ignore the tunneling to
other vacua. The properties of single trace states (or single

string states) depend on the vacuum we are expanding
around. All the theories in this family have an SO�6�
symmetry. It is possible to consider half BPS states which
carry SO�6� angular momentum J. We can count these BPS
states precisely in each of these theories. In addition, we
can consider near BPS states. Their description in the
weakly coupled regime is similar to the one in four dimen-
sional N � 4 super Yang-Mills theory and was studied in
[5–10]. At large ’t Hooft coupling, the spectrum of large
charge near BPS states is obtained by considering pp-wave
limits of the general solutions. In the simplest case we find
a IIA plane wave [11,12]. In general, strings in light cone
gauge are described by a massive field theory on the world
sheet with (4,4) supersymmetry. The details of this theory
depend on the vacuum we are expanding around. We study
vacua associated to NS5 branes [4]. In these vacua we are
led to strings propagating in the near horizon geometry of
N5 fivebranes [13]. The field theory on the string is given
by a massive deformation of the WZW model and linear
dilaton theory that describes the near horizon region of
NS5 branes. Depending on the value of N5 we get a differ-
ent spectrum. We match some qualitative features of this
spectrum with the weakly coupled gauge theory descrip-
tion. The energies of near BPS states have a nontrivial
dependence on the ’t Hooft coupling. So we expect a
nontrivial interpolation between the weak and strong cou-
pling results. In fact, for the plane-wave matrix model, at
weak coupling, this interpolating function was computed
to four loops in [10]. We show that this function has a
physical interpretation in the strong coupling regime as the
radius of a fivesphere in the geometry.

In the second part of our paper we consider field theories
that have 16 supercharges and SO�4� � SO�4� symmetry.
These solutions are described by droplets of an incom-
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pressible fluid as in [14]. When this fluid lives in an infinite
two dimensional plane we find the gravity solutions corre-
sponding to the 1=2 BPS states of N � 4 super Yang-
Mills theory [14–16]. In this paper we discuss mainly the
case where this fluid lives on a two torus. In addition we
discuss the case of the cylinder. These are again theories
that have 16 supercharges and many vacua. An interesting
aspect is that these theories have Poincaré supersymmetry
algebras in 2� 1 or 1� 1 dimensions which are such that
the charges appearing on the right hand side are not central,
a situation that cannot arise for Poincaré superalgebras in
more than three dimensions [17,18]. This algebra was
mentioned in the general classification in [19]. This is
also the symmetry algebra that is linearly realized in the
light cone gauge description of strings moving in the
maximally supersymmetric IIB plane wave [20]. The the-
ory associated to fermions on a torus gives rise toU�N�K or
U�K�N Chern-Simons theory on R� T2 in the IR. The full
theory has explicit duality under K $ N.

We also discuss another family of smooth solutions that
are obtained by doing an analytic continuation of the
ansatz in [14]. The boundary conditions are different in
this case. These solutions are associated to a certain
Coulomb branch of the N � 4 super Yang-Mills theory
on AdS3 � S

1.
This paper is organized as follows. In Sec. II we discuss

theories with 16 supercharges and SU�2j4� symmetry
group. We start by discussing various field theories and
then proceed to write the gravity description for all of these
examples. We also take the large J limit and analyze
features of the BPS and near BPS spectrum of single trace
(or single string) states. In Sec. III we discuss some fea-
tures of theories with 16 supercharges that are obtained
from free fermions on a T2 and also by analytic continu-
ation of some of the formulas in [14]. Finally, various
appendices give more details about some of the results.

II. THEORIES WITH 16 SUPERCHARGES ANDfSU�2j4� SYMMETRY GROUP

A. The field theories

In this subsection we discuss various field theories withfSU�2j4� symmetry group.
It is convenient to start with N � 4 super Yang-Mills

theory on R� S3. This theory is dual to AdS5 � S5 and its
symmetry group is the superconformal group SU�2; 2j4�.
The bosonic subgroup of the superconformal group is
SO�2; 4� � SO�6�. It is convenient to focus on an
SU�2�L � SO�4� � SO�2; 4�. This SU�2�L is embedded
in the SO�4� symmetry group that rotates the S3 on which
the field theory is defined. If we take the full superconfor-
mal algebra and we truncate it to the subset that is invariant
under SU�2�L we clearly get a new algebra. This algebra

forms the supergroup fSU�2j4�, where the tilde here denotes
that we take its universal cover. In other words, the bosonic

subgroup is R� SU�2� � SU�4�.1 This is the symmetry
group of the theories we are going to consider below.2

We will get the theories of interest by quotienting N �
4 super Yang-Mills theory by various subgroups of SU�2�L.
For example, if we quotient by the whole SU�2�L group we
are left with the plane-wave matrix model [9]. We get a
reduction to 0� 1 dimensions because all Kaluza Klein
modes on S3 carry SU�2�L quantum numbers except for the
lowest ones. The other theories are obtained by quotienting
by Zk and U�1�L subgroups of SU�2�L. We will discuss
these theories in detail below.3

Since all theories have a common symmetry group they
share some properties. One property that we will discuss in
some detail are 1=2 BPS states carrying SO�6� angular
momenta. These are states carrying energy E equal to the
angular momentum under an SO�2� � SO�6� generated by
J. The condition E � J is the BPS bound. The fact that
these 1=2 BPS states are fully protected follows from the
discussion in [7,8]. Moreover, the arguments in [7,8] allow
us to count precisely these BPS states. Actually, to study
BPS states it is convenient to define the index [2]
 

I��i� � Tr���1�Fe���E�2S�J1�J2�J3�e��1�E�J1�e��2�E�J2�

� e��3�E�J3�	; (2.1)

where S � S3 is one of the generators of SU�2�, J1 � M12,
J2 � M34 and J3 � M56 are SO�6� Cartan generators. Let
us explain why (2.1) is an index. Let us consider the
supercharge Qy � Qy����, where the indices indicate
the charges under �S; J1; J2; J3�. This supercharge has E �
1=2. This supercharge and its adjoint obey the anticommu-
tation relation

 fQ;Qyg �U 
 E� 2S� �J1 � J2 � J3�: (2.2)

In addition the combinations E� Ji commute with the
supercharges in (2.2). Using the standard arguments (see
[1]) any state with nonzero values of U does not contribute
to (2.3). By evaluating (2.1) we will be able to find which
BPS representations should remain as we change the cou-
pling. The index (2.1) contains the same information as the
indices defined in [7], see [2]. For further discussion see
Appendix G. In order to count 1=2 BPS states we can use a
simplified version of (2.1) obtained by taking the limit
when �3 ! 1. In this limit the index depends only on q 

e��1��2

1If we replace R by U�1� we get the compact from of SU�2j4�.
2This symmetry group also appears when we consider 1=2

BPS states in AdS4;7 � S
7;4 M-theory solutions [14]. A closely

related supergroup, SU�2; 2j2�, is the N � 2 superconformal
group in 4 dimensions.

3Notice that this truncation procedure is a convenient way to
construct the Lagrangian, but we cannot get the full quantum
spectrum of the plane-wave matrix model by restricting to
SU�2�L invariant states of the full N � 4 super Yang-Mills
theory.
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IN�q� 

X1
J�0

D�N; J�qJ � lim
�3!�1

I��1; �2; �3�;

q � e��1��2

(2.3)

where J � J3. This partition function counts the number of
1=2 BPS states D�N; J� in the system. Below we will
compute (2.3) for various theories. We will not compute
(2.1) in this paper, but it could be computed using the
techniques in [21].

In the limit that 1� J� N we will identify these states
as massless geodesics in the geometric description. Notice
that, even though we use some of the techniques in [14] to
describe the vacua of these theories, we do not include
backreaction when we consider 1=2 BPS states.4 We are
also going to study the near BPS limit, with J large and
Ê � E� J finite. For excitations along the S5 the one loop
perturbative correction is the same as in the N � 4 parent
Yang-Mills theory. On the gravity side, we will find that, at
strong ’t Hooft coupling, the result that differs from the
naive extrapolation of the weak coupling results. This
implies that there exist some interpolating functions in
the sectrums. We could similarly study other solutions
with large quantum numbers under SO�6�, such as the
configurations considered in e.g. [22,23] (see [24] for a
review) which have several large quantum numbers. In this
theory we could also have BPS and near BPS configura-
tions with large SO�3� spin, which we will not study in this
paper.

In these theories we have many vacua and, in principle,
we can tunnel among the different vacua. In most of the
discussion we will assume that we are in a regime in
parameter space where we can neglect the effects of tun-
neling. This tunneling is suppressed in the ’t Hooft regime
where strings are weakly coupled. Note that despite tun-
neling the vacua remain degenerate since they all contrib-
ute positively to the index (2.3).

We will now discuss in more detail each theory
individually.

1. N � 4 SYM on R� S3=Zk
Here we consider U�N� N � 4 super Yang-Mills the-

ory on R� S3=Zk, with Zk � SU�2�L, and SU�2�L as
defined above (see also [25] for a more general discussion).
We can also obtain this theory by starting with the free field
content of N � 4, projecting out all fields which are not
invariant under Zk and then considering the same interac-
tions for the remaining fields as the ones we had for N �

4. Notice that we first project the elementary fields and we
then quantize, which is not the same as retaining the
invariant states of the original full quantum N � 4 theory.
This is the standard procedure. The symmetry group of this

theory is fSU�2j4�.
This theory is parametrized by N, k, and the original

Yang-Mills coupling g2
YM 3. Whereas N � 4 SYM on S3

has a unique vacuum, the theory on S3=Zk has many super-
symmetric vacua. Let us analyze the vacua at weak cou-
pling. Since all excitations are massive we can neglect all
fields except for a Wilson line of the gauge field. More
precisely, the vacua are given by the space of flat connec-
tions on S3=Zk. This space is parametrized by giving the
holonomy of the gauge field U along the nontrivial gen-
erator of �1�S

3=Zk� � Zk, up to gauge transformations.
We can therefore diagonalize U, with Uk � 1. So the
diagonal elements are kth roots of unity. Inequivalent
elements are given by specifying how many roots of each
kind we have. So the vacuum is specified by giving the k
numbers n1; n2; � � � nk, with N �

Pk
l�1 nl. Where nl speci-

fies how many times ei2��l=k� appears in the diagonal of U.
We can also view these different vacua as arising from
orbifolding the theory ofD-branes on S3 � R and applying
the rules in [26] with different choices for the embedding
of the Zk into the gauge group. The regular representation
corresponds to nl � N=k for all l, and we need to take N to
be a multiple of k.

The total number of vacua is then

 D�N; k� �
�N � k� 1�!

�k� 1�!N!
: (2.4)

It is also interesting to count the total number of 1=2
BPS states with charge J under one of the SO�6� gener-
ators. These numbers are encoded conveniently in the
partition function
 

IS3=Zk�p; q� �
X1
N�0

pNIN�q� �
X1
N;J�0

DS3=Zk�N; J�p
NqJ

� �IN�4�p; q�	
k �

1Q
1
n�0�1� pq

n�k
; (2.5)

where IN�4�p; q� is the index for N � 4 super Yang-
Mills theory. As an aside, note that the degeneracy of states
in N � 4 super Yang-Mills theory can be written in
various equivalent forms [16,27]5

 

X1
N;J�0

pNqN
2=2qJD�N; J� �

Y1
n�1

�1� pqn��1=2��; (2.6)

 

X1
J�0

D�N; J�qJ �
1QN

n�1�1� q
n�
; (2.7)

4The 1=2 BPS states of the theories considered in this paper
preserve less supersymmetry than the 1=2 BPS states that were
considered in [14]. In other words, the 1=2 BPS states of [14]
preserve the same amount of supersymmetry as the vacua (which
have J � 0) of the theories considered in this paper. Here we
start with theories with 16 supercharges, while [14] started with
theories with 32 supercharges.

5We have not seen the last equality (2.8) in recent papers, but it
must be well known.
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 IN�4�p; q� 

X1
N;J�0

pNqJD�N; J� �
1Q

1
n�0�1� pq

n�
:

(2.8)

In the first form we express it as a system of fermions in a
harmonic oscillator potential. In the third form it looks like
a system of bosons in a harmonic oscillator potential. In
writing (2.5) we used the last representation in (2.8).

We see that even though we counted the vacua (2.4) at
weak coupling, the result is still valid at strong coupling
since they all contribute to the Witten index. In fact, setting
q � 0 in (2.5) we recover (2.4).

2. 2� 1 SYM on R� S2

This field theory is constructed as follows. We start with
N � 4 super Yang-Mills theory on R� S3 and we trun-
cate the free field theory spectrum to states that are invari-
ant under U�1�L � SU�2�L, where SU�2�L is one of the
SU�2� factors in the SO�4� rotation group of the S3. This
results in a theory that lives in one less dimension. It is a
theory living on R� S2. This theory was already consid-
ered in [4] by considering the fuzzy sphere vacuum of the
plane-wave matrix model and then taking a large N limit
that removed the fuzzyness and produced the theory on the
ordinary sphere. Here we reproduce it as a U�1�L trunca-
tion from N � 4 super Yang-Mills theory6

 

S �
1

g2
YM 2

Z
dt
d2�

�2 tr
�
�

1

4
FmnFmn �

1

2
�DmXa�2

�
1

2
�Dm��2 �

i
2

���mDm��
1

2
���a�Xa;�	

�
1

2
������;�	 �

1

4
�Xa; Xb	

2 �
1

2
��; Xa	2

�
�2

8
X2
a �

�2

2
�2 �

3i�
8

���012�����dt ^ F
�

(2.9)

where m � 0, 1, 2, a � 4; � � � ; 9 and ��m;��;�a� are ten
dimensional gamma matrices. We see that out of the seven
transverse scalars of the maximally supersymmetric Yang-
Mills theory we select one of them, �, which we treat
differently than the others. This breaks the SO�7� symme-
try to SO�6� while still preserving 16 supercharges. The
radius of S2 has size ��1 and we have used the two
dimensional metric with this radius to raise and lower the
indices in (2.9). For our purposes it is convenient to set
� � 2, since this is the value we obtain by doing the U�1�L

truncation of N � 4 super Yang-Mills theory on an S3 of
radius one.

The vacua are obtained by considering zero energy
states. We write the field strength along the directions of
the sphere as F � fd2�. We then see that � and f
combine into a perfect square in the Lagrangian

 � 1
2�f����2: (2.10)

For zero energy vacua this should be set to zero. Since the
values of f are quantized, so are the values of the � field at
these vacua. We can first diagonalize � and then we can
see that its entries are integer valued. So a vacuum is
characterized by giving the value of N integers
n1; � � � nN . The number of vacua is infinite, so we will
not write an index. Nevertheless we will see that the gravity
solutions reflect the existence of these vacua.

The dimensionless parameters characterizing this theory
are N and the value of the ’t Hooft coupling at the scale of

the two sphere g2
effN 


2�g2
YM 2N
� , where ��1 is the size of

the sphere. The size of the sphere is a dimensionful pa-
rameter which just sets the overall energy scale. We set
� � 2, so that the energy of BPS states with angular
momentum J in SO�6� is equal to E � J.

Notice that the large k limit of the theory analyzed in
Sec. II A 1 gives us the theory analyzed here. The values of
N are the same and

 g2
effN �

2�g2
YM 2N
�

� g2
YM 3Nk; (2.11)

where gYM 3 is the Yang-Mills coupling in the original
N � 4 theory in Sec. II A 1. So we see that the limit
involves taking k! 1, g2

YM 3 ! 0 while keeping g2
YM 2

fixed.
If one takes the strong coupling limit of this theory, by

taking gYM 2 ! 1, we expect to get the theory living on
M2 branes on R� S2. This theory has 32 supersymmetries
and is the familiar theory associated with AdS4 � S7. In
this limit we find that the theory has full SO�8� symmetry.
When we perform this limit we find that the energyE of the
theory in this section goes over to �� ~J, where � is the
ordinary Hamiltonian for the M2 brane theory on R� S2

and ~J is the SO�2� generator in SO�8� which commutes
with the SO�6� that is explicitly preserved by (2.9). For a
single brane, the N � 1 case, this can be seen explicitly by
dualizing the gauge field strength into an eighth scalar.
Then the vacua described around (2.10) are related to the
1=2 BPS states of the M2 brane theory. These should not be
confused with the 1=2 BPS sates of the 2� 1 dimensional
theory (2.9) which would be related to 1=4 BPS states from
the M2 point of view.

3. Plane-wave matrix model

Finally we will discuss the plane-wave matrix model
e.g. [3–10]. This arises by truncating the N � 4 theory to

6We write the metric of R� S3 as ds2 � �dt2 � 1
4 �d�

2 �
sin2�d�2 � �d � cos�d��2	, where � 2 �0; �	; � 2
�0; 2�	;  2 �0; 4�	. We neglect the  dependence of all fields
and we write the gauge field in N � 4 SYM as AN�4 � A�
��d � cos�d��, where A is the 2� 1 dimensional gauge field.
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0� 1 dimensions by keeping all free field theory states that
are invariant under SU�2�L and keeping the same interac-
tions for these states that we had in N � 4 super Yang-
Mills theory [9]. We keep the zero modes for SO�6� scalars
and truncate the gauge field to AN�4 � X1!1 � X2!2 �
X3!3, where !i are three left invariant one-forms on S3.
Thus the Xi are the scalars that transform under SO�3�.

This theory has many vacua. These vacua are obtained
by setting the scalars Xi equal to SU�2� Lie algebra gen-
erators. In fact the vacua are in one to one correspondence
with SU�2� representations of dimension N. Suppose that
we have N�n� copies of the irreducible representation of
dimension n such that

 N �
X
n

N�n�n: (2.12)

Each choice of partition of N gives us a different vacuum.
So the number of vacua is equal to the partitions of N,
P�N�.

N � 4 super Yang-Mills theory has a unique vacuum.
On the other hand, any solution of the plane-wave matrix
model can be uplifted to a zero energy solution of N � 4
super Yang-Mills theory. What do the various plane-wave
matrix model vacua correspond to in N � 4 super Yang-
Mills theory? It turns out that these are simply large gauge
transformations of the ordinary vacuum. The solutions
uplift to AN�4 � �!1J1 �!2J2 �!3J3� � �i�dg�g

�1,
were g is an SU�2� group element in the same representa-
tion as the Ji. This SU�2� group is parameterizing the S3.
So they are pure gauge transformations from AN�4 � 0.
In summary, in N � 4 super Yang-Mills theory these
different configurations are related by a gauge transforma-
tion. The gauge transformation is not SU�2�L invariant,
even though the actual configurations are SU�2�L invariant.
In the plane-wave matrix model they are gauge
inequivalent.

As in [4], it is possible to get the 2� 1 theory in
Sec. II A 2 from a limit in which we take ~N copies of the
representation of dimension n and we take n! 1. For
finite n we get a U� ~N� theory on a fuzzy sphere and in the
n! 1 limit the fuzziness goes away [4].

One can also count the total number of 1=2 BPS states
with SO�6� charge J. These are given by the partition
function

 IPWMM�p; q� �
X1
N;J�0

DPWMM�N; J�pNqJ

�
Y1
m�1

IN�4�pm; q�

�
1Q

1
m�1

Q
1
n�0�1� p

mqn�
: (2.13)

Setting q � 0 we get that the number of vacua are given by
the partitions of N. It is interesting to estimate the large J
and N behavior of this index. We obtain

 DPWMM�N; J�  e
�3:189...��NJ�1=3

; (2.14)

where we assumed J2=N � 1, N2=J� 1. The fact that
this is symmetric under N $ J follows from the fact that
(2.13) is symmetric under p$ q up to the n � 0 factor.

B. Dual gravity solutions

All the theories that we have discussed above have the
same supersymmetry group. All gravity solutions with this
symmetry were classified in [14]. The bosonic symmetries,
R� SO�3� � SO�6�, act geometrically. The first generator
implies the existence of a Killing vector associated to shifts
of a coordinate t. In addition we have an S2 and an S5

where the rest of the bosonic generators act. Thus the
solution depends only on three variables x1, x2, y. The
full geometry can be obtained from a solution of the 3
dimensional Toda equation

 �@2
x1
� @2

x2
�D� @2

yeD � 0: (2.15)

It turns out that y � RS2R2
S5 � 0 where RSi are the radii of

the two spheres. In order to have a nonsingular solution we
need special boundary conditions for the functionD at y �
0. In fact, the x1, x2 plane could be divided into regions
where the function D obeys two different boundary con-
ditions

 eD  y for y! 0; S5 ! 0 M5region

@yD � 0 at y � 0; S2 ! 0; M2region

(2.16)

see [14] for further details. The labels M2 and M5 indicate
that in these two regions either a two sphere or a five sphere
shrinks to zero in a smooth fashion. There are, however, no
explicit branes in the geometry. We have a smooth solution
with fluxes. However, we can think of these regions as
arising from a set of M2 or M5 branes that wrap the
contractible sphere. A bounded region of each type in the
x1, x2 plane implies that we have a cycle in the geometry
with a flux related to the corresponding type of brane (see
[14] for further details).

The different theories discussed above are related to
different choices for the topology of the x1, x2 plane. In
addition, for each topology the asymptotic distribution of
M2 and M5 regions can be different. See Fig. 1. Let us
consider some examples. If we choose the x1, x2 plane to
be a two torus, then we get a solution that is dual to the
vacua of the N � 4 super Yang-Mills theory on R�
S3=Zk, see Fig. 1(a). If the topology is a cylinder, with x1

compact and the M2 region is localized in the x2 direction,
we have a solution dual to a vacuum of the 2� 1 Yang-
Mills theory on R� S2, see Fig. 1(b). If we choose a
cylinder and we let the M2 region extend all the way to
x2 ! �1, and the M5 region extend to x2 ! �1, and
also there are localized M2, M5 strips in between, then we
get a solution which is dual to a vacuum of the plane-wave
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matrix model, see Fig. 1(c). Finally, if we consider a
cylinder and we have M5 regions that are localized [see
Fig. 2(c)] then we get a solution that is dual to an NS5
brane theory on R� S5, we will came back to this case
later.

In principle, we could consider configurations that are
not translation invariant, as long as we consider configura-
tions defined on a cylinder or torus as is appropriate. In this
paper we will concentrate on configurations that are trans-
lation invariant along x1. These will be most appropriate in
the regime of parameter space where the 11th direction is
small and we can go to a IIA description. So we focus on
the region in parameter space where the string coupling is
small and the effective ’t Hooft coupling is large. If the
configuration is translation invariant in the x1 direction we
can transform the nonlinear Eq. (2.15) to a linear equation
through the following change of variables [28]

 y � �@�V; x2 � @�V; eD � �2; (2.17)

 

1

�
@���@�V� � @2

�V � 0: (2.18)

So we get the Laplace equation in three dimensions for an
axially symmetric system.7 The fact that one can obtain
solutions in this fashion was observed in [14] and some
singular solutions were explored in [29]. Below we will
find the precise boundary conditions for V which ensure
that we have a smooth solution.

Let us now translate the boundary conditions (2.16) at
y � 0 into certain boundary conditions for the function V.
In the region where eD  y at y 0, all that we require is
that V is regular at � � 0, in the three dimensional sense.
On the other hand if y � 0 but � � 0, then we need to
impose that @yD � 0. This is proportional to

 0 �
1

2
@yD � �

@�
@y
� �

@2
�V

�@�@�V�2 � �@2
�V�2

: (2.19)

We conclude that @2
�V � 0. Equation (2.18) then implies

that @2
�V � 0. Therefore the curve y � 0, � � 0, or @�V �

0, is at constant values of �, since the slope of the curve

defined by @�V � 0 is ��
�� �

�@2
�V

@�@�V
� 0.

If we interpret V as the potential of an electrostatics
problem, then �@�V is the electric field along the �
direction. The condition that it vanishes corresponds to
the presence of a charged conducting surface. So the
problem is reduced to an axially symmetric electrostatic
configuration in three dimensions where we have conduct-
ing disks that are sitting at positions �i and have radii �i.
See Fig. 3. These disks are in an external electric field
which grows at infinity. If we considered such conducting
disks in a general configuration we would find that the
electric field would diverge as we approach the boundary
of the disks. In our case this cannot happen, otherwise the
coordinate x2 would be ill defined at the rim of the disks.
So we need to impose the additional constraint that the
electric field is finite at the rim of the disks. This implies

x2

1x

(c)(b)

(d)

(a)

FIG. 2. Translational invariant configurations in the x1, x2

plane which give rise to various gravity solutions. The shaded
regions indicate M2 regions and the unshaded ones indicate M5
regions. The two vertical lines are identified. In (a) we see the
configuration corresponding to the vacuum of the 2� 1 Yang-
Mills theory on R� S2 with unbroken gauge symmetry. In
(b) we consider a configuration corresponding to a vacuum of
the plane-wave matrix model. In (c) we see a vacuum of the NS5
brane theory on R� S5. Finally, in (d) we have a droplet on a
two torus in the x1, x2 plane. This corresponds to a vacuum of the
N � 4 super Yang-Mills theory on a R� S3=Zk.

N=4 SYM

D0 + mass=

SU(2)

D3 on S/Z
3

k

Z k

k −> infinity
D2 on S 2

(b)

(a)

U(1)

(c)

   PWMM

FIG. 1. Starting from four dimensional N � 4 super Yang-
Mills theory and truncating by various subgroups of SU�2�L we

get various theories with fSU�2j4� symmetry. We have indicated
the diagrams in the x1, x2 space that determine their gravity
solutions. The x1, x2 space is a cylinder, with the vertical lines
identified for (b) and (c) and it is a torus for (a).

7The angular direction of the three dimensional space is not
part of the 10 or 11 dimensional spacetime coordinates.
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that the charge density vanishes at the tip of the disks. This
condition relates the charge on the disks Qi to the radii of
the disks �i. So for each disk we can only specify two
independent parameters, its position �i and its total charge
Qi. The precise form of the background electric field
depends on the theory we consider (but not on the particu-
lar vacuum) and it is fixed by demanding that the change of
variable (2.17) is well defined. The relation between the
translation invariant droplet configurations in the x1, x2

plane and the disks can be seen in Fig. 3.
Since we are focusing on solutions which are translation

invariant along x1 it is natural to compactify this direction
and write the solution in IIA variables. This procedure will
make sense as long as we are in a region of the solution
where the IIA coupling is small (see [30] for a similar
discussion).

TheM-theory form of the solutions can be found in [14].
We obtain the string frame solution

 

ds2
10 �

� �V � 2 _V
�V 00

�
1=2
�
�4

�V
�V � 2 _V

dt2

�
�2V 00

_V
�d�2 � d�2� � 4d�2

5 � 2
V 00 _V

�
d�2

2

�
;

e4� �
4� �V � 2 _V�3

�V 00 _V2�2
; (2.20)

 C1 � �
2 _V 0 _V
�V � 2 _V

dt; (2.21)

 F4 � dC3; C3 � �4
_V2V 00

�
dt ^ d2�; (2.22)

 H3 � dB2; B2 � 2
� _V _V 0

�
� �

�
d2�; (2.23)

 � 
 � �V � 2 _V�V 00 � � _V 0�2; (2.24)

where the dots indicate derivatives with respect to log� and
the primes indicate derivatives with respect to �. V��;�� is
a solution of the Laplace Eq. (2.18). For regular solutions,
we need to supplement it by boundary condition specified
by a general configuration of lines in ��;�� plane, like in
Fig. 4.

Before we get into the details of particular solutions we
would like to discuss some general properties. First note
that if we take a random solution of (2.18) we will get
singularities. In order to prevent them, we need to be a bit
careful. As we explained above we need a solution of an
electrostatic problem involving horizontal conducting
disks. In addition we need to ensure the positive-
definiteness of various metric components, i.e. � � 0
and V00 � 0, �V � 2 _V � 0, _V � 0. This is obeyed every-
where if we choose appropriate boundary conditions for
the potential at large �, �. These boundary conditions
imply that there is a background electric field that grows
as we go to large �, �. For example, if we consider a
configuration such as the one in Fig. 3(b), the disk is in
the presence of a background potential of the form

(e)(c)(b)(a) (d)

FIG. 4. In (a) we see a configuration which corresponds to a
vacuum of 2� 1 super Yang-Mills theory on R� S2. In (b) we
see the simplest vacuum of the theory corresponding to the NS5
brane on R� S5. In this case we have two infinite conducting
disks and only the space between them is physically meaningful.
In (c) we have another vacuum of the same theory. If the added
disk is very small and close to the the top or bottom disks the
solution looks like that of (b) with a few D0 branes added. In
(d) we see a configuration corresponding to a vacuum of the
plane-wave matrix model. In this case the disk at � � 0 is
infinite and the solution contains only the region with � � 0.
In (e) we have another vacuum of the plane-wave matrix model
with more disks.

(a)

(c)

(b)

(d)

x2

η

ρ

FIG. 3. Electrostatic problems corresponding to different drop-
let configurations. The shaded regions (M2 regions) correspond
to disks and the unshaded regions map to � � 0. Note that the x1

direction in (a), (c) does not correspond to any variable in (b),
(c). The rest of the �, � plane corresponds to y > 0 in the x2; y
variables. In (a), (b) we see the configurations corresponding to a
vacuum of 2� 1 super Yang-Mills theory on R� S2. In (c),
(d) we see a configuration corresponding to a vacuum of N � 4
super Yang-Mills theory on R� S3=Zk. In (d) we have a periodic
configuration of disks. The fact that it is periodic corresponds to
the fact that we have also compactified the x2 direction.
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Vb  �
2 � 2�2. This background electric field is the same

for all vacua, e.g. it is the same in Figs. 3(b) and 4(a). For
the plane-wave matrix model we have an infinite conduct-
ing surface at � � 0 and only the region � � 0 is physi-
cally significant. In this case the background potential is
Vb  �2�� 2

3�
3. In addition we have finite size disks as

seen, for example, in Fig. 4(d) or 4(e). In Appendix A we
show that for the configurations we talk about in this paper
(2.20)–(2.24) gives a regular solution. We also show that
the dilaton is nonsingular and that gtt never becomes zero
for the solutions we consider. This ensures that the solu-
tions we have have a mass gap. This follows from the fact
that the warp factor never becomes zero so that we cannot
decrease the energy of a state by moving it into the region
where the warp factor becomes zero. In principle, this
argument does not rule out the presence of a small number
of massless or tachyonic modes. The latter are, of course,
forbidden by supersymmetry. A massless mode would not
change the energy of the solution, so it would preserve
supersymmetry. On the other hand, once we quantize the
charges on the disks we do not have any continuous
parameters in our solutions. So we cannot have any mass-
less modes. Of course, this agrees with the field theory
expectations since all theories we consider have a mass gap
around any of the vacua.

Note that a rescaling of V leaves the ten dimensional
metric and B field invariant but rescales the dilaton and the
RR fields. This just corresponds to the usual symmetry of
the IIA supergravity theory under rescaling of the dilaton
and RR fields. There is second symmetry corresponding to
rescaling �, �, and V which corresponds to the usual
scaling symmetry of gravity which scales up the metric
and the forms according to their scaling dimensions. This
allows us to put in two parameters in (2.20)–(2.24) such as
an overall charge and the value of the dilaton at its
maximum.

More interestingly, we can vary the number of disks,
their charges and the distances between each other. See
Fig. 4. These parameters are related to different choices of
vacua for the different configurations.

All the solutions we are discussing, contain an S2 and an
S5 and these can shrink to zero at various locations. Using
these it is possible to construct three cycles and six cycles,
respectively, by tensoring the S2 and S5 with lines in the �,
� plane. These translate into three cycles and six cycles in
the IIA geometry. See Fig. 5. We can then measure the flux
of H3 over the three cycle and call it N5 and we can
measure the flux of � ~F4 on the six cycle and call it N2.
Using (2.20)–(2.24) or the formulas in [14] we can write
them as

 N2 �
1

�3l6p

Z
eDdx2

Z
dx1

�
2

�2

Z �i

0
�2@��@�Vj��i � @�Vj��i �d� �

8Qi

�2 (2.25)

and

 N5 �
1

2�2l3p

Z
y�1eDdx2

Z
dx1

�
1

�

Z �i

�i�di

�
@�V

@2
�Vj��0d� �

2di
�
: (2.26)

In deriving (2.26) we used that near �! 0 we can expand
V � f0��� � �2f1��� � � � � and we used the equation for
V (2.18) to relate f1��� to V00. We set 	0 � 1 and lp � 1
for convenience. The quantization conditions (2.25) and
(2.26) show that N5 is proportional to the distance between
neighboring disks di and that N2 is proportional to the total
charge of each disk Qi. When we solve the electrostatic
problem we need to ensure that these parameters are
quantized. Strictly speaking the flux given by N2 is quan-
tized only after we quantize the four form field strength.

The topology of the solutions is related to the topology
of the disk configurations. In other words, the number of
six cycles and three cycles is related to the number of disks
and the number of line segments in between, but is inde-
pendent of the size of the disks or the distance between the
disks.

As we discussed above we will be interested in BPS
excitations with angular momentum on S5. For large, but
not too large, angular momentum these are well described
by lightlike particles moving in the background (2.20)–
(2.24) with angular momentum J along the S5. In order to
minimize their energy, these lightlike geodesics want to sit
at a point in the �, � space where

 

jgttj
g55

�
�V

�V � 2 _V
� 1 (2.27)

is minimized, where
�������
g55
p

is the radius of the five sphere. It
turns out that this is minimized at the tip of the disks, where

Σ 3di

Σ6

ρ

η 

FIG. 5. We see a configuration associated to a pair of disks. di
indicates the distance between the two nearby disks. The dashed
line in the �, � plane, together with the S2 form a three cycle �3

with the topology of an S3. The dotted line, together with the S5

form a six cycle �6 with the topology of an S6.
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the inequality in (2.27) is saturated.8 This corresponds to
saturating the BPS condition E � jJj. In fact, in order to
minimize (2.27) we would like to set _V � 0. This occurs at
� � 0 and on the surface of the disks. However, in these
cases, also �V � 0. Expanding the solutions near these
regions we find that (2.27) actually diverges at � � 0,
this is because S5 shrinks at � � 0. On the disks, (2.27)
is bigger than one, except at the tip where it is one. See
Appendix A for a more detailed discussion.

In order to find the behavior of the solution near these
geodesics we expand the solution of the electrostatic prob-
lem near the tip of the disks. Near the tip of the disks we
have a simple Laplace equation in two dimensions.
Namely, we approximate the disk by an infinite half plane.
We can then solve the problem by doing conformal trans-
formations. Actually, we can do this whenever we are
expanding around a solution at large �0 and we are inter-
ested in features arising at distances which are much
smaller than �0, but could be larger than the distances
between disks, see Fig. 6. So let us first analyze this
problem in general. We can define the complex coordinate

 z 
 
� i� 
 �� �0 � i� (2.28)

so that we are expanding around the point ��;�� � ��0; 0�.
It is actually convenient for our problem to define a com-
plex variable

 w�z� � 2@zV �
�
y
�0
� ix2

�
; (2.29)

where we also used an approximate form of (2.17).
Equation (2.18) implies that w is a holomorphic function
of z. We see that w is defined on the right half plane:
Re�w� � 0. Equation (2.18) is simply the statement that
the change of variables is holomorphic. Solutions are
simply given by finding a conformal transformation that
maps the w half-plane into a configuration in z-plane
containing various cuts of lines specified by a general
configuration, like those in Fig. 6.

For example we could take z � w2. This maps the w
half-plane into the z plane with a cut running on the
negative real axis. More explicitly, this leads to V 
Re�z3=2�. This is the solution near the tip of a disk, see
Fig. 6(b).

Once we have found this map we can go back to the
general ansatz (2.20)–(2.24) and write the resulting answer.
When we do this we note that _V  @
V=�0 and that �V 
@2

V=�

2
0. Since �0 is very large in our limit we keep only

the leading order terms in �0. After doing this we find the

approximate solution9

 

ds2
10  4�0

�
�

�
1�

1

�0
f�1j@wzj

2

�
dt2 � d�2

5

�
f
�0

�
dwd �w�

�
w� �w

2

�
2
d�2

2

��
; (2.30)

where f � @wz�@ �w �z
2�w� �w� .

Let us first consider the specific case where z � w2. This
describes the configuration near the tip of the disks. In this
case we find that f � 1 and the metric in the four dimen-
sional space parametrized by w, �w, �2 is flat. In addition,
we see that (2.27) is indeed saturated at w � 0.

Now let us go back to (2.30) and take a general pp-wave
limit. We will take �0 ! 1 and scale out the overall factor
�0 away from the solution. In other words, we parameter-
ize S5 as

 

d�2
5 � d’2cos2�� d�2 � sin2�d�2

3  d’
2

�
1�

~r2

4�0

�
�

1

4�0
d~r2; (2.31)

where we expanded around r������
4�0

p � � 0 and kept ~r finite

in the limit. In addition, we set

(c)

(d)

(b)(a)

FIG. 6. In this figure we see the expansion around the region
near the tip of the disks. In a generic situation the tip we focus on
is isolated, see (b). In other cases, there are other disks nearby
that sit close to the tip we are focusing on. In this case we can
take a limit where we include the nearby tips. We see such
situations in (a), (c) and (d). (d) corresponds to the periodic case.
We can focus on a distance that is large compared to the period
in � but small compared to the size of the disks.

8In the 11 dimensional description the point where (2.27) is
minimized lies on the y � 0 plane at a local maximum of eDjy�0
in the x1, x2 plane.

9The rest of the fields, i.e. the dilaton and fluxes are the same
as in (2.35)–(2.39), with t � x�.
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 dt � dx�; d’ � dx� �
1

4�0
dx�; (2.32)

 � p� � E� J; �p� �
J

4�0
; (2.33)

 4�0 � R2
S5 ; (2.34)

where the second line tells us how the generators transform
and finally the last line is stating that the parameter �0 is
physically the size of the S5 (we have set 	0 � 1).

After this pp-wave limit is taken for (2.20), (2.21),
(2.23), and (2.24), the solution takes the form
 

ds2
10 � 2dx�dx� � �4f�1j@wzj2 � ~r2��dx��2 � d~r2

� 4f
�
dwd �w�

�
w� �w

2

�
2
d�2

2

�
;

e2� � 4f; (2.35)

 B2 � i
�
�w� �w�

2
�@wz� @ �w �z� � �z� �z�

�
d2��; (2.36)

 C1 � i�w� �w�
�@wz� @ �w �z�
�@wz� @ �w �z�

dx�; (2.37)

 C3 � ��w� �w�3fdx� ^ d2�; (2.38)

 f 

@wz� @ �w �z
2�w� �w�

; (2.39)

where z is a holomorphic function of w. This is an exact
solution of IIA supergravity. When a string is quantized in
light cone gauge on this pp wave it leads to a (4,4) super-
symmetric light cone Lagrangian, which will be discussed
in Sec. II C 3. One can also introduce two parameters by
rescaling z and w. Similar classes of IIB pp-wave solutions
and their sigma models were analyzed and classified in e.g.
[31–33].

For the single tip solution

 z � w2 (2.40)

we get

 ds2
10 � �2dx�dx� � �~r2 � 4 ~u2��dx��2 � d~r2 � d ~u2;

(2.41)

where ~r and ~u each parameterize R4. This is a IIA plane
wave with SO�4� � SO�3� isometry and it was considered
before in [11,12].

In conclusion, the expansion of the metric around the
trajectories of BPS particles locally looks like a IIA plane
wave (2.41) if the tip of the disk is far from other disks.
When it is close to other disks we need to use the more
general expression (2.35)–(2.39). We will analyze in detail
specific cases in Sec. II B 3. In the limit that we boost away
the g�� component of the metric, the solution (2.35)–

(2.39) becomes R5;1 times a transverse four dimensional
part of the solution which is a superposition of NS5 branes.
Notice that f is a solution of the Laplace equation in the
four dimensions parametrized by w, �w, �2. This is related
to the fact that we should interpret the space between two
closely spaced disks as being produced by NS5 branes.
This will become more clear after we analyze specific
solutions in e.g. Sec. II B 4.

The rescaling of J in (2.33) has some physical signifi-
cance since it will appear when we express the energy of
near BPS states in terms of J. In other words, the light cone
hamiltonian for a string on the IIA plane wave describes
massive particles propagating on the world sheet. Four of
the bosons have mass 1 and the other four have mass 2. The
light cone energy for each particle of momentum n and
mass m is

 

�E� J�n � ��p��n �

�������������������
m2 �

n2

p2
�

s
�

��������������������������
m2 � R4

S5

n2

J2

s
;

	0 � 1; (2.42)

where the masses of the world sheet fields are m � 1, 2
depending on the type of scalar or fermion that we consider
on the world sheet. The subindex n reminds us that this is
the contribution from a particle with a given momentum
along the string. Since the total momentum along the string
should vanish, we need to have more than one particle
carrying momentum, each giving rise to a contribution
similar to (2.42). Note that the form of the spectrum is
completely universal for all solutions, as long as the tip is
far enough from other disks. On the the other hand the
value of �0 at the tip depends on the details of the solution.
It depends not only on the theory we consider but also on
the particular vacuum that we are expanding around. In the
following sections we will compute the dependence of �0

on the particular parameters of each theory for some
specific vacua.

When we can isolate a single disk we can always take
pp-wave limit of the solution to the IIA plane wave (2.40)
and (2.41) near the tip of this single disk. There are many
other situations when nearby disks are very close, and we
need to include also the region between disks, i.e. the
region produced by NS5 branes. In these cases, the geome-
try parametrized by the second four coordinates w, �w, �2

is more complicated. We will discuss it in following
sections.

As is usual in the gravity/field theory correspondence
one has to be careful about the regime of validity of the
gravity solutions, and in our case, we should also worry
about the following. In the field theory we have many
vacua. So we can have tunnelling between the vacua. On
the gravity side we have the same issue, we can tunnel
between different solutions of the system. In order to
understand this tunnelling problem it is instructive to con-
sider vacua whose solutions are very close to the original
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solution. Small deformations of a given solution that still
preserve all the supersymmetries can be obtained, in the
11D language by considering small ‘‘ripples’’ in the re-
gions connecting M2 and M5 regions. In the IIA descrip-
tion these become D0 branes. For very small excitations
these D0 branes sit at � � 0 at the position of the disks. At
these positions it costs zero energy to add the D0 branes. In
the electrostatic description we are adding a small disk
close to the large disk, as in Fig. 4(c). In order to estimate
the tunnelling amplitude we need to understand how we go
from a configuration with no D0 branes to a configuration
with D0 branes. In a region where we have a finite size
three cycle �3 (see Fig. 5) with flux N5 we can create N5

D0 branes via a D2 instanton that wraps the �3 (see [34]).
We see that such processes will be suppressed if the string
coupling in this region is small and the �3 is sufficiently
large.

In the following subsections we discuss specific
solutions.

1. Solution for NS5 brane theory on R� S5

We start with this solution because it is the simplest from
the gravity point of view. In this case we consider two
infinite disks separated by some distance d N, see
Fig. 4(b). We find that the solution corresponds to N IIA
NS5 branes wrapping a R� S5. The solution for V is

 V � I0�r� sin�; r �
2�
N	0

; � �
2�
N	0

; (2.43)

where I0�r� is a modified Bessel function of the first kind.
This leads to the ten dimensional solution10

 

ds2
10 � N

�
�2r

����
I0

I2

s
dt2 � 2r

����
I2

I0

s
d�2

5 �

����
I2

I0

s
I0

I1
�dr2 � d�2�

�

����
I2

I0

s
I0I1s2

I0I2s
2 � I2

1c
2 d�2

2

�
;

B2 � N
�

�I2
1cs

I0I2s2 � I2
1c

2 � �
�
d2�; (2.44)

 e� � g0N3=22�1

�
I2

I0

�
3=4
�
I0

I1

�
1=2
�I0I2s2 � I2

1c
2���1=2�;

(2.45)

 C1 � �g�1
0

1

N
4
I2

1c
I2
dt; (2.46)

 C3 � �g�1
0

4I0I
2
1s

3

I0I2s2 � I2
1c

2 dt ^ d
2�; (2.47)

where In�r� are a series of modified Bessel functions of the
first kind.

This solution is also a limit of the a solution analyzed in
[14] using 7D gauged supergravity, except that here we
solved completely the equations. The gauged-supergravity
solution in [14] describes an elliptic M5 brane droplet on
the x1, x2 plane and we can take a limit that the long axis of
the ellipse goes to infinity while keeping the short axis
finite, this becomes a single M5 strip. This then corre-
sponds to two infinite charged disks in the electrostatic
configuration, see Figs. 4(b). We discuss more details of
this relation in Appendix C.

The solution is dual to little string theory (see e.g.
[36,37]) on R� S5. As we go to the large r region the
solution (2.44)–(2.47) asymptotes to

 

ds2
10 � N	0�2r��dt2 � d�2

5� � dr
2 � �d�2 � sin2�d�2

2�	;

e� � gse�r; H3 � 2N	0sin2�d� ^ d2�: (2.48)

So we see that the solution asymptotes to IIA NS5 branes
on R� S5. In addition we have RR fields which are grow-
ing exponentially when we go to large r. These fields break
the SO�4� transverse rotation symmetry of the fivebranes to
SO�3�. Since the coupling is also varying exponentially, it
turns out that, in the end, the influence of the RR fields on
the metric is suppressed only by powers of 1=r relative to
the terms that we have kept in (2.48) (relative to the H field
terms, for example).

The solution is everywhere regular. When either S5 or S2

shrinks, it combines with r or � to form locally R6 or R4.
Note that at r � 0 the solution has a characteristic curva-
ture scale given by R 1

	0N and a string coupling of a
characteristic size gs  g0N3=2. The string coupling de-
creases as we approach the boundary. Thus, if we take gs
small and N large we can trust the solution everywhere. On
the other hand if we take gs large, then we can trust the
solution for large r but for small r we need to go to an 11
dimensional description, include x1 dependence and solve
Eq. (2.15). It is clear from the form of the problem that for
very large gs we will recover AdS7 � S

4 in the extreme IR
if we choose a suitable droplet configuration. More pre-
cisely, as increase gs we will need to go to the 11 dimen-
sional description and include dependence on x1. Then we
can consider a periodic array of circular droplets. As gs !
1 each circle becomes the isolated circle that gives rise to
AdS7 � S

4 [14]. There is also a similar gravity picture for
the relation between the 2� 1 SYM on R� S2 in
Sec. II A 2 and the 3D superconformal M2 brane theory.

In addition we could consider other solutions in the disk
picture that correspond to adding more small disks be-
tween the infinite disks, as in Fig. 4(c). These correspond
to different vacua of this theory.

10s � sin�, c � cos�. We set 	0 � 1 in this paper. We used the
convention in [35] that 1

2�	0
R

�3
H3 � 2�N, to normalize H3.
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2. Solution for 2� 1 SYM on R� S2

This solution corresponds to a single disk, as in
Fig. 3(b). This disk is in the presence of a background field
Vb  �

2 � 2�2. The solution is a bit harder to obtain. We
have obtained it by combining our ansatz with the results in
[38], as explained in Appendix B. The resulting 10 dimen-
sional solution is

 ds2
10 � �1=3

�
�8�1� r2�fdt2 � 16f�1sin2�d�2

5

�
8rf

r� �1� r2� arctanr

�
dr2

1� r2 � d�
2

�
�

2r�r� �1� r2� arctanr	f
1� r arctanr

d�2
2

�
; (2.49)

 B2 � ��
1=3 2

���
2
p
�r� ��1� r2� arctanr	 cos�

1� r arctanr
d2�;

(2.50)

 

e� � g0�1=28r1=2�1� r arctanr���1=2�

� �r� �1� r2� arctanr	��1=2�f��1=2�; (2.51)

 C1 � �g
�1
0 ���1=3� �r� �1� r

2� arctanr	 cos�
2r

dt; (2.52)

 C3 � �g�1
0

r�r� �1� r2� arctanr	2f2���
2
p
�1� r arctanr�

dt ^ d2�; (2.53)

 f 


���������������������������������������������������������
2

r
�r� �cos2�� r2� arctanr	

s
; (2.54)

where � and g0 are some constants. Here we have plugged
in expression (B18) in Appendix B.

This solution is dual to the vacuum of the 2� 1 SYM in
Sec. II A 2, with � � 0 and unbroken U�N� gauge sym-
metry. The topology of this solution is R� B3 � S6, where
the boundary of B3 is the S2 on which the field theory is
defined. Solutions with other configurations of disks have
different topology. The solution is also everywhere regular.
Expanding for large r we find that (2.49)–(2.54) ap-
proaches the D2 brane solution11 [30] on R� S2

 

ds2
10

	0
� �6�g2

YM 2N�
1=3

�
r5=2

�
�dt2 �

1

4
d�2

2

�
�
dr2

r5=2

� r�1=2�d�2 � sin2�d�2
5�

�
;

e� � g2
YM 2�6�g

2
YM 2N�

�1=6r�5=4;

C3 � �g
�2
YM 2r

5�6�g2
YM 2N�

2=3 1

4
dt ^ d2�: (2.55)

Comparing with (2.49)–(2.54) we can compute the value of
� and g0 in terms of Yang-Mills quantities. We can then
compute the value of the radius of S5 at r � 0, � � �=2.
This is the point where the BPS geodesics moving along S5

sits. We find

 

R2
S5

	0
�

�
6�3g2

YM 2N
�

�
1=3
; � � 2: (2.56)

The metric expanded around a geodesic with momentum
along S5 is simply the plane wave (2.41). We can now
insert (2.56) in the general expression (2.42) to derive the
spectrum of near BPS excitations with large J.

Note that the leading correction to Ê � E� J for fluc-
tuations in the transverse directions in the S5, which are
parametrized by ~r in (2.41), has the form

 �E� J�n � 1�
1

2

�
6�3g2

YM 2N
�

�
2=3 n2

J2 � . . . : (2.57)

This is the large coupling result from gravity
approximation.

Under general principles we expect that the leading
order correction in the large J limit in all regimes of the
coupling constant should go like

 �E� J�n � 1� f
�
g2

YM 2N
�

�
n2

J2 � � � � : (2.58)

At weak coupling we get basically the same answer we had

for N � 4, which at one loop order is f�g
2
YM 2N
� � �

�g2
YM 2N
� .

So we see that in this case the function f has to be non-
trivial. This is to be contrasted with the behavior in four
dimensional N � 4 theory where the function f has the
same form at weak and strong coupling [39], see also [40].
Of course it would be very nice to compute this interpolat-
ing function from the gauge theory side. We will see a
similar phenomenon for the plane-wave matrix model in
Sec. II B 5. This phenomenon is a generic feature of the
strong/weak coupling problem, among many others ob-
served in the literature, e.g. the 3=4 problem in the thermal
Yang-Mills entropy [41], and the 3-loop disagreement of
the near plane-wave string spectrum [42], which are results
obtained in different regimes of couplings, and are proba-
bly explained by the presence of such interpolating
functions.

We can have other more general solutions corresponding
to multiple disks, as in Fig. 4(a). The different configura-
tions in the disk picture match the different Higgs vacua for
scalar � as we discussed in Sec. II A 2. One can also
consider strings propagating near the tip in a multidisk
solution. In that case, the actual value of the interpolating
function f in the strong coupling regime, which is related
to the position of the tip of the disk, is not universal, in the

11Here we have D2 brane on R� S2, where the radius of the S2

is 1
� , and we set � � 2.
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sense that it depends on the vacuum we expand around.
What is universal, however, is the fact that the expansion
around any of the tips gives us the IIA plane wave (2.41) as
long as there are no other nearby disks. The situation when
we consider many disks together will be discussed in the
next section.

3. Solutions for two or more nearby tips

If there are nearby disks, then we can expand the solu-
tion near the tips of these disks and also include the
fivebrane region between them. Consider, for example, a
configuration with two nearby disks such as shown in
Fig. 6(c). The holomorphic function z�w� in (2.35)–(2.39)
is given by

 @wz �
�w� ia��w� ib�

w
(2.59)

with a, b real and positive. We see that for w � ia, �ib
and for w! 1 we recover the results we expect for single
disks (2.40). This transformation maps the w right half
plane (with Re�w� � 0) to the z plane with two cuts. The
points w � ia,�ibmap to the two tips and w � 0 maps to
Re�z� ! �1 between the two disks, which is expected to
look like a fivebrane. In fact, we can check that the function
f in (2.35)–(2.39) is given by

 f � 1�
ab

jwj2
; (2.60)

which means that we have a single center fivebrane solu-
tion. The 5-branes are located at w � 0 as expected. One
can also check that the fivebrane charge is proportional to
the distance between two disks as in (2.26)

 Im ��z� � Im
Z ia

�ib
@wzdw � �ab: (2.61)

In addition we find a contribution to g�� of the form

 4f�1j@wzj2 � 4
jw� iaj2jw� ibj2

jwj2 � ab
: (2.62)

When we consider a string moving on this geometry in
light cone gauge we find that (2.62) appears as a potential
for the world sheet fields. Notice that the minima of the
potential are precisely at the two tips of the two disks
corresponding to w � ia and w � �ib where we can
take pp-wave limit.

When a � b we have a symmetric situation where the
two disks have precisely the same length (same value of
�i). In this case we see that the two minima are on the two
sides of the fivebrane at equal distance between them.
Notice that the throat region of the fivebrane corresponds
to the region between the disks. This throat region is

singular in our approximation since the dilaton blows up
as w! 0. This is not physically significant since this lies
outside the range of our approximation, since �Re�z�
diverges. In fact, in the region between the disks we should
actually match onto the fivebrane solution (2.44)–(2.47).

If a � b, say a > b for example, then we have an
asymmetric configuration where one disk is larger than
the other. The larger disk is the one whose tip is at w �
a. If a� b then we find that the tip corresponding to the
smaller disk is in the throat region of the fivebrane while
the tip corresponding to the larger disk is in the region far
from the fivebrane throat.

If we have n nearby disks, then the general solution is

 @wz �
�w� ia1��w� ia2� � � � �w� ian�
�w� ic1��w� ic2� � � � �w� icn�1�

with a1 < c1 < a2 < c2 < � � �< cn�1 < an;

(2.63)

where w � iai are the location of n tips and w � ici are
the locations of n� 1 sets of fivebranes. The resulting
solution (2.35)–(2.39) describes a multicenter configura-
tion of fivebranes on a plane wave. Boosting away the �
components of all fields we find that we end up with a multi
centered configuration of fivebranes where the SO�4� sym-
metry is broken to SO�3�, in fact all fivebranes are sitting
along a line.

4. Solutions for N � 4 super Yang-Mills theory
on R� S3=Zk

In this section we consider some aspects of the gravity
solutions describing N � 4 super Yang-Mills theory on
R� S3=Zk. This theory is particularly interesting since it is
a very simple orbifold of N � 4 SYM, so that one could
perhaps analyze in more detail the corresponding spin
chains.

Let us start with the simplest solution, which is
AdS5=Zk � S5. If the orbifold is an ordinary string orbi-
fold, then there is a Zk quantum symmetry. On the field
theory side, this orbifold corresponds to considering a
vacuum where the holonomy matrix U has nl � N=k
[see the notation around (2.4)] and we need to start with
an N which is a multiple of k. This is the configuration
which corresponds to the regular representation of the
orbifold group action in the gauge group, see [25]. This
is the simplest orbifold to consider from the string theory
point of view. Other choices for the holonomy matrix U,
such asU � 1, lead to an orbifold which is not the standard
string theory orbifold. Such an orbifold can be obtained
from the string theory one by turning on twisted string
modes living at the singularity.

AdS5=Zk � S
5 in type IIB can be dualized to an

M-theory or IIA configuration which preserves the same
supersymmetries as our ansatz. Let us first understand the
M-theory description. Let us first single out the circle
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where Zk is acting. Then we lift IIB on this circle to
M-theory on T2. This T2 is parametrized by the coordinates
x1, x2 of the general M-theory ansatz in [14]. The solution
obtained in this fashion is independent of x1, x2. The
general solution of (2.15) with translation symmetry along
x1, x2 is12

 eD � c1y� c2; (2.64)

 c1 �
gsk
2
; c2 �

�gsN
4

: (2.65)

Equivalently we can view the configuration as an electro-
static configuration where

 V � �
�N
2k

log�� Vb; Vb �
1

gsk
��2 � 2�2�;

(2.66)

which means that we have a line of charge at the � � 0
axis in the presence of the external potential Vb.

These solutions are singular at y � 0 since we are not

obeying (2.16). At y � 0 we find that 4�0 � R2
S5 �����������������������

4�gsN	02
p

. In the IIB variables this singularity is simply
the Zk orbifold fixed point. We also find that the radius of
the two torus is Rx1

� gs and Rx2
� 1=gs. This is as we

expect when we go from IIB to M theory.
The map between the IIB and IIA solutions is simply a

T-duality along the circle where Zk acts by a shift    �
4�
k . If k is sufficiently large it is reasonable to perform this
T duality, at least for some region close to the singularity.
Once we are in the IIA variables, we can allow the solution
to depend on �. In fact, this dependence on � allows us to
resolve the singularity and get smooth solutions. The elec-
trostatic problem is now periodic in the � direction. We
have a periodic configurations of disks, see Fig. 3(d), in the
presence of an external potential of the form Vb in (2.66).
Note that the external potential is not periodic in �. This is
not a problem since the piece that determines the charge
distribution on the disks is indeed periodic in �.
Furthermore, the derivatives of V that appear in (2.20)–
(2.24) are all periodic in �.13 In the IIA picture the region
between the disks can be viewed as originating from NS
fivebranes. These NS fivebranes arise form the Ak�1 sin-
gularity of the IIB solution after doing T-duality [43] (see
also [44]). In fact, the period of � is proportional to k, so
that we have k fivebranes N5 � k. From this point of view

the simplest situation is when all fivebranes are coincident.
This corresponds to taking the matrix U proportional to the
identity. On the other hand, the standard string theory
orbifold corresponds to the case that we have k equally
spaced disks separated by a unit distance. In other words,
the fivebranes will all be equally spaced. In this case, since
we have single fivebranes, we do not expect the geometric
description to be accurate. Note that even though we are
talking about these fivebranes, the full solution is non-
singular. These fivebranes are a good approximation to
the solution when we have large disks that are closely
spaced, as we will see in detail below. But as we go to �!
0 the solution between the disks approaches the NS5
solution (2.44)–(2.47), which is nonsingular. The different
vacua (2.4) correspond to the different ways of assigning
charges nl (see notation around (2.4)) to the disks that sit at
positions labeled by � l. There are k such special posi-
tions on the circle. Only in cases where we have coincident
fivebranes can we trust the gravity description. This hap-
pens when some of the nl are zero.

If we take the k! 1 limit, keeping N finite, then the
direction � becomes noncompact and we go back to the
configurations considered in the previous section which are
associated to the D2 brane theory (2� 1 SYM) of
Sec. II A 2. This is also what we expected from the field
theory description.

We were not able to solve the equations explicitly in this
case. On the other hand, there are special limits that are
explicitly solvable. These correspond to looking at the
large N limit so that the disks are very large and then
looking at the solution near the tip of the disks. Let us
consider the case where we have a single disk per period of
�. We can find the solution by using (2.63) and we get

 @wz � ik
Y1

n��1

�w� ian�

�w� ia�n� 1
2��
� k tanh

�w
a
; (2.67)

where k is the number of coincident fivebranes. When we
insert this into (2.35)–(2.39) we find that the the solution
corresponds to a periodic array of k NS fivebranes along
spatial direction �.

 f �
k sinhr

2r�coshr� cos��
�

X1
n��1

k

r2 � ��� �� 2�n�2
;

(2.68)

 r� i� 

2�
a
w; � �� 2�; (2.69)

 g�� � 8k
r

sinhr
�coshr� cos��: (2.70)

The rim of the disks corresponds to w � ia or r � � � 0
in (2.68). The g�� term in the metric (2.35)–(2.39) implies

12	0 � 1. This solution, if considered in the class of the
analytically continued solutions in [14], describes AdS5 �
S5=Zk.

13The � dependent piece in (2.26) ensures that as we go over
the period of � we go over the period of x2 which is T-dual to the
circle on which the Zk acted.
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that the light cone energy is minimized by sitting at these
points. These points lie between the fivebranes, which sit at
r � 0, � � �. In flat space the T-dual of an Ak�1 singu-
larity corresponds to the near horizon region of a system of
k fivebranes on a circle. Here we are getting a similar result
in the presence of RR fields. As w! 1 the solution
(2.35)–(2.39) approaches the one that is the T-dual of the
orbifold of a pp-wave with R4 � R4=Zk transverse dimen-
sions

 

ds2
10 � �2dx�dx� � �~r2 � ~u2��dx��2 � d~r2 � du2

�
u2

4
d�2

2 �
k2

u2 d�
2: (2.71)

At large uwe can T-dual this back to the Zk quotient of the
IIB plane wave, a situation studied in [45,46].

Let us understand first the theory at the standard string
theory orbifold point. This corresponds to the vacuum with
nl � N=k, for all l � 1; � � � ; k. As we mentioned above, it
is useful to view the Yang-Mills theory on R� S3=Zk as
the orbifold of the theory on the brane according to the
rules in [26]. According to those rules we need to pick a
representation of Zk and embed it into U�N�. The regular
representation then gives rise to the vacuum where all nl
are equal. For this particular choice we can use the inheri-
tance theorem in [47] that, to leading order in the 1=N
expansion, the spectrum of Zk invariant states in the orbi-
fold theory is exactly the same as the spectrum of invariant
states in N � 4. This ensures that the matching between
the string states on the orbifold and those of the Yang-Mills
theory is the same as the corresponding matching in N �
4. In the IIA description this regular orbifold goes over to a
picture where we have k fivebranes uniformly spaced on
the circle. In this case we cannot apply our gravity solu-
tions near the fivebranes because we have single five-
branes. Furthermore, we expect that the orbifold picture
should be the correct and valid description for string states
even close to the orbifold point, as long as the string
coupling is small. The spectrum of string states involving
the second four dimensions (the orbifolded ones) can be
thought of as arising from E� J � 1 excitations which get
a phase of e�i2�=k under the generator of Zk, but we choose
a combination of these excitations that is Zk invariant. This
discussion is rather similar to the one in [48], where the
AdS5 � S5=Zk orbifold (see e.g. [49]) was studied.

We can now consider other vacua. These are associated
to different representations for the Wilson line. For ex-
ample, we can choose nk � N and ni � 0 for i � k. In this
case the IIA gravity description can be trusted when we
approach the origin as long as the ’t Hooft coupling is large
and k is large enough. Let us describe the physics in the pp-
wave limit in more detail for this case. The pp-wave limit
that we are considering consists in taking k fixed and
somewhat large, so that the gravity description of the k
coincident fivebranes is accurate, and then taking J and N

to infinity with J2=N fixed, exactly as in N � 4 super
Yang-Mills theory [3]. In fact, we find that the world sheet
theory in the first four directions is exactly the same as for
N � 4 super Yang-Mills theory. In particular, the disper-
sion relation for light cone gauge world sheet excitations is
precisely as in N � 4 super Yang-Mills theory [3], with
the same numerical coefficient. The theory in the remain-
ing four directions is more interesting. At large distance
from the origin the world sheet field theory is just the
orbifold of the standard IIB plane wave [20]. This is
what we had for the regular representation vacuum that
we discussed above. A string state whose world sheet if far
from the origin, so that its IIB description is good, is a very
excited string state. It is reasonable to expect that the
spectrum of such states is not very sensitive to the vacuum
we choose. This is what we are finding here, since the
spectrum in this region is that of the vacuum of the regular
representation we discussed above. On the other hand, as
we consider string states where the string is closer to the
minimum of its world sheet potential we should use the IIA
description in terms of k coincident fivebranes, using the
solution in (2.68). In this case the spectrum of excitations
on the string world sheet is rather different than what we
had at the standard orbifold point. In this case we have
excitations of world sheet mass E� J � 2 which are Zk
invariant. This spectrum matches with what we naively
expect from considering impurities propagating on the
string for the vacuum we are considering. This vacuum
contains only single particle gauge theory excitations with
E� J � 2 for all fields that could be interpreted as ex-
citations that are associated for the second four dimen-
sions. Let us be a bit more explicit. We can identify some of
these E� J � 2 excitations as the Kaluza Klein modes of
Z given by  _� _�0@	 _�@	0 _�0Z. This gives a singlet under
SU�2�L, so that the Zk � SU�2�L acts trivially. So this
Kaluza Klein mode survives the Zk quotient. The 	, 	0

indices give rise to a spin one mode under

SU�2�R � fSU�2j4�.14 There is a spin zero excitation with
E� J � 2 which comes from the mode of the four dimen-
sional gauge field along the  circle, the circle we are
orbifolding. These elementary fields have E� J � 2 and
are associated to the E� J � 2 excitations of the last four
dimensions of the IIA plane wave. An analysis similar to
the one we will discuss for the plane-wave matrix model
and 2� 1 SYM in Sec. II C shows that these excitations are
exactly BPS and survive in the strong ’t Hooft coupling
limit.

Other gravity solutions which are asymptotic to
AdS5=Zk were constructed in [50]. Those solutions have
a form similar to that of the Eguchi-Hanson instanton [51]
in the four spatial directions. In those solutions fermions
are antiperiodic along the  direction. In our case, fermi-

14The spin zero mode under both SU�2�L;R vanishes due to the
equation of motion.
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ons are periodic in the  circle. So, the solutions in [50]
arise when we consider a slightly different field theory.
Namely, when one considers Yang-Mills theory on R�
S3=Zk but where the fermions are antiperiodic along the
circle on which Zk acts. (One should also restrict to k
even). This theory breaks supersymmetry. The solutions
in [50] describe states (probably the lowest energy states)
of these other theories. In such cases the orbifold is another
state in the same theory, the theory with antiperiodic
fermion boundary conditions along  . One then expects
that localized tachyon condensation, of the form explored
in [52], makes the orbifold decay into the solutions de-
scribed in [50].

5. Solutions for the plane-wave matrix model

In this section we discuss some aspects of the gravity
solutions corresponding to the plane-wave (or BMN) ma-
trix model. In this case we should think of the electrostatic
configuration as having an infinite disk at � � 0 and the
some finite number of disks of finite size at �i > 0, see
Fig. 4(b). The background electric potential is

 Vb � �2�� 2
3�

3: (2.72)

The leading asymptotic form of the solution is

 V � Vb � P
�

��2 � �2�3=2
; (2.73)

where we have included the external potential plus the
leading dipole moment produced by the disks. The leading
contribution is a dipole moment because the conducting
disk at � � 0 gives an image with the opposite charge, so
that there is no monopole component of the field at large �,
�. The subleading terms in the asymptotic region are
higher multipoles.

We can insert this into the general ansatz (2.20)–(2.24)
and we find that in the UV region it goes over to the UV
region of the solution for N0 D0 branes, where N0 is
proportional to the dipole moment P. More details are in
Appendix D. This dipole moment is given by

 P � 2
X
i

�iQi  N0 �
X
i

 X
j<i

Nj
5

!
Ni

2; (2.74)

where the index i runs over the various disks. Notice that
the difference between neighboring disks di � �i�1 � �i
is proportional to the fivebrane charge. So the distances di
are quantized. This formula, (2.74), should be compared to
(2.12) by identifying n di and N�n� � Ni

2.
In [53] this problem was analyzed using technique de-

veloped by Polchinski and Strassler in [54], which consists
in starting with configurations of D0 branes smeared on
two spheres. In our language, this is a limit when we
replace the disks by point charges sitting at � � 0. This
approximation is correct as long as the distance between

the disks is much bigger than the sizes of the disks and we
look at the solution far away from the disks.15

From the field theory point of view it looks like the
simplest vacuum is the one with all X � 0. This case
corresponds to having N0 copies of the trivial (dimension
one) representation of SU�2�. In the gravity description this
corresponds to having a single disk at a distance of one unit
from the conducting surface at � � 0, see Fig. 6(a).
Unfortunately, since this vacuum corresponds to a single
fivebrane, the gravity approximation will not be good near
the fivebrane. We will focus on this situation in the next
section. However, we can consider vacua corresponding to
many copies of dimension N5 representations of SU�2�.
These involve N5 fivebranes and we will be able to give
interesting solutions, at least in the region relevant for the
description of near BPS states. It should be possible to
extrapolate these solutions to smaller values of N5 using
conformal field theory. Let us now study the case that we
have only a single disk at a small distance from the infinite
disk at � � 0. So we consider a situation with N5 � N0.
Based on the discussion in [4] we expect that the N0 D0
branes blow up intoN5 NS5 branes. Of course, our solution
will be smooth, but we will see that there is a sense in
which we have N5 fivebranes. The appearance of five-
branes is probably connected with the picture in [55] for
1=2 BPS states in terms of eigenvalues that lie on a five
sphere.

Unfortunately we were not able to find the full solution
of Eq. (2.18). Nevertheless we can expand the solution near
the tip of the disk. In fact, we can get the solution in a
simple manner by starting from the solution corresponding
to the region near the tip of two disks (2.59) and then letting
one of the disks go to infinity. After a simple rescaling this
produces

 @wz � i
�w� ia�

w
: (2.75)

In this case, the function f in (2.35)–(2.39) becomes

15We can make this relation more precise as follows. Suppose
that the potential in the asymptotic region behaves as V �
�2�� 2

3�
3 ��, where will treat � as a perturbation. Then

from the IIA ansatz (2.20)–(2.24) we can write the solution as
in [53] and find the warp factor Z in [53]. This gives Z � �1

2�2�
�

�2� @��� @2
��� and B2 �

1
� @��

4�2

� @��� 2�@��� 2��d2�.
We get � � P�

��2��2�3=2 by comparing the leading order approxi-

mation Z � R7

r7 and the fluxes H3 � 	r�7�T3 �
7
3V3�; G6 �

g�1
s 	r�7�13 �9 T3 �

7
3 �9 V3�, which are dual to the mass terms

(see [53]), where r � ��2 � �2�1=2, and � and � are radial
variables in SO�6� and SO�3� directions. If we replace Z by
the expression corresponding to multicenter D0 branes uni-
formly smeared on several S2s, then we get � �P
iQi�

1
������i�0 �

2��2	1=2
� 1
������i�0 �

2��2	1=2
	, this is precisely the limit

when the disks above the � � 0 plane are treated as point
charges.
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 f �
a

2jwj2
(2.76)

and the contribution to g�� is

 4f�1j@wzj
2 �

8

a
jw� iaj2: (2.77)

So we see that we get the near horizon region of fivebranes.
The contribution (2.77) to the g�� metric component gives
rise to a potential on the light cone gauge string world
sheet. This potential localizes the string at some particular
position along the throat. Writing w � iae��i�, the 10
dimensional solution is16

 

ds2
10 � �2dx�dx� � d~r2 � ~r2dx�2

� 4N5�e2� � 1� 2e� cos��dx�2

� N5�d�2 � d�2 � sin2�d�2
2�; (2.78)

 e� � gse��; (2.79)

 C1 � �
1

gs
2
������
N5

p
�e2� � e� cos��dx�; (2.80)

 C3 �
1

gs
N3=2

5 2e�sin3�dx� ^ d2�; (2.81)

 H3 � 2N5sin2�d� ^ d2�; (2.82)

where gs is the value of the dilaton at the tip. By perform-
ing a boost x� ! ��1x� with �! 0 we set to zero all
nontrivial terms involving dx� and we recover the usual

fivebrane near horizon geometry [13]. By taking a limit of
small � and � we find the IIA plane-wave in (2.41).

An important parameter is the size of the S5 in string
theory units at the tip of the disks. This can be approxi-
mated as17 (see Appendix D)

 

R2
S5

	0
� 4�

�
g2

YM 0N2

2m3

�
1=4
; N2 �

N0

N5
; m � 1;

(2.83)

where m is the mass of the SO�6� scalars and is set to 1. N0

is the number of D0 branes or the rank of the gauge group
in the plane-wave matrix model. Our gravity approxima-
tion is good when we are in the regime of interest, N5 �
N0, and the size of S5 in string unit is large. From this result
we can compute the spectrum of near BPS excitations with
large angular momentum J. For fluctuations in the direc-
tions parametrized by ~r in (2.78) the spectrum is

 �E� J�n �

������������������������������������������������������
1� �4��2

�
g2

YM 0N0

2m3N5

�
1=2 n2

J2

s

� 1� 4�2

�
2g2

YM 0N0

m3N5

�
1=2 n2

J2 � � � � : (2.84)

Under general principles, in the t’ Hooft limit, with N5

fixed, we expect the spectrum to be of the form

 �E� J�n � 1� f
�
g2

YM 0N0

m3N5

; N5

�
n2

J2 � � � � (2.85)

in the large J limit.
The N5 � 1 case has been analyzed perturbatively up to

four loops in [10]. In our conventions18 their result reads

 fpert

�
g2

YM 0N0

m3 ; N5 � 1
�
�

2�2g2
YM 0N0

m3

�
1�

7

8

g2
YM 0N0

m3 �
71

32

�
g2

YM 0N0

m3

�
2
�

7767

1024

�
g2

YM 0N0

m3

�
3
� . . .

�
: (2.86)

Of course we expect that the function f interpolates
smoothly between the weak coupling result (2.86) and
the strong coupling result (2.84).

Our gravity solutions are not valid for N5 � 1, espe-
cially in the region relevant for this computation. On the
other hand, we see that the quantity that determines f is the
radius of the fivesphere. We can think of this solution as
follows. Let us first use an approximation similar to that
used by Polchinski and Strassler [53,54]. In this case we
approximate the solution by smearing D0 branes on a
fivesphere, which we interpret as a fivebrane which carries
D0 brane change. We then determine the size of the five-
brane by coupling it to the external fields that are respon-
sible for inducing the mass on the D0 worldvolume. This
gives the radius of the fivebrane. In fact, this was computed

in [4] where the formula similar to (2.83) was found (the
precise numerical factors were not computed in [4]). So it
is natural to believe that (2.84) will still be the correct
answer for N5 � 1. In other words, the coupling constant
‘‘renormalization’’ that was found in [10] is interpreted
here as a physical quantity giving us the size of the five-
brane in the gravity description at strong coupling. This is
the situation for the first four coordinates. The fact that a
single fivebrane has no near horizon region also suggests
that something drastic happens to the second four direc-

18The relations between their variables and ours are 4	 �
� 2
M�

3N �
g2

YM 0N0

m3 , 8�2	r � f.

17Our normalization of the action is S � 1
g2

YM 0

R
Trf12 �D0Yi�

2�
1
2m

2Y2
i �

1
4 �Yi; Yj	

2 � � � �g where Yi are the SO�6� scalars. The

dimensionless parameter is g2
YM 0=m

3.

16We set 	0 � 1 in this paper.
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tions that are transverse to the single fivebrane. We ob-
served this feature for N5 � 1 also from gauge theory side
and will explain it in the next section.

Finally, let us discuss the issue of tunneling between
different vacua. In general we can tunnel between the
different vacua of the matrix model. But the tunneling
can be suppressed in some regimes. For example, let us
consider the case we discussed above where we consider
the vacuum corresponding to a single large disk at a
distance N5 from the � � 0 plane, see Fig. 6(a). From
the gravity point of view we can take one unit of charge
from the large disk and put some other disks. Charge is not
conserved in the process, but N0 should be conserved.
Reducing the charge of the large disk by one unit we are
left with N5 D0 branes to distribute in the geometry. So, for
example, we can put another disk at a distance of one unit
from the � � 0 plane with N5 units of charge. In the
geometry this transition is mediated by a D-brane instan-
ton. The geometry between the original disk and the � � 0
plane can be approximated by the solution in Sec. II B 1.
That solution contains a noncontractible �3, see Fig. 5. If
we wrap a Euclidean D2 brane on this �3 we find that,
since there is flux N5 through it, we need N5 D0 branes
ending on it [34]. Thus, this instanton describes the crea-
tion ofN5 D0 branes. Its action is proportional to the action
of the Euclidean D2 brane. This process describes the
tunneling between the vacua in Figs. 4(d) and 4(e). If the
volume of the �3 is sufficiently large and the string cou-
pling is sufficiently small this process will be suppressed.
In order for this to be the case we need to arrange the field
theory parameters appropriately. Notice that there is no
instanton that produces a smaller number of D0 branes.
This also agrees with the field theory. If we start with the
vacuum with many copies of the N5 dimensional represen-
tation of SU�2�, then we can take one of these representa-
tions and partition those N5 D0 branes into lower
dimensional representations. This is basically the process
described by the above instanton. In other words, the fact
that the D-brane instanton produces N5 D0 branes matches
with what we get in the field theory.

C. Further analysis of near BPS states

In previous sections we have mainly analyzed the near
BPS states associated to string oscillations in the the first
four dimensions, which are described by free massive
fields on the world sheet. In this section we mainly focus
on the second four dimensions which are associated to
fivebrane geometries. Since the spectrum depends on the
vacuum we expand around, we will focus on the large J
near BPS excitations around some particular vacua of the
plane-wave matrix model. We will consider first the N5 �
1 vacuum and then the N5 > 1 vacua, both from the gauge
theory and gravity points of view. We also make some
remarks about the simplest vacuum of the 2� 1 super
Yang-Mills theory on R� S2.

1. N5 � 1 vacua of the plane-wave matrix model

Let us start by discussing the trivial vacuum of the
matrix model, where we expand around the classical solu-
tion where all X � 0. This is the vacuum we denote by
N5 � 1 and which should correspond to a single fivebrane.
When we expand around this vacuum we have 9 bosonic
and 8 fermionic excitations which form a single represen-

tation of fSU�2j4�, corresponding to the Young supertableau

in Fig. 7(a). Our notation for fSU�2j4� representations
follows the one in [7,56]. We are interested in forming
single trace excitations which should correspond to single
string states in the geometry. For example, we can consider
the state created by the field Z of the form Tr�ZJ	,19 where
Z � Y5 � iY6.20 This state is BPS and it belongs to the
doubly atypical (or very short) representation whose
Young supertableau is shown in Fig. 7(b). As in [3] we
can consider near BPS states by writing states of roughly
the form

P
lTr�YiZlYjZJ�l	ei2��ln=J� where i, j � 1; � � � 4.

We can view each insertion of the field Yi as an ‘‘impurity’’
that propagates along the chain formed by the Z oscillators.
These impurities are characterized by the momentum p �
n=J and a dispersion relation �p�, where  is the contri-
bution of this impurity to Ê 
 E� J. Here we are thinking
about a situation where we have an infinitely long chain
where boundary effects can be neglected. These fields have
�p � 0� � 1, we can think of this as the ‘‘mass’’ of the

(f)

(e)(b) (c)(a) (d)

l2 p

l2

a a54

a5

3
2

a
a

a

1

_

(g)

FIG. 7. Young supertableaux corresponding to various repre-
sentations of SU�2j4� or SU�2j2� discussed in the text. In (e) and
(f), 2�l� 2� � a5, p � a2 for SU�4j2� Dynkin labels. Figure (g)
shows the correspondence between supertableau and Dynkin
labels for a general physically allowed representation
�a1; a2; a3ja4ja5� of SU�4j2�, see also [7,56].

19We denote the field Z and its creation operator by the same
letter.

20In this section Yi, i � 1; � � � ; 6 are the scalars that transform
under SO�6� and Xi are the ones transforming under SO�3�.
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particles. This is an exact result and can be understood as a
consequence of the Goldstone theorem. Namely, when we
pick the field Z and we construct the ground state of the
string with powers of Z we are breaking SO�6� to SO�4�.
The excitations Yi, i � 1; � � � ; 4 correspond to the action of
the broken generators. This is a fact that does not even
require supersymmetry. In other words, we are simply
rotating the state tr�ZJ	. It is also useful to consider the
supersymmetry that is preserved by this chain. Out of the

supergroup fSU�2j4� our choice of Z leaves an SU�2�G �fSU�2j2� subgroup21 that acts on the excitations that propa-
gate along the string. The group SU�2�G together with one

of the SU�2� subgroups in fSU�2j2� forms the SO�4� in
SO�6� that rotates the first four dimensions. The second

SU�2� subgroup of fSU�2j2� is the SU�2� factor in fSU�2j4�
and rotates the three scalars Xi. We can use fSU�2j2� to
classify these excitations. The noncompact U�1� infSU�2j2� corresponds to the generator Ê � E� J and gives
us the mass of the particle. The fields Yi belong to the

fundamental representation of fSU�2j2� whose Young
supertableau is in Fig. 7(c). In addition they transform in
the spin one half representation of SU�2�G. We can think of
these excitations as ‘‘quasiparticles’’ that propagate along
the string. The properties of these quasiparticles were
studied in great detail in [10] where the dispersion relation
and particular components of the S matrix were computed
to four loops. These quasiparticles contain four bosons and
four fermions.

So far we have been discussing mainly the fields Yi and
the fermions which have E� J � 1. What about the other
fields in the theory? There are four other elementary fields
which have �� J � 2. These are the three scalars Xi of
SO�3� and the field �Z plus four fermions. Naively, we
might think that these would lead to mass two impurities
that propagate along the string. This is not the case.
Actually, what happens is that they mix with the fields
that we have already described and do not lead to new
quasiparticles [57]. For example an insertion of the field �Z,
such as tr� �ZZJ�1	mixes with the states tr�YiZlYiZJ�l	. The
result of this mixing is such that the resulting spectrum can
be fully understood in terms of two quasiparticles of mass
one that propagate along the string. Something similar
happens with the insertion of the SO�3� scalar Xi, which
mixes with the insertion of two fermions of individual mass
one. In fact, the one loop Hamiltonian in this sector is a
truncation of the one loop Hamiltonian of N � 4 SYM in
[58]. So the results we are mentioning here follow in a
direct way from the explicit diagonalization undertaken in
[57]. The final conclusion of this discussion, is that in
perturbation theory we have a chain which contains impu-
rities with mass one, that transform in the fundamental of

fSU�2j2� and fundamental of SU�2�G. We have four bosons
and four fermions, which can be viewed as the Goldstone
modes of the symmetries broken by the BPS operator
tr�ZJ	. This spectrum is compatible with the index (2.1)
evaluated on single trace states.

Let us now discuss what happens at large ’t Hooft
coupling. The radius of the fivebrane is given by (2.83)
(with N5 � 1). In addition, we have seen that the near BPS
states are described by the pp-wave geometry (2.78)–(2.82)
which corresponds to the near horizon region of N5 five-
branes. The first four transverse dimensions correspond to
the motion of the string in the direction of the fivebranes
and the spectrum contains particles that transform in the

fundamental of fSU�2j2� and the fundamental of SU�2�G as
we had in the weak coupling analysis. The dispersion
relation is given by the usual relativistic formula (2.84).

On the other hand, when we consider the fate of the last
four transverse dimensions we run into trouble with the
geometric description. We see that the solution (2.78)–
(2.82) does not make sense for N5 � 1 since a single
fivebrane is not supposed to have a near horizon region
[13]. The reason is that the near horizon region involves a
bosonic WZW model with level k � N5 � 2 and this the-
ory is unitary only if N5 � 2 � 0. In our context, we also
have RR fields that try to push the string into the near
horizon region. Since for N5 � 1 we do not have such a
region, the simplest assumption is that the second four
dimensions are somehow not present in our pp-wave limit.
This would agree with what we saw in the weak coupling
analysis above, where we did not have any quasiparticles
propagating along the string corresponding to the second
four dimensions. Of course, a string quantized in light cone
gauge is not Lorentz invariant in six dimensions. But
perhaps this is not a problem in this case, since the pres-
ence of RR fields breaks Lorentz invariance. Nevertheless,
one would like to understand the background in a more
precise way in the covariant formalism, so that one can
ensure that we have a good string theory solution.

2. N5 > 1 vacua of the plane-wave matrix model

In order to find a better defined string theory we need to
consider N5 > 1. So, let us consider what happens when
we expand around the vacuum of the plane-wave matrix
model corresponding to N5 > 1. This is the vacuum where
the matrices Xi are the generators of the dimension N5

representation of SU�2�. We would like to understand the
similarities and differences between these vacua and the
N5 � 1 vacuum. When we expand around these vacua we

find that we have N5
fSU�2j4� supermultiplets, the ones

whose Young supertableaux are given in Fig. 7(e) with l �
1; � � � ; N5 [7]. We can view them as the Kaluza Klein
modes on a fuzzy S2. The subsector of this theory where
we consider only excitations of the first Kaluza Klein mode
is the same as the one we had in the N5 � 1 sector. In fact,

21The G subindex indicates that it is global symmetry that
commutes with supersymmetry.
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the one loop Hamiltonian for these excitations is exactly
the same as the one we had for theN5 � 1 case. This can be
seen as follows. Since these modes are proportional to the
identity matrix in the N5 � N5 space that gives rise to the
fuzzy sphere we see that their interactions are the same as
the ones we had around the N5 � 1 vacuum. The only
difference could arise when we consider diagrams that
come from one loop propagator corrections. But the value
of these propagator corrections is determined by the con-
dition that the energy of the state tr�ZJ	 is not shifted, since
it is a BPS state. One difference, relative to the expansion
around the N5 � 1 vacuum is that the one loop
Hamiltonian is proportional to g2

YM 0N2=N5 as opposed to
g2

YM 0N0 (where N0 � N2N5). More precisely, we find that
the function f in (2.85) has the form

 f
�
g2

YM 0N0

m3N5

; N5

�
� 2�2 g

2
YM 0N0

m3N2
5

� � � � (2.87)

for small ’t Hooft coupling. We obtain this result as fol-
lows. First we notice that Ê � 1 excitations are given by
diagonal matrices in the N5 � N5 blocks that produce the
fuzzy sphere. These matrices are N2 � N2 matrices. In
other words, the relevant fields can be expressed as Yi �
1N5�N5

� ~Yi where ~Yi are N2 � N2 matrices, with N2 


N0=N5. Then the action truncated to the ~Yi fields looks like
the N5 � 1 action except that we get an extra factor of N5

from the trace over the diagonal matrix 1N5�N5
. This ef-

fectively changes the coupling constant g2
YM 0 ! ~g2

YM 0 �
g2

YM 0=N5. Since the ~Yi fields are N2 � N2 matrices we see
that corrections in this subsector will be proportional to
~g2

YM 0N2. Notice that (2.87) it involves a different combi-
nation of N0 and N5 than the one that appears at strong
coupling (2.84). So the interpolating function in (2.85)
should have a nontrivial N5 dependence. In summary, at
one loop, the excitations built out of impurities in the first
Kaluza Klein harmonic on the fuzzy S2 give rise to four
bosonic and fermionic quasiparticles of mass Ê � 1 as we
had in the N5 � 1 case.

Let us now focus on the second Kaluza Klein mode,

given by the supermultiplet of fSU�2j4� in Fig. 7(d). This
multiplet contains four bosonic and four fermionic states of
mass Ê � E� J � 2. These eight states transform in thefSU�2j2� representation of Fig. 7(a). Let us describe how
the bosonic states arise. We expand Z � ~Z� J iZi � � � �
in fuzzy sphere Kaluza Klein harmonics using theN5 � N5

matrices J i which give a representation of SU�2� (see
[59]). Three of the states correspond to the impurities Zi
and they are in the (1, 0) representations of SU�2� �

SU�2� � fSU�2j2� and they are singlets of SU�2�G. The
fourth state, denoted by �, arises when we expand Xi �
J i�1��� � � � � . This has E � 2 and spin zero under all
SU�2�s. It gives rise to an excitation with Ê � E� J � 2

and spin zero. In addition to these four bosonic states we
have their fermionic partners. When we consider BPS
states with E� 2S�

P
iJi � 0, the only bosonic state

that contributes is Z�, which has S � 1. Thus the state
tr�Z� ~ZJ	 is BPS. In order to ensure that its energy is not
corrected we need to check that it cannot combine with
other BPS states. The analysis in [7] tells us which repre-
sentations this could combine with. By looking explicitly
at the ones arising when we construct single trace states we
can see that these other representations are not present.
This is a result that is exact in the planar limit. In
Appendix G we use the index defined in (2.1) to prove
the above statement.

What we learned is that for N5 > 1, as opposed to the
case withN5 � 1, we have a new quasiparticle of mass two
propagating along the string. In fact, the same argument
would go through for the case of 2� 1 SYM on R� S2 in
Sec. II A 2, expanded around the trivial vacuum, and the
new supermultiplet correspond to the three derivatives Di,
i � 0, 0, 1, 2 and the seventh scalar �, and their fermionic
partners. They have mass 2 and correspond to the second
four coordinates of the IIA plane wave. In all these cases
we have extra quasiparticles propagating along the string.
This agrees with the fact that in string theory we have eight
transverse directions for the string. The first four dimen-
sions behave as we discussed above (in Sec. II C 1) and its
presence is ensured by the SO�6� symmetry. The details of
the second four dimensions depend on the vacuum we
expand around. So let us concentrate more on these second
four dimensions.

3. Comparison between world sheet theory
and gauge theory

We will now discuss the two dimensional field theory
that describes the second set of four transverse dimensions
for a string in light cone gauge moving in the pp-wave
geometry (2.78)–(2.82). The target space for this two
dimensional theory is R� S3 with an H3 flux on the S3

equal to N5 and a linear dilaton in the R direction. These
are the dimensions parametrized by �, �, �2 in (2.78). In
addition we have a potential which localizes the string at
some point along the throat and at a point in S3. This
potential arises from the g�� component of the metric in
(2.78). Ignoring the potential for a moment we see that we
have a the conformal field theory describing the throat of
N5 fivebranes [13]. The potential breaks the SO�4� rotation
symmetry of the throat region to SO�3�. The resulting
sigma model has (4,4) supersymmetry on the world sheet.
When the potential is nonzero the supersymmetry in the
1� 1 dimensional world sheet theory is of a peculiar kind
[19]. In ordinary global (4,4) supersymmetry the super-
charges transform under an SU�2� � SU�2� R-symmetry
but those symmetries do not appear in the right hand side of
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the supersymmetry algebra.22 Let us denote the super-
charges by Qi

�, where i � 1; � � � ; 4 are SO�4� � SU�2� �
SU�2� indices, and � indicates two dimensional chirality.
The anticommutators of these supercharges have the form
 

fQi
�; Q

j
�g � �ij�E� P�; fQi

�; Qj
�g � �ij�E� P�;

fQi
�; Q

j
�g � mijklJkl; (2.88)

where Jkl are the SO�4� generators andm is a dimensionful
parameter which we can set to one. This parameter is
related to the scale entering in the potential and determines
the mass of BPS particles which carry SO�4� quantum
numbers. When the potential is set to zero we set m � 0
and we get the ordinary commutation relations we expect
for the usual (4,4) supersymmetry algebra. Let us denote
the algebra (2.88) by �4; 4�m. Notice that this is a Poincaré
superalgebra which contains non-Abelian charges in the
right hand side. This is possible in total spacetime dimen-
sion d � 3 [19] but not in d > 3 [18]. This algebra is a
dimensional reduction of a Poincaré superalgebra in 2� 1
dimensions that we discuss in more detail in Appendix E.

Note that the potential implies that the light cone energy
is minimized (and it is zero) when the string sits at � �
� � 0. There is just a finite energy gap of the order of
N5jp�j preventing it from going into the region �! �1
where the pp-wave approximations leading to (2.78)–
(2.82) break down.23 Potentials in models preserving
(4,4) supersymmetry were studied in [60,61] for models
based on hyperkahler manifolds. Here we are interested in
models with nonzero H flux. In fact, for the general solu-
tion (2.35)–(2.39) we can write down the string theory in
light cone gauge

 S � S1 � S2; (2.89)

 S1 �
Z
dt
Z 2�	0jp�j

0
d�d2�

1

2
�D�R

iD�R
i � RiRi	;

(2.90)

 

S2 �
Z
dt
Z 2�	0jp�j

0
d�d2�

�
1

2
f�W; �W��D�WD� �W

�D� �WD�W� � z�W� � �z� �W�

� �f�W; �W��W � �W�2gij�
�

� Bij�
; W; �W�	D�
iD�
j
�
; (2.91)

where S1 describes the first four coordinates and consists of
four free massive superfields. S2 is the action describing

the second four coordinates. We have written the action in
N � 1 superspace, by picking one special supercharge.
Note that this particular supercharge, say Q1

�, obeys the
usual super-Poincaré algebra, therefore we can use the
usual superspace formalism. The B field and the function
f are simply the ones in (2.35)–(2.39). The theory has
�4; 4�m supersymmetry. We have not shown this explicitly
from the Lagrangian (2.91) but we know this from the
supergravity analysis. Compared to the usual WZW action
for a system of fivebranes, the only new term is the
potential term. Note that RR fields in (2.35)–(2.39) are
such that four of the fermions are free, which are the
ones included in S1, and the remaining four are interacting
and appear in S2 in (2.91).

Let us first study the theory (2.91) for large N5. In that
case, we can expand the fields around the minimum of the
potential. If we keep only quadratic fluctuations we have
four free bosons and fermions. In order to characterize
these particles we go to their rest frame. Setting P � 0

we find that (2.88) reduces to the fSU�2j2� algebra. These
particles transform in the representation with two boxes as
in Fig. 7(a) (but now viewed as a representation offSU�2j2�). In terms of SU�2� � SU�2� quantum numbers
we have �1; 0� � �1=2; 1=2� � �0; 0� where particles with
half integer spin are fermions. This is a short representa-
tion, with energy Ê � 2. In fact, if we consider a closed
string and a superposition of two such particles with zero
momentum we can form states that transform in the rep-
resentations given in Fig. 7(e), which are also protected. As
we make N5 smaller these protected representations have
to continue having the same energy. Of course, this argu-
ment only works perturbatively in 1=N5 since N5 is not a
continuous parameter and we can have jumps in the num-
ber of protected states as we change N5. In order to figure
out more precisely which representations are protected it is
convenient to introduce an index defined by

 I ��� � Tr���1�F2S3e
��̂�Ê�S3�~S3�e��Ê	; (2.92)

where S3 and ~S3 are generators in each of the two SU�2�
groups. We use the letter I to distinguish (2.92) from (2.1).
One can argue that only short representations contribute
and that the final answer is independent of �̂, see
Appendix G. We can compute this for large N5 using the
free world sheet theory and we obtain

 I ���N5�1
�
X1
n�1

e�2n�: (2.93)

Since N5 is not a continuous parameter we see that as we
makeN5 smaller (2.93) could change but only by terms that
are nonperturbative in the 1=N5 expansion. Thus for N5

fixed and large we expect that the corrections would affect
only terms of the form e��const�N5�.

Now, let us compare this with the expectations from the
gauge theory side. In order to find protected representa-

23In the region �! �1 we need to use the fivebrane solution
in Sec. II B 1.

22Notice that here we are talking about the global (4,4) super-
symmetry. These are the modes Gi

0 of the superconformal
algebra generated by Gi

n. Some of the SU�2� currents do appear
in the anticommutators of some of the Gi

n, n � 0.
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tions on the gauge theory side it is convenient to use the
index (2.1). Since we are focusing on single trace states we
can compute (2.1) just for single trace states. For the case
that we expand around the vacuum corresponding to N2

SU�2� representations of dimension N5 we get

 Is:t:N5
� Is:t N5�1 �

e�2N5��1��2��3�

�1� e�2N5��1��2��3��

�
e�2��1��2��3�

�1� e�2��1��2��3��
; (2.94)

 Is:t N5�1 �
e��2��1

1� e��2��1
�

e��3��1

1� e��3��1
�

e��3��2

1� e��3��2
:

(2.95)

We describe the details of this computation in Appendix G.
Let us summarize here some of the results. In Appendix G
we show that for the N5 � 1 case we simply get the
contributions expected from summing over the representa-
tions in Fig. 7(b). These contributions have the form ex-
pected from the BPS states on the string theory side
coming from the first four transverse dimensions, the di-
mensions along the fivebrane. So we expect that the extra
contribution in (2.94) should correspond to the contribution
of the second set of four dimensions. In other words, it
should be related to the BPS states in the two dimensional
field theory [(2.91) with (2.75)] describing the second four
transverse dimensions. In order to extract that contribution
it is necessary to match the extra contribution we observe
in (2.94) to the contributions we expect from protected
representations. In other words, we can compute the index
I for various protected representations and we can then
match them (2.94). In Appendix G we compute this index
for atypical (short) representations and we show that (2.94)
can be reproduced by summing over representations of
the form shown in Fig. 7(f). In terms of the notation
introduced in [7] [see Fig. 7(g)], which uses the Dynkin
labels, we expect representations with �a1; a2; a3ja4ja5� �
�0; p; 0ja5 � 1ja5� with p � 0 and a5 � 2�n� 1�, n �
1; � � � but n � 0 mod �N5�. All values of p and n that are
allowed appear once. Representations with various values
of p contribute with states that can be viewed as arising
from the product of representations of the form in Fig. 7(b)
and 7(e). The ones in Fig. 7(b) were identified with the first
four transverse dimensions. So we interpret the sum over p
as producing strings of various lengths given by the total
powers of Z, plus the BPS states which are associated to the
first four (free) dimensions on the string. So we conclude
that the BPS states that should be identified with the second
four dimensions should be associated to the sum over n.
Thus we expect from gauge theory side that the field theory
on the string associated to the second four dimensions
should have an index given by

 I expected �
X1
n�1

e�2n� �
X1
n�1

e�2nN5�: (2.96)

We include the details of derivation in Appendix G. So we
see that this differs from (2.93) by a nonperturbative terms
in 1=N5 of the form e�2N5�. We view (2.96) as the gauge
theory prediction for BPS states on the string theory side.
Here we have checked that this matches the string theory in
a 1=N5 expansion, but it would be nice to obtain the second
term in (2.96) [which could be viewed as a nonperturbative
correction to (2.93)] from an analysis of the two dimen-
sional field theory based on the WZW model plus linear
dilaton theory with a potential. These theories have a large
group of symmetries and the theories with no potential
are solvable. It would be nice to see whether (2.91) is
integrable.

III. THEORIES WITH 16 SUPERCHARGES AND
U�1� � SO�4� � SO�4� SYMMETRY GROUP

In this section we will discuss another class of theories
with 16 supercharges. In this case the supersymmetry
group has a U�1� � SO�4� � SO�4� bosonic symmetry,
where the two SO�4� act on the supercharges. The general
form of type IIB supergravity solutions with these symme-
try was found in [14], and its form is rewritten in
Appendix H. Solutions depend nontrivially on three coor-
dinates x1, x2, y, where y � 0. The solution is parametrized
by a function z�x1; x2; y� which obeys a linear equation

 @i@iz� y@y

�@yz
y

�
� 0: (3.1)

Regular solutions are in one to one correspondence with
droplets of an incompressible fluid in the x1, x2 plane.
These droplets correspond to two possible boundary con-
ditions z � � 1

2 at y � 0 which geometrically are associ-
ated to one of two S3s shrinking to zero smoothly at y � 0.
These solutions are much easier to obtain than the solutions
discussed in the previous sections because the problem is
precisely linear and the boundary conditions are very
simple. In the special case that the x1, x2 plane is infinite
and we have finite size droplets, the solutions correspond to
1=2 BPS states in AdS5 � S

5 [14].
We can now also consider cases where we compactify

the x1, x2 plane. Since the asymptotic structure of the x1, x2

plane has changed, these solutions are dual to other field
theories. The case that x1 is compact and x2 is noncompact
was discussed in [14]. Let us summarize those results. If
we have a droplet that is bounded in the x2 direction, like in
Fig. 8(b)–8(d), then the dual boundary theory can be
thought of as the theory of N M5 branes on R� S1 � S1 �
S3. When one of the S1s is very small we can think of this
as a theory of D4 branes on R� S1 � S3. A simple way to
understand this theory is as follows. We consider one of the
complex transverse scalars of N � 4 super Yang-Mills
theory. When the Yang-Mills theory is on R� S3 the
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Lagrangian contains a term of the form� 1
2 �jDZj

2 � jZj2�.
We can now write Z � eit�Y � iX�. Then the Lagrangian
becomes � 1

2 �DX�
2 � 1

2 �DY�
2 � 2YD0X. We now see that

the problem is translational invariant in X. Actually, the
problem looks like a particle in a magnetic field.24 Note
that the Hamiltonian associated to this Lagrangian is equal
to H0 � H � J where H is the original Hamiltonian which
is conjugate to translations in the time direction and J is the
generator of SO�6� that rotates the field Z. If one compac-
tifies the direction X, using the procedure in [62], we get
the five dimensional gauge theory living on D4 branes, see
Appendix F. This description of the theory is appropriate at
weak coupling or long distances on the D4 branes. The
proper UV definition of this theory is in terms of the six
dimensional (0,2) theory that lives on M5 branes. So we
have the theory on M5 branes on R1;1 � S1 � S3. We
could, of course, decompactify this theory and consider
the theory of M5 branes on R2;1 � S3. These theories
preserve 16 supercharges. The process of compactifying
the coordinate X broke the 32 supersymmetries to 16.
When this theory is on R1;1 � S1 � S3 or R1�2 � S3, the
size of x1 should be taken to zero and the solutions corre-
spond to those in Fig. 8(b) and 8(c).

Let us consider the D4 theory on R� S1 � S3 (or the
M5 theory on R� T2 � S3 in the UV limit). This theory
has a large number of supersymmetric vacua. The structure
of these vacua is captured by the 1� 1 dimensional
Lagrangian

 

Z
Tr
�
�

1

4
F2 �

1

2
�DY�2 � YF

�
: (3.2)

The space of vacua is the same as the Hilbert space of 2D
Yang-Mills theory on a cylinder [14]. All these vacua have
zero energy. At first sight we might expect the theory on
R1;1 � S3 to have a continuum family of vacua related to
possible expectation values for Y. Note, however, that the
electric field is given by E1  F01 � 2Y. For zero energy
configurations F01 � 0. So the quantization condition for
the electric field will quantize the values of Y. This is good,
since, as we explain in the Appendix E the supersymmetry
algebra does not allow massless particles. In fact, the
spectrum of states around each of these vacua has a mass
gap. The explicit gravity solutions were derived in [14] and
are written in the Appendix . In Appendix we show that the
dilaton �, as well as the warp factor are bounded in the IR
region for any droplet configuration of this type. They
never go to zero and the solution is everywhere regular.
This is related to the fact that the dual field theory has a
mass gap.

Another configuration we can consider in the case that
we have a cylinder in the x1, x2 plane is shown in Fig. 8(e).
In this case we fill the lower half of the cylinder. In this case
we get the M2 brane theory in 2� 1 dimensions with a
mass deformation. We get this theory in R1�2 after setting
the radius of x1 to zero and taking the strong coupling limit
(and doing the obvious U-duality transformations25). If the
size of x1 and the string coupling are finite, then we get the
theory on R� T2. This theory was discussed in [14,65,66],
and has an interesting vacuum structure, corresponding to
M2 branes polarized into M5 branes wrapping two possible
S3s.

Let us discuss the situation when the x1, x2 plane is
compactified into a two torus, as in Fig. 8(f)–8(h). We
have a 2 dimensional array of periodic droplets.26 Let us
start first with a description of the gravity solution. An
important first step is to find the asymptotic behavior of the
solution. The function z, which obeys (3.1), goes to a
constant at large y. We can find the value of the constant
by integrating z over the two torus at fixed y. The result of
this integral is independent of y, and we can compute it
easily at y � 0 where it is given by the difference in areas
between the two possible boundary conditions, z � � 1

2 .
So we find z � 1

2
N�K
N�K asymptotically, where we used that

the areas are quantized due to the flux quantization condi-
tion [14], so that N, K are the areas of the fermions and the
holes, respectively. After doing T-dualities on both circles
of the T2 and an S duality we find that the solution is
asymptotic to

FIG. 8. In (a) we see a circular droplet in the uncompactified
x1, x2 plane which corresponds to the vacuum of N � 4 super
Yang-Mills theory. In (b,c,d) we show different vacua in the case
that we compactify the x1 coordinate. This ‘‘uplifts’’ N � 4
super Yang-Mills theory to a 4� 1 dimensional gauge theory, or
more precisely to the (0,2) six dimensional field theory that lives
on M5 branes. Figure (d) shows the limit to the M5 brane theory
when the x1 dependence recovers. If we compactify also x2, as in
(f,g,h) we get a little string theory whose low energy limit is a
Chern-Simons theory. If the sizes of x1 and x2 are finite, we get
the theory on R� T2 and figures (f,g,h) show different vacua. As
we take both sizes to zero, we obtain the theory on R1�2. The
configuration in (e) corresponds to a vacuum of the theory of M2
branes with a mass deformation.

24Note that the �x1; x2� coordinates appearing in the gravity
solution correspond to the coordinates �X; Y� in the field theory.

25This theory via IIB/M duality corresponds to the DLCQ of
IIB plane-wave string theory [63], see also [64].

26In this case, in the large y region, the solution looks similar to
the solution we would obtain if we take the full x1, x2 plane and
we consider a ‘‘ gray’’ configuration filled with a fractional
density. It shares some similarity but is different from the
situation considered in e.g. some of the references in [67] where
‘‘ gray’’ regions are finite.
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 ds2
10 � �dt

2 � du2
1 � du

2
2 � N	

0d�2
3 � K	

0d ~�2
3

�
NK
N � K

	0d�2; (3.3)

 e� � gs
��������
NK
p ���������������

N � K
p

	03=2e��; (3.4)

 H3 � 2N	0d3�� 2K	0d3 ~�: (3.5)

We can view this as a little string theory in 1� 2 dimen-
sions. These (asymptotic) solutions are not regular as �!
�1 since the dilaton increases. In that region we should do
an S duality and then T-dualities back to the original
type IIB description. Then, once we choose a droplet
configuration, the solution is regular. This procedure works
only if the coordinates u1, u2 in (3.3) are compact. Of
course, we could also consider the situation when these
coordinates are noncompact. In that case we have Poincaré
symmetry in 2� 1 dimensions. In fact, such a solution
appears as the near horizon limit of two intersecting five-
branes27 [68,69] and was recently studied in [70]. Note that
the asymptotic geometry (3.3)–(3.5) is symmetric under

 K $ N; (3.6)

which is associated with the symmetry z$ �z. So we
expect that this is a precise symmetry of the field theory.

It is interesting to start from the D4 brane theory that we
discussed above and then compactify one of its transverse
directions, the direction Y in (3.2). The Lagrangian in (3.2)
is not invariant under infinitesimal translations of Y, but it
is invariant under discrete translations if the period of Y is
chosen appropriately. Following the standard procedure,
[62], (see Appendix F for details) we obtain a theory in six
dimensions which can be viewed as the theory arising onN
D5 branes that are wrapping an R1;1 � S1 � S3 with K
units of RR 3 form flux on S3. This RR flux induces a
level K three dimensional Chern-Simons term. In fact by
compactifying Y from (3.2) we get a 2� 1 action K

4� �R
Tr�� 1

4F
2 �!cs	 on R� T2 with Chern-Simons term. It

turns out that the gauge coupling constant is also set by K.
Perhaps a simple way to understand this is that the mass of
the gauge bosons, which is due to the Chern-Simons term
is related by supersymmetry to the mass scale set by the
radius of the threesphere, which we can set to one. This
implies that g2K  1. This derivation makes sense only
when K=N is large and we could be missing finite K=N
effects. Notice that in this limit the ~S3 that is interpreted as
the worldvolume of N D5 branes is larger than the other S3

in (3.3)–(3.5). The gauge theory description is valid in the
IR but the proper UV definition of this theory is in terms of

the little string theory in (3.3). The theory has a mass gap
for propagating excitations but is governed by a U�N�K
Chern-Simons theory at low energies. The U�1� factor is
free and it should be associated to a ‘‘singleton’’ in the
geometric description. On the other hand, it seems neces-
sary to find formulas that are precisely symmetric under
K $ N. More precisely, in the limit N=K large we get a
U�K�N Chern-Simons theory by viewing the theory as
coming from K D5 branes wrapping the other S3.
Interestingly, these two Chern-Simons theories are dual
to each other [71],28 which suggests that this is the precise
low energy theory for finite N and K. Similar conclusions
were reached in [70]. Of course, in our problem we do not
have just this low energy theory, we have a full massive
theory, with a mass scale set by the string scale. We do not
have an independent way to describe it other than giving
the asymptotic geometry (3.3)–(3.5), as is the case with
little string theories. On the other hand one can show that
the symmetry algebra implies that the theory has a mass
gap, see Appendix E.

We can compute the number of vacua from the gravity
side. There we have Landau levels on a torus where we
have total flux N � K and we have N fermions and K
holes. This gives a total number of vacua

 Dgrav�N;K� �
�N � K�!
K!N!

(3.7)

and the filling fraction N
N�K . Actually, to be more precise,

we derive this Landau level picture as follows. We start
from the gravity solutions which are specified by giving the
shape of droplets on the torus. We should then quantize this
family of gravity solutions. This was done in [72] (see also
[73]), who found that the quantization is the same as the
quantization for the incompressible fluid we have in the
lowest landau level for N fermions in a magnetic field. We
now simply compactify the plane considered in [72]. This
procedure is guaranteed to give us the correct answer for
large N and K. The number of vacua computed from
U�N�K agrees with (3.7) up to factors going like N, K or
N � K which we have not computed. These factors are
related to the precise contribution of the U�1�.29 In order to
compare the field theory answer to the gravity answer one
would have to understand properly the role of ‘‘single-
tons,’’ which could give contributions of order N, K, etc.
We leave a precise comparison to the future but it should be
noted that we have a precise agreement for large N and K
where the gravity answers are valid.

We have nonsingular gravity solutions if we choose
simple configurations for these fermions where they form

27One can make a change of variables e2� �
���������������
N � K
p

	01=2r1r2,
u2 �

	01=2���������
N�K
p �N logr1 � K logr2� and then r1 and r2 become the

transverse radial directions of the two sets of fivebranes (inter-
secting on R1;1), respectively, in the near horizon geometry,
where the number of supersymmetries is doubled.

28Level rank duality, as analyzed in [71], holds up to pieces
which comes from free field correlators. This means that we have
not checked whether the U�1� factor, as we introduced it here,
leads to a completely equivalent theory.

29The number of vacua for SU�N�K Chern-Simons theory is
given by �N�K�1�!

K!�N�1�! .
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well defined droplets. The particle hole duality of the
Landau problem is the level rank duality in Chern-
Simons theory, and is K $ N duality of the full
configuration.

A. Supersymmetry algebra

An unusual property of all the theories we discussed
above is that their supersymmetry algebra in 2� 1 (or 1�
1) dimensions is rather peculiar. In ordinary Poincaré
supersymmetry the generators appearing in the right hand
side of the supersymmetry algebra commute with all other
generators. This is actually a theorem for d � 4 [18]. For
this reason they are called central charges. In our case the
superalgebra has anticommutators of the form

 fQ	i; Q�jg � 2~��	�p��ij � 2m	�ijklMkl; (3.8)

where m is a constant of dimension of mass, i, j are SO�4�
indices and Mij are SO�4� generators. This superalgebra
appeared in the general classification in [19]. In this paper
we have set m � 1 for convenience. This choice is related
to the choice of mass scales (e.g. radius of S3) appearing in
the various theories. These generators do not commute
with the supercharges. So this is a Poincaré superalgebra
with noncentral charges.30 The SO�4� that appears in (3.8)
is the product of an SU�2� that acts on the first S3 times
another SU�2� which acts on the second S3, where the S3s
we mention here are the three spheres in the geometric
description. There are other supercharges which trans-
forms under another SO�4�. In Appendix E we write
down this algebra more explicitly and we write down
various Lagrangians with this symmetry. The truncation
of this algebra to 1� 1 dimensions is written in (2.88).

All these theories have interesting BPS particles. Again
for large J we have simple plane-wave limits. In this case
the plane-wave geometry is basically the one correspond-
ing to the standard IIB plane-wave. As before, it is inter-
esting to find out where the BPS geodesics lie in the
geometry. Let us suppose that we consider a particle carry-
ing spin under a generator J � J12 in the SO�4� which
rotates the first sphere. Using the metric in [14] we can see
that

 

E2

J2
�

1
1
2� z

: (3.9)

In the solutions we consider here jzj � 1
2 . So we find that

the energy is minimized when z � 1
2 . This corresponds to

the regions in the y � 0 plane where the other S3 shrinks to
zero size. In addition we have to sit at a point where Vi �
0. Where this point is depends on the distribution of the
other droplets, but one can see that within each droplet

there is a point where Vi � 0. This implies that in a
configuration with many droplets one will have as many
BPS geodesics as droplets of the type we are considering.
One could probably derive exact indices, or partition func-
tions, that count these BPS particles. These are BPS ver-
sions of the field theory objects considered in [75].

B. Solutions with SO�2; 2� � SO�4� � U�1� symmetry

By performing a simple analytic continuation of the type
considered in [14] it is possible to write an ansatz of the
form
 

ds2
10 � y

��������������
2z� 1

2z� 1

s
ds2

AdS3
� y

��������������
2z� 1

2z� 1

s
d ~�2

3

�
2y����������������

4z2 � 1
p �d�� V�2

�

����������������
4z2 � 1

p
2y

�dy2 � dxidxi�

F5 � �
1

4

�
d
�
y2 2z� 1

2z� 1
�d�� V�

�
� y3 �3 d

�z� 1
2

y2

��
^ dVolAdS3

�
1

4

�
d
�
y2 2z� 1

2z� 1
�d�� V�

�
� y3 �3 d

�z� 1
2

y2

��
^ d3 ~�; (3.10)

 

dV �
1

y
� dz; (3.11)

where z obeys

 @i@iz� y@y

�@yz
y

�
� 0: (3.12)

We can now look for solutions where the AdS3 factor
does not shrink but where the S3 factor could shrink.
Regularity requires z � 1=2 at y � 0. We look for solu-
tions where z � 1=2 everywhere. In order to obtain non-
trivial solutions we put charged sources on the right hand
side of (3.12). Let us consider a source that is localized at
y � y0, ~x � ~x0. We take ~x0 � 0 for the time being. It turns
out that if we introduce the right amount of charge, the
circle parametrized by � shrinks in a smooth way, combin-
ing with y, ~x to give a space that locally looks like the
origin of R4. More precisely, this occurs if the function z
behaves near y � y0 as

 z �
y0

2
���������������������������������
�y� y0�

2 � j ~xj2
p ; (3.13)

so we see the charge Q0 at y0 is equal to y0=2. To summa-
rize, we have the following equation and boundary condi-
tion for regular solutions

30This situation, is of course, common in anti-de-Sitter super-
algebras. It has also been observed before in some deformations
of Euclidean Poincaré superalgebras [74].
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 @i@iz� y@y

�@yz
y

�
� �

Xn
l�1

yl
2
�4����y� yl��

2� ~x� ~xl�;

(3.14)

 zjy�0 �
1
2; (3.15)

where we can have several charges located at �yl; ~xl�. If we
do not have coincident points in three dimensions the
solution is smooth.

Notice that for large y and large yl these solutions reduce
to the usual Gibbons Hawking metrics [76] times R6,
where the R6 comes from the large radius limit of AdS3

and S3 in (3.10).
The simplest and most symmetric solution corresponds

to a single point charge of strength y0=2 at �y0; 0�, see
Fig. 9(a), which corresponds to

 z �
r2 � y2

0 � y
2

2
��������������������������������������������������
�r2 � y2

0 � y
2�2 � 4y2y2

0

q ; (3.16)

 V� �
r2 � y2

0 � y
2

2
��������������������������������������������������
�r2 � y2

0 � y
2�2 � 4y2y2

0

q : (3.17)

It turns out that this solution is AdS5 � S5. We can see this
by the coordinate change

 x1 � ix2 � rei�; (3.18)

 y � y0 coshu cos�; (3.19)

 r � y0 sinhu sin�; (3.20)

  � ���=2; (3.21)

 	 � ���=2: (3.22)

So that we get

 ds2
10 � y0��cosh2uds2

AdS3
� du2 � sinh2ud 2�

� �cos2�d ~�2
3 � d�

2 � sin2�d	2�	; (3.23)

 F5 � 4y2
0�cosh3u sinhudu ^ d ^ dVolAdS3

� cos3� sin�d� ^ d	 ^ d3 ~�	; (3.24)

where

 y0 � R2
AdS5
� R2

S5 �
����������������������
4�gsN	

02
q

: (3.25)

It is AdS5 � S5 written with an AdS3 � S1 slicing. This
particular solution has more symmetry and more super-
symmetry than other generic solutions in the family. It is
perhaps useful to note that the AdS3 � S

1 boundary is
conformally related to R� S3

 ds2
AdS3�S1 � ��cosh2vdt2 � dv2 � sinh2vd’2 � d 2	;

(3.26)

 �
1

sin2�
��dt2 � cos2�d’2 � d�2 � sin2�d 2	; (3.27)

 �
1

sin2�
ds2

R�S3 ; sin� �
1

coshv
: (3.28)

Notice that the conformal factor blows up on a circle of S3.
The blown up position corresponds to the boundary of
AdS3.

Now we consider situations for many point charges.
Consider a charge Ql at a position yl and integrate F5

over the S3 and an S2 surrounding the charge in the �y; ~x�
space. From (3.10) the result is proportional to ylQl  Nl,
where we used that the flux is quantized. For smooth

solutions Ql � yl=2 and we obtain a relation yl ������������������������
4�gs	02Nl

p
, the same as (3.25). Notice that (3.14) de-

scribes a family of solutions where we can change contin-
uously the values of ~xl but we cannot change continuously
the values of yl due to the flux quantization condition.

Let us now start with a smooth solution that has two
equal charges, at y1 � y2, and we take the limit when these
two charges lie on top of each other (i.e. we set ~x1 � ~x2).
We get a singular solution since the total charge is twice the
value that would make the solution regular. Such a solution
has a Z2 singularity and near the position of the charge it
looks like R4=Z2. Similarly if we take k equal charges
coincident we get a space that locally is R4=Zk (or an
Ak�1 singularity). See Fig. 9(b) and 9(c).

Let us now consider the corresponding field theory.
These solutions are related to N � 4 super Yang-Mills
theory on AdS3 � S1. Let us focus on a complex combi-
nation, Z, of two of the six scalar fields. Let us expand this

(b) (a) 

plane 

= p p p p 

(c) 

AdS     Sx 

p 

5
5

21 1= (    ,  0 ) 

y = 0 

0
y 2

FIG. 9. (a) In the analytically continued IIB ansatz, the
AdS5 � S

5 solution corresponds to boundary conditions z �
1=2 at the y � 0 plane and a point charge Q0 � y0=2 located
at p � �y0; 0�, away from the y � 0 plane. In (b) there is a more
general smooth configuration where there are two point charges
located at different points p1 � �y1; ~x1� and p2 � �y2; ~x2�. Their
charges are y1=2, y2=2 respectively. In (c) two such point charges
merge at the same point, and they develop a R4=Z2 singularity. If
there were k coincident such charges, then they give rise to
R4=Zk singularity.
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field in Kaluza Klein modes on S1. The constant mode
leads to a field with negative mass on AdS3. This negative
mass arises from the conformal coupling of the scalar
fields.31 The Lagrangian of this theory contains the term
1
2 �jD Zj2 �

R
6 jZj

2�, and the scalar curvature R � �6 for
AdS3 with unit radius. We can obtain a massless field on
AdS3 if we take the first Kaluza Klein mode of Z on the  
circle. Namely, we can consider Z � ẑei . We can take ẑ to
be a diagonal matrix with eigenvalues ẑl where the multi-
plicity of each eigenvalue is Nl, where

P
lNl � N. It is

natural to conjecture that this state is related to the gravity
configuration with x1

l � ix
2
l � ẑl and y2

l  Nl. This seems
to give rise to a picture where the symmetries match on the
two sides. On the other hand, it seems puzzling that as we
take ẑi ! ẑj we do not get the same solution as the one
corresponding to the situation where we have a single
eigenvalue with multiplicity Ni � Nj. In fact we get a
smooth configuration if Ni � Nj and a singular one (with
a Z2 singularity) if Ni � Nj. More generally we get a Zk
singularity if ẑ1; ẑ2; . . . ; ẑk are coincident and their original
multiplicities are the same. Since the field theory is on
AdS3 � S1 we will need boundary conditions for the fields
at the boundary of AdS3, so perhaps the gauge symmetry is
broken by the boundary conditions when we have multi-
center solutions. In other words, perhaps the multicenter
solutions only exist when the gauge symmetry is already
broken at the boundary. Thus we cannot restore it by taking
ẑi ! ẑj. Clearly a better understanding of this point is
needed. Other gravity solutions with an AdS3 � S1 bound-
ary were recently considered in [78]. It is possible that
those solutions are related to a subset of the ones consid-
ered in this paper. Similar, but different, solutions were
analyzed in [79].

IV. CONCLUSIONS

In this paper we have studied various theories with 16
supercharges. These theories are interesting because they
have a dimensionless parameter that allows us to interpo-
late continuously between strong and weak coupling.
These theories have simple observables, such as the spec-
trum of gauge invariant states. In this respect they are
rather similar to N � 4 Yang-Mills theory on R� S3.
In fact, they arise as truncations of N � 4. It is therefore
interesting to study the similarities and differences be-
tween these theories and N � 4. From some points of
view these theories are simpler. For example, the plane-
wave matrix model is just an ordinary quantum mechanical
theory with a finite number of degrees of freedom. On the
other hand they are more complicated because they have
less symmetry than N � 4 Yang-Mills theory. For ex-
ample, in the theories we studied here symmetry alone

does not determine the gravity solutions. These theories
have many vacua, as opposed to N � 4 which has only
one. In addition, the physics around different vacua can
have different qualitative features.

The first set of theories that we studied has fSU�2j4�
symmetry group. We discussed some features of these field
theories. We gave explicit formulas for the counting of 1=2
BPS states (2.5) and (2.13) and we explained how to
construct an index (2.1) carrying information about more
general BPS states. The single trace contribution to the
index was computed in (2.94). This can, in turn, be trans-
lated into an index for the two dimensional world sheet
theory (2.92) and (2.96) describing near BPS string states.
The general form of the gravity solutions is written in
(2.20)–(2.24) (from [14]) with the boundary conditions
corresponding to an electrostatic problem involving con-
ducting disks in three dimensions. For given asymptotic
boundary conditions there are many possible disk configu-
rations. The number of disk configurations matches with
the number of expected vacua in the field theory. Full
explicit solutions were given in a couple of cases (2.44)–
(2.54). The solution in (2.49)–(2.54) is dual to 2� 1 Yang-
Mills theory on R� S2 for the vacuum with unbroken
U�N� gauge symmetry. All solutions are smooth in the
IR region and they have no horizons. We have then focused
on states with large J, where J is an SO�6� generator. We
treat these large J states in the ’t Hooft limit, where J is
large but kept finite in the large N limit, so that we can
neglect back reaction. In this limit we can think of the BPS
states as massless geodesics moving along a circle inside
an S5 and sitting at some point in the rest of the coordi-
nates. These geodesics sit at the points corresponding to the
tip of the disks. For a given vacuum there are as many
distinct geodesics as there are disks in the electrostatic
picture. Looking at the spacetime near these geodesics
we found the general pp-wave solution (2.35)–(2.39). We
then used these metrics to study the spectrum of near BPS
states. In the string theory side, at large ’t Hooft coupling,
we can quantize the string in light cone gauge. Four of the
transverse dimensions are described by free massive fields.
These are associated to oscillations of the string in the S5

directions. The near BPS spectrum associated to stringy
oscillations along these directions is characterized by a
single parameter which corresponds to the radius of the
S5 at the position of the BPS geodesic. This parameter is
nonuniversal, in the sense that it depends on the theory we
consider, the vacuum that we pick and also the particular
BPS geodesic that we are expanding around, e.g. see (2.56)
and (2.83). On the other hand, the metric very close to each
massless geodesic has the form of the IIA plane wave
(2.41). So the form of this metric is a universal feature of
the near BPS limit in these geometries. There is however an
important subtlety. Even though very near the massless
geodesic the metric behaves as in (2.41) it can happen
that the geometry has other features that are at distances

31Of course, this mass obeys the Breitenlohner-Freedman
bound [77].
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comparable to the string scale. This happens when we
consider the vacua of the plane-wave matrix model that
correspond to N5 coincident fivebranes (with relatively
small values of N5). In this case the correct string theory
description involve a massive deformation of the WZW
model plus linear dilaton theory. This 1� 1 dimensional
field theory has �4; 4�m supersymmetry (2.88) which has
the peculiar feature of having noncentral charges. It would
be interesting to see if this theory is integrable. We con-
sidered the weak coupling spectrum of single trace states
around various vacua of this field theory. We found that the
number of transverse oscillators depends on the vacuum.
At weak coupling, for the single NS5 vacuum (the trivial
vacuum) we have only four transverse oscillation modes
while for N5 > 1 we have eight transverse oscillation
modes. To be precise, on the gauge theory side, we only
proved that the BPS spectrum of oscillations is consistent
with eight modes, there could be more modes that do not
contribute to the index. It would be nice to perform the
complete one loop analysis of this model in order to find
out precisely how many we have. We computed the number
of 1=4 BPS single trace BPS states (2.96) which lead to 1=2
BPS states on the string world sheet. In other words, there
are 1=2 BPS states of the field theory on the string. We did
not count exactly these BPS states independently for the
1� 1 dimensional field theory but we did show that we get
the right answer for large N5.

We then considered theories that arise when we take the
solutions in [14] associated to free fermions and put them
on a two torus. If we shrink the two torus to zero we get a
little string theory (3.3)–(3.5) with Poincaré invariance in
2� 1 dimensions. If we keep the torus finite, then we get
this 2� 1 dimensional little string theory on a two torus.
This little string theory is characterized by two integers N
andK. In the largeK limit we can argue that the low energy
description is given by a U�N�K Chern-Simons theory, see
(F2). We expect that the low energy theory should be
exactly that of U�N�K Chern-Simons theory. This low
energy theory is level rank dual to U�K�N Chern-Simons
theory32 in the large N, K limit. The K $ N symmetry is a
full symmetry of the little string theory. The solutions that
we described, which are associated to fermion droplets on
a two torus, give a semiclassical description for the various
vacua of U�N�K Chern-Simons theory on a two torus.
These solutions are relevant only when the 2� 1 dimen-
sional little string theory is on a two torus. This theory, as
well as other theories that arise in similar ways, such as the
theory living on the mass deformed M2 branes [14,65,66]
have the supersymmetry algebra discussed in Appendix E
which contains noncentral terms such as (E3).

In addition we discussed a curious family of solutions
that is obtained by doing an analytic continuation of the

ansatz in [14]. These solutions are related to N � 4 super
Yang-Mills theory on AdS3 � S

1. They seem to correspond
to a peculiar Coulomb branch where the field Z has an
expectation value. But some further study is needed to
elucidate the precise relation to the field theory.
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APPENDIX A: DETAILED ANALYSIS OF THE
REGULARITY OF THE SOLUTIONS

In this appendix we prove general properties of the
solutions we consider in this paper. We can show, using
equations for V, that �VV 00 � � _V 0�2 � ���2�V 00�2 � � _V 0�2	
is always negative. The dot denotes �@� and the prime
denotes @�. We also need that everywhere _V � y � 0 and
V00 � 0, �V � 2 _V � 0. In this section it is a bit more
convenient conceptually to formulate the problem in terms
of a new variable Z � _V. We see that we can express all the
functions in (2.20)–(2.24) in terms of Z, Z0 and _Z since we
can express V00 in terms of �V using the Laplace equation.
The variable Z obeys the equation

 Z00 � �@�

�@�Z
�

�
� 0: (A1)

This equation has the same form as the equation in the IIB
solution (H2) when we have an additional isometry. Note,
however, that we have different boundary conditions.
Notice that we want to show that Z is non-negative. The
boundary conditions at � � 0 and on the disks imply that
there Z is zero. The positivity conditions constrain the
allowed asymptotic boundary conditions. They allow
only V  �2 � 2�2, or Z �2 we have the whole �, �
plane. If we only have �> 0, we could also allow V �
��2 � 2

3�
3, or Z � ��2. Note that Z needs to grow at

infinity in both cases, since we want to impose, in addition,
that _Z � 0. Notice that the structure of the Eq. (A1) is such
that if Z is zero at the disks and Z is positive at infinity, then
Z is positive everywhere. Now we want to ensure that _Z is
positive everywhere. For this purpose it is convenient to
define Y � _Z=�2 � �@�Z�=� � �V 00, which obeys the
same equation as the variable V itself. The boundary con-
ditions are such that Y is positive far away. In addition, Y it
is zero on the disks. At the origin Y is required to be
regular. So it is intuitively clear that it will be positive
everywhere, except on the disks.

In order to find a nonsingular solution we need an addi-
tional condition. We need to ensure that

32We did not check that the U�1� factor indeed works as we are
describing here.
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 0 �
2 _V

�V
� 1: (A2)

The first inequality is obeyed automatically and is a strict
inequality away from the disks and the origin. The second
inequality can be analyzed as follows. Choose a function
U � �@�V�=�. Then we need to show that @�U � 0. The
equation that U obeys has the form

 U00 �
1

�3 @���
3@�U� � 0: (A3)

It the Laplace equation in five dimensions for a system that
is SO�4� rotationally symmetric. The boundary conditions
at infinity are such that U is positive. At � � 0 and on the
disks we have that U is zero. As long as we have some
finite disks, then we see that _U must be strictly positive
everywhere, except on the disks and possibly at � � 0.
Note that in the case that we have only an infinite disk at
� � 0, so that we have the solution that corresponds to the
11 dimensional plane wave, with no excitations, then we
get that _U � 0 and the solution (2.20)–(2.24) is singular.
This is expected since we are doing a reduction on a circle
that is null everywhere.

Our discussion so far has ensured that the solution is
nonsingular and the dilaton is finite everywhere except,
possibly at � � 0 and on the disks where the various
inequalities that we have discussed are saturated. In order
to show that the solution is nonsingular also in these
regions, we need a more detailed analysis. For example,
near � � 0, we have that _V  �2 and that �V � 2 _V  a�4,
with a > 0 and �V 00 > 0 due to our previous arguments.
These conditions ensure that the dilaton stays finite and
that the solution (2.20)–(2.24) is nonsingular.

Doing a similar analysis near a disk we also find that the
solution is regular at the disk positions.

Regularity of the solutions coming from D4
on R1;1 � S3

Here we analyze the regularity property of the D4 brane
solutions. In order to characterize the solution we need to
give the numbers aj, bj which obey aj < bj < aj�1 � � � .
These numbers are the values of x2 at the boundaries of the
black strips, see Fig. 8(b) and 8(c). We have a black strip
between aj and bj. Then the solution is given by [14]

 2z � �1�
X
j

x� aj������������������������������
�x� aj�2 � y2

q �
x� bj������������������������������

�x� bj�2 � y2
q ;

(A4)

 2yV1 �
X
j

y������������������������������
�x� aj�

2 � y2
q �

y������������������������������
�x� bj�

2 � y2
q ; (A5)

 2z� i2yV1 � �1�
X
j

�wj � zj�; (A6)

 wj �
x� aj � iy������������������������������
�x� aj�

2 � y2
q ; zj �

x� bj � iy������������������������������
�x� bj�

2 � y2
q :

(A7)

We see that the complex numbers wj and zj lie on the unit
circle in the upper half plane.

The ten dimensional solution is
 

ds2
II A � e2���dt2 � d~x2

1� �

����������������
1� 4z2

p
2y

�dy2 � dx2
2�

� y

��������������
1� 2z
1� 2z

s
d�2

3 � y

��������������
1� 2z
1� 2z

s
d ~�2

3;

e�2� �
1� 4z2 � 4y2V2

1

2y
����������������
1� 4z2

p ; (A8)

 

F4 � �
e�2�

4

�
�1� 2z�3=2

�1� 2z�3=2
�2 d

�
y2 1� 2z

1� 2z

�
^ d ~�3

�
�1� 2z�3=2

�1� 2z�3=2
�2 d

�
y2 1� 2z

1� 2z

�
^ d�3

�
;

B2 � �
4y2V1

1� 4z2 � 4y2V2
1

dt ^ d~x1: (A9)

Note that g00 is determined in terms of the dilaton. This is
related to the fact that the 11 dimensional lift of this
solution is lorentz invariant in 2� 1 dimensions. We will
now show that e�2� remains finite and nonzero in the IR
region. Of course, in the UV region �! 1 and we need to
go to the 11 dimensional description. Note that away from
y � 0 the denominator in (A8) is nonzero. The fact that the
numerator is nonzero follows from the representation (A6)
and the fact that wj, zj in (A7) are ordered points on the
unit circle on the upper half plane, so the norm j2z�
i2yV1j< 1. As we take the y! 0 limit we see that both
the numerator and denominator in (A8) vanish. We can
then expand in powers of y and check that indeed we get a
finite, nonzero result, both for aj < x2 < bj and x2 � aj,
bj.

APPENDIX B: DERIVATION OF THE D2
SOLUTION

In this appendix we explain how we obtained the solu-
tion (2.49)–(2.54). We start with the configuration of four
dimensional gauged supergravity in [38], which has four
commuting angular momenta in SO�8�. We consider the
special case when only one of the angular momenta is
nonzero. This is a half BPS state of M-theory on AdS4 �
S7 and, as such, it can be described in terms of the general
M-theory ansatz in [14]. By comparing the expressions in
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[14,38] we find that the solution corresponds to an ellip-
tical droplet of M2 boundary conditions (2.16). The solu-
tion can be written in the following parametric form33

 eD � 4sin2��1� z2H�z�� sinh’; (B1)

 x2 � ix1 � �e
��1=2�’ cos�� ie�1=2�’ sin��

cos�������������
sinh’
p ;

(B2)

 y � zsin2�; (B3)

 @z’ �
�z sinh’

1� z2H�z�
; @z�zH�z�� � cosh’: (B4)

The last two first order Eqs. (B4) are equivalent to a second
order equation for zH�z�

 �z�1 � zH�z��@2
z�zH�z�� � 1� �@z�zH�z���2: (B5)

Note that we still need to solve this equation to find a full
solution.

The elliptic droplet in the x1, x2 plane is

 

x2
1

a2
�
x2

2

b2 � 1; a �
1������������

sinh’
p e’=2jz�0;

b �
1������������

sinh’
p e��’=2�jz�0:

(B6)

If we take a limit that a! 1, b � 1, we can let

 sinh’ � 1
2e
’ � cosh’ (B7)

and ’0 � ’�z � 0� goes to infinity. This limit corresponds
to dropping the 1 in the right hand side of (B5).

If we expand around cos� � 1, we can neglect the
dependence of x1 and we find a solution of the 2D Toda
equation. We can now write ’ � ’0 � ~’ where ~’ is stays
constant in the limit. We can remove the ’0 dependence
performing a simple symmetry transformation of the Toda
equation which does not affect the 11 dimensional solu-
tion: eD ! e�2’0eD, x2 � ix1 ! �x2 � ix1�e’0 , y! y.
Now we have the solution corresponding to a single M2
brane strip in x1, x2 plane.

 eD � 4sin2��1� z2H�z��e~’; x2 � e�~’ cos�;

y � zsin2�;
(B8)

where ~’ is defined through e~’ � 2@z�zH�z��, with H�z�
obeying Eq. (B5) without the one in the right hand side. We
also have a boundary condition e~’�0� � 2C.

One can see that the single strip of M2 branes in the
electrostatic problem corresponds to a single charged con-
ducting disk in the external potential �

2�2�2

8� . The solution
for the whole potential is

 V � �z� sin2�
�
zH�z�e�~’ �

z
2

�
; (B9)

 � � 2 sin�
��������������������������������
�1� z2H�z��e~’

q
; � � �2zH�z� cos�:

(B10)

The S5 shrinks when sin� � 0, which corresponds to the
� � 0 axis, and the S2 shrinks when z � 0, which is a disk
in � � 0 plane centered around the origin and extends to
finite �0. The size of the disk is

 �0 � 2
������
2C
p

: (B11)

The charge density ���� on the disk is proportional to the
jump of the � component of the electric field �@�V �
�x2, so we have

 ���� �
1

4�C�0

�����������������
�2

0 � �
2

q
; (B12)

which has maximum at the center and vanishes at the edge.
The full potential can be expressed in integral form

 V �
�2 � 2�2

8�
�
Z 2�

0

Z �0

0

1
4�C�0

����������������
�2

0 � r
2

q
rdrd�������������������������������������������������������

�2 � �2 � 2�r cos�� r2
p

(B13)

up to a constant shift.
Now we will compare the two expressions (B9) and

(B13) and solve the Eq. (B5) in the limit that we drop
the 1 in the right hand side of (B5). Let us look at V along
the � � 0 line above the � � 0 plane. This corresponds to
cos� � �1. We now integrate (B13) at � � 0 and we
impose the condition that z � 0 when � � 0. Comparing
with (B9) we find a relation between z and �

 z �
�2

4�
�

1

4C�0

�
��2

0 � �
2� arctan

�0

�
� �0��

�
2
�2

0

�
:

(B14)

This is for � � 0, �> 0. In addition, we know the ex-
pression for zH�z� in terms of � from (B9)

 zH�z� �
�
2
: (B15)

Thus (B14) and (B15) give a solution of H�z� in a para-
metric form. We also find the relation between � and C

 � �
4
���
2
p

�
C3=2: (B16)

33We can also write the solution corresponding to the 1=2 BPS
extremal one-charge limit of the AdS4 black hole, e.g. [80], in
the Toda form. This solution and the solution for M2 strip
both belong to the more general solution: eD�4sin2��1�
z2H�z��= ~F�z�2, x2� ix1��e

��1=2�’cos�� ie�1=2�’ sin�� ~Fcos�,
y � zsin2�, where @z ~F � z ~F

2�1�z2H�z��
cosh’ and H obeys (B5).

The solution that corresponds to the extremal AdS4 black hole is
H � 1� 2Q

z . We can plug this in the previous equations and
integrate to get log ~F �

R
z

2�1�z2H�z��
dz. z is related to the radius r

of AdS4 black hole as z � 2r.
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One may now write the solution in a simpler form by
introducing r � �=�0

 zH�z� �
������
2C
p

r; z �
1������
2C
p �r� �1� r2� arctanr	;

(B17)

where r ranges from 0 to1. This is a solution for Eq. (B5)
when we drop the 1 in the right hand side.

We end up with the solution corresponding to single
strip of M2 branes
 

eD � 8C�1� r2�sin2�; x2 �
1

2C
�1� r arctanr	 cos�;

y �
1������
2C
p �r� �1� r2� arctanr	sin2�; (B18)

and C is a simple rescaling parameter that is associated to
the charge of the solution.

APPENDIX C: SOLUTION FOR NS5 BRANES ON
R� S5

In this appendix, we write the solution for for NS5
branes on R� S5 in the Toda form. This is not necessary
for anything we did in this paper but connects it to the
gauged-supergravity solution of [14]. Let us start with the
7D gauged-supergravity solution which corresponds to an
elliptic M5 droplet in x1, x2 plane [14]. This solution for
the 3D Toda equation is [14]34

 eD � m2r2f sinh2�; y � m2r2 sin�; (C1)

 x2 � ix1 � �e
�� cos�� ie� sin��

cos����������������
sinh2�
p ; (C2)

 cosh2� � F0; f � 1�
F

2
���
x
p ; x 
 4m4r4; (C3)

 �2
���
x
p
� F�F00 � 1� �F0�2; (C4)

where prime is the derivative with respect to x. The elliptic
droplet in the x1, x2 plane has axis a � e�����������

sinh2�
p jr�0, b �

e������������
sinh2�
p jr�0 and we take the limit similar to Appendix B,

that a! 1, b � 1. Then we can approximate sinh2� �
1
2 e

2� � cosh2� and �0 � �jr�0 will goes to infinity. This
is equivalent to dropping the 1 in (C4). After a simple
rescaling we find the solution to the 2D Toda equation

 eD � m2r2fe2� �

� ���
x
p
�

1

2
F
�
F0; (C5)

 x2 � e�2� cos� � �2F0��1 cos�; (C6)

 y � m2r2 sin� �

���
x
p

2
sin�: (C7)

where F obeys Eq. (C4) without the 1. Comparing this to
(2.17) and (2.43) we can write

 x � 1
4C
�2�2I2

1���; F � 1
2C
�1�2I2���;

F0 � CI�1
0 ���;

(C8)

where C is a trivial overall scale. This gives a solution to
(C4) (without the 1) in a parametric form.

APPENDIX D: CHARGE AND ASYMPTOTICS OF
THE D0 BRANE SOLUTIONS

In this appendix, we discuss the charge N2 and N5 and
asymptotic matching of the solutions dual to vacua of the
plane-wave matrix model. We then discuss the interpolat-
ing function f in the leading gravity approximation in
Sec. II B 5.

We now consider the boundary conditions that corre-
spond to the solutions dual to the plane-wave matrix model
and we consider a vacuum corresponding to a single large
disk at distance d N5 from the � � 0 plane. These are
the vacua corresponding to N5 fivebranes. We write the
leading solution of the potential in asymptotic region

 V � 	��2��
2

3
�3� � ~�; ~� �

P�

��2 � �2�3=2
: (D1)

Using the coordinate r � 4
������������������
�2 � �2

p
and t � x0 we find

that the leading order solution at large r in (2.20)–(2.24) is
the standard D0 brane solution [30] at large r, with warp
factor

 Z �
2815P

r7	
; 	 �

8

gs
: (D2)

We now need to compute P. We compute the charge and
the distance. Since we have images we have P � 2dQ. The
distance is given in terms of N5 by (2.26). In order to
compute the charge we note that if we have a large disk
with a size �0 � N5 then the configuration at large dis-
tances looks like a single conducting disk at � � 0 with
some extra sources localized near ��;�� � ��0; 0�. We can
thus approximate the induced charge on the disk to be the
induced charge we would have on the conducting plane at
� � 0 if we had not introduced the disk. This induced
charge is given simply by the external potential which is
the first term in (D1). We can thus approximate

 Q �
1

4�

Z
@�Vext �

	�4
0

8
; d �

�
2
N5: (D3)

34The extremal limit of AdS7 black hole, e.g. [81,82], can be
written in the Toda form: We start from a more general
solution eD � m2r2f= ~F2; y � m2r2 sin�, x2 � ix1 �

�e�� cos�� ie� sin�� ~F cos�, where @r ~F�r� � 2m2r ~F�r�
f cosh2�,

see [14]. The extremal AdS7 black hole corresponds to solution
F � x�Q, we can integrate to get log ~F �

R
2m2r
f dr, and plug

in these into the more general solution.
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Now we can go back to the expression for Z and write it as

 Z �
2515��4

0N5

r7 ; (D4)

where we are in the regime where the disk is very close to
the � � 0 plane.

We can now compare with the result in [30]

 Z �
27�9=2��7=2�g2

YM 0N0

r7 �
2415�5g2

YM 0N0

r7 : (D5)

Comparing the two we find

 �4
0 �

1
2�

4g2
YM 0N2: (D6)

We find also that the function f in Sec. II B 5 is

 E� J 1� f
n2

J2 ; f �
1

2
R4
S5 ; R2

S5 � 4�0:

(D7)

Finally we obtain

 

R2
S5

	0
� 4

�
�4g2

YM 0N2

2m3

�
1=4
; (D8)

 f � 4�2

�
2g2

YM 0N2

m3

�
1=2

(D9)

in the strong coupling regime.

APPENDIX E: POINCARE SUPER ALGEBRAS
WITH NONCENTRAL CHARGES

In this appendix we discuss two Poincare superalgebras
with mass deformations [19] which appeared in our dis-
cussion. First we present an algebra with 8 supercharges
and then an algebra with 16 supercharges.

Let us define �����	 as

 �0 � i�2; �1 � �1; �2 � �3; (E1)

where �i are Pauli matrices. We also define
 

~��	� � ��
��
�
	��; ~�0 � ��	�;

~�1 � ��3; ~�2 � �1; (E2)

and we see that �~���	� is symmetric in the indices 	, �.

1. Superalgebras with 8 supercharges

We define superchargesQ	i with i an SO�4� index and 	
is the 2� 1 Lorentz index (spinor of SO�2; 1�). We can
impose the reality condition Qy	i � Q	i.

We start by considering a superalgebra with 8 super-
charges given by

 fQ	i; Q�jg � 2~��	�p��ij � 2m	�ijklMkl; (E3)

 �p�;Q	i	 � 0; �p�; p�	 � 0; (E4)

 ����;Q	i	 �
1
2�~����

�
	Q�i; (E5)

 �Mjl; Q	i	 � i��ijQ	l � �ilQ	j�; (E6)

 �Mij;Mkl	 � i��ikMjl � �jlMik � �jkMil � �ilMjk�;

(E7)

 ����; p�	 � i����p� � ���p��; (E8)

 ����;���	 � i������� � ������ � ������

� �������; (E9)

 �Mjl; p�	 � 0; �Mjl;���	 � 0; (E10)

where Mij are SO�4� generators. Mij are noncentral
charges in the super-Poincare algebra in 2� 1 dimensions.
��� is the Lorentz generator in SO�2; 1�. Notice that the
first line is the only nonobvious commutator and is the one
stating that we have noncentral charges.

In order to check the closure of the superalgebra we need
to check the Jacobi identity. The identities involving one
bosonic generator will be automatically obeyed since they
are just simply stating that objects transform covariantly
under the appropriate symmetries.

So the only nontrivial identity that we need to check is
the one involving three odd generators. The Jacobi identity
is

 

�Q	i; fQ�j;Q�lg	 � �Q�j; fQ�l;Q	ig	 � �Q�l; fQ	i;Q�jg	 � i��jlab��biQ	a � �aiQ	b� � i�	liab��bjQ�a � �ajQ�b�

� i	�ijab��blQ�a � �alQ�b�

� �iijla���Q	a � �	Q�a � 	�Q�a	

� iijlb���Q	b � �	Q�b � 	�Q�b	 
 0: (E11)

It is interesting to study the particle spectrum for theo-
ries based on this superalgebra (E3). This theory cannot
have massless propagating particles. This can be seen as
follows. We assume that the massless particle has p� � 0,
p� � 0 and p2 � 0. In this case the supersymmetry alge-

bra implies that Qi
� and Mij annihilate all states in the

supermultiplet. On the other hand the Qi
� generators ar-

range themselves into creation and annihilation operators
and change the SO�4� quantum numbers in the multiplet.
Thus we reached a contradiction. This argument allows
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Chern-Simons interactions since that is a topological the-
ory. So all propagating particles are massive. Let us go to
the rest frame of the massive particle, with p1 � p2 � 0.
Then the ‘‘little group’’ (i.e. the truncation of (E3) to the
generators that leave this choice of momenta invariant) is
the fSU�2j2� supergroup. The tilde represents the fact that
we take the corresponding U�1� to be noncompact. The
representation theory of this algebra was studied in
[56,83,84]. As usual, there are short representations when
the BPS bound is obeyed when the mass of the particle is
M � 2m�j1 � j2�, where m is the mass parameter in (E3).

The superalgebra (E3)–(E10) can be reduced to 1� 1
dimensions in a trivial fashion, we just set p2 � 0 and
remove two of the Lorentz generators. This is the symme-
try algebra (2.88) of the sigma model considered in (2.91).
The reason this superalgebra arises is the following.

Suppose we start with a theory with supergroup fSU�2j4�
and we pick a 1=2 BPS state with charge J under generator
J in SO�2� � SO�6�. The supercharges that annihilate this

state form the supergroup fSU�2j2�. The light cone string
Lagrangian (2.91) describes small fluctuations around

these BPS states so that the supergroup fSU�2j2� should

act on them linearly. Since the world sheet action is boost
invariant along the world sheet, we find that this super-
group should be extended to (E3).

Let us give some further examples of theories with this
superalgebra. We can construct a 1� 1 dimensional SYM
with this superalgebra from the plane-wave matrix model
via matrix theory compactification techniques [62] (also
[85]). In fact this 1� 1 SYM was constructed in this way
by e.g. [11,12,86]. Here we will reproduce this result and
we will use SO�9; 1� gamma matrices and the fermions are
SO�9; 1� spinors.35 We will then compactify a scalar of the
1� 1 SYM and get a 2� 1 super Yang-Mills Chern-
Simons theory satisfying the above superalgebra.

One starts from the plane-wave matrix model whose
mass terms for the SO�6� scalars takes the form �1

2�Xa�
2,

where a � 1; 2; . . . ; 6. We have set the mass for the SO�6�
scalar to 1. We should write the action so that it is trans-
lation invariant in one of the transverse scalars. We can
make a field-redefinition for two SO�6� scalars X1 � iX2 �

eit�Y � i�� and for fermions � � e�1=2��12t�. Then the
action of plane-wave matrix model is

 

S �
1

g2
YM 0

Z
dx0Tr

�
�

1

2
�D0XI�2 �

1

2
�D0Y�2 �

1

2
�D0��2 �

i
2

���0D0��
1

2
���I�XI; �	 �

1

2
���1��; �	 �

1

2
���2�Y; �	

�
1

2
��;XI	

2 �
1

2
��; Y	2 �

1

2
�Y; XI	

2 �
1

4
�XI; XJ	

2 �
1

2
�Xa�

2 �
1

2
22�Xi�

2 �
3

2
i ���789�� 2iijkXiXjXk

�
1

2
i ���0�12�� 2YD0�

�
: (E12)

We have 3� 4� 2 scalars, where the first seven scalars with indices I � 3; 4; . . . ; 9 are split into a � 3, 4, 5, 6 and i � 7,
8, 9 and the rest two scalars are Y and �.

Then the action becomes translation invariant in the � direction. We now compactify � by replacing � with gauge
covariant derivative �! i @

@x1
� A1;�i��;O	 ! @1O� i�A1; O	 [62] (also [85]). Plugging this into the original action

(E12) one get the 1� 1 dimensional super Yang-Mills theory on R1;1 with a mass deformation

 

S �
1

g2
YM 1

Z
dx0dx1 Tr

�
�

1

4
F2
�� �

1

2
�D�XI�2 �

1

2
�D�Y�2 �

i
2

����D���
1

2
���I�XI; �	 �

1

2
���2�Y; �	 �

1

2
�Y; XI	2

�
1

4
�XI; XJ	2 �

1

2
�Xa�2 �

1

2
22�Xi�2 �

3

2
i ���789�� 2iijkXiXjXk �

1

2
i ���012�� Y��F��

�
: (E13)

We have 3� 4� 1 scalars, with the seven scalars whose
indices are I � 3; 4; . . . ; 9, where a � 3, 4, 5, 6 and i � 7,
8, 9, and another scalar Y, and � � 0, 1. The theory has
super-Poincare algebra on R1;1 with SU�2� � SU�2� R
symmetry. The first SU�2� rotates the first three scalars i �
7, 8, 9 and the second SU�2� is one of the SU�2� factors in
the SO�4� rotating the four scalars a � 3, 4, 5, 6. In
addition, the theory has an SU�2� global symmetry, which
is the second SU�2� factor in the SO�4� we have just
mentioned. Compactifying along x1 and taking the com-
pactification size to zero we get back to the plane-wave
matrix model which has a larger symmetry group. The

parameters in the two theories are related by g2
YM 1 �

2�Rx1
g2

YM 0, where Rx1
is the radius of the x1 circle. The

1� 1 SYM constructed from the plane-wave matrix model
coincides with the DLCQ of the IIA plane wave [11,12],
which was first obtained by [11,12] from matrix regulari-
zation (double dimensional reduction) of the supermem-
brane action under kappa-symmetry fixing condition on
11D maximal plane wave. The action we reproduce here

35Our convention is different from that of [85] or [3], which use
SO�9� gamma matrices.
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(E13) is written manifestly Lorentz invariant in 1� 1
dimensions.

We pointed out that this theory can be uplifted again
making Y periodic. We make the replacement Y ! i @

@x2
�

A2;�i�Y;O	 ! @2O� i�A2; O	 [62]. The coupling YF01,
becomes a Chern-Simons term in 2� 1 dimensions. The
quantization of the level of the Chern-Simons action im-

plies that the compactification radius of Y is quantized.
This quantization condition also follows from the fact that
the coupling YF01 is not invariant under arbitrary shifts of
Y, and eiS is periodic only if we shift Y by the right amount.
Finally we get the 2� 1 dimensional super Yang-Mills
Chern-Simons theory

 

S �
k

4�

�Z
Tr
�
�

1

2
F ^ �F� A ^ dA�

2

3
A ^ A ^ A�

i
12

� ���� dx
� ^ dx� ^ dx�

�
�
Z
d3xTr

�
�

1

2
�D�XI�2 �

i
2

� ��D� �
1

2
� �I�XI;  	 �

1

4
�XI; XJ	2 �

1

2
�Xa�2 �

1

2
22�Xi�2 � 2iijkXiXjXk

�
i
4
ijk � �ijk 

��
; (E14)

where we have 3� 4 scalars with indices I � 3; 4; . . . ; 9
split into a � 3, 4, 5, 6 and i, j, k � 7, 8, 9, and the
worldvolume indices are �, �, � � 0, 1, 2. The coupling
constants is related to the 1� 1 SYM by g2

YM 2 �
2�Rx2

g2
YM 1, k

4� �
1

g2
YM 2

and k 2 Z. So we see that k is
the only coupling constant in the theory. When k is large
the theory is weakly coupled.

2. Superalgebras with 16 supercharges

Finally, let us turn our attention to the superalgebra for
theories with 16 supercharges. Now we have two SO�4�

groups and a second set of supercharges eQ	m. We add the
anticommutators

 f ~Q	m; ~Q�ng � 2~��	�p��mn � 2m0	�mnrs ~Mrs; (E15)

where ~Mrs is generator of the second SO�4�. The anticom-
mutator of Q	i with ~Q	m is zero. The rest of the algebra is
rather obvious and is just given by the covariance proper-
ties of the indices as in (E3). In principle we can havem0 �

m in (E3). In the theories studied here we have m0 � m. If
we want to have BPS states under both Q and ~Q then we
need that m=m0 to be a rational number. Note that the little
group for a massive particle is ~SU�2j2� � ~SU�2j2�.

Let us be a little more precise about these SO�4� groups.
The ansatz in [14] above has two three spheres on which
two SO�4� group act. Let us call them SO�4�i with i � 1, 2.
Each of these two groups are SO�4�i � SU�2�Li �
SU�2�Ri. The supercharges Q	i in (E3) transform under
SU�2�L1 � SU�2�L2. The supercharges ~Q	i transform
under SU�2�R1 � SU�2�R2. If we quotient any of these
theories by a Zk in SU�2�Ri, we get a theory that only has
8 generators as in (E3).

This algebra with 16 generators is the one that appeared
on the worldvolume of theories related to the IIB construc-
tions of Sec. III. In the case of the M2 brane theory the two
SO�4�s are global R-symmetries of the theory. In the case
that we consider an M5 on R2;1 � S3 one of the SO�4�
groups is a symmetry acting on the worldvolume. When
the size of S3 becomes infinity, the SO�4� that acts on the
worldvolume is contracted to ISO(3) and only the trans-
lation generators remain in the right hand side of the
supersymmetry algebra. Thus, we do not get into trouble
with the Haag-Lopuszanski-Sohnius theorem [17] in total
spacetime dimension d � 4.

The dimensional reduction of this algebra to 1� 1
dimensions gives the linearly realized symmetries on the
light cone world sheet of a string moving in the maximally
supersymmetric IIB plane wave [20].

APPENDIX F: 4� 1 D SYM AND 5� 1 D SYM WITH
CHERN-SIMONS TERM FROM N � 4 SYM

In this section we discuss in more detail the Lagrangian
on the D4 brane and the D5 brane that we obtained by
starting from N � 4 super Yang-Mills theory and com-
pactifying the transverse scalars. The procedure is identical
to the one used in Appendix E.

We start from the N � 4 SYM on R� S3 with mass
terms for the 6 scalars� 1

2�
2X2

a, where a � 4, 5, 6, 7, 8, 9.
We redefine two of the scalars X4 � iX5 � ei�t�Y ���
and fermions �old � e�1=2���45t�. We then make the re-
placement �! i @

@x4
� A4;�i��;O	 ! @4O� i�A4; O	

[62]. We obtain a 4� 1 super Yang-Mills theory on R1;1 �
S3 with a mass deformation

 

S �
2

g2
YM 4

Z
d2xd3� Tr

�
�

1

4
FMNFMN �

1

2
DMXaDMXa �

i
2

���MDM��
1

2
���a�Xa;�	 �

1

2
���5�Y;�	 �

1

4
�Xa; Xb	2

�
1

2
�Y; Xa	2 �

�
2
i ���045��

1

2
�2X2

a � 2�YF04

�
(F1)

where M, N � 0; 1; . . . ; 4; a � 6, 7, 8, 9; �M, �5, �a are ten dimensional gamma matrices. The theory does not have

HAI LIN AND JUAN MALDACENA PHYSICAL REVIEW D 74, 084014 (2006)

084014-34



Poincaré invariance in 4� 1 dimensions, but it has Poincaré invariance in the R1;1 subspace x0, x4. It has SO�4� R
symmetry. When it is truncated by keeping states that are invariant only under the SU�2�L which acts on S3 it gives the
1� 1 SYM in (E13). When we reduce it on S1, it gives back the N � 4 super Yang-Mills theory. The parameters are
related by g2

YM 4 � 2�Rx1
g2

YM 3.
This 4� 1 super Yang-Mills theory can be uplifted again by compactifying Y, and making replacement Y ! i @

@x5
�

A5;�i�Y;O	 ! @5O� i�A5; O	, similar to Appendix E. The uplifted action is a 5� 1 super Yang-Mills theory on R2;1 �
S3 which contains a Chern-Simons term for the 2� 1 dimensional gauge fields
 

S �
2

g2
YM 5

Z
Tr
�
�

1

4
FMNF

MN
�
�
K
4�

Z
Tr
�
A ^ dA�

2

3
A ^ A ^ A

�
^
d3�

VolS3

�
2

g2
YM 5

Z
d3xd3� Tr

�
�

1

2
DMXaD

MXa �
1

4
�Xa; Xb	

2 �
1

2
�2X2

a �
i
2

���MDM��
1

2
���a�Xa;�	 �

�
2
i ���045�

�
;

(F2)

where M, N � 0; 1; . . . ; 4; 5; a � 6, 7, 8, 9. The coupling
constant is g2

YM 5 � 2�Rx2
g2

YM 4, K
4� �

2�VolS3

g2
YM 5

, K 2 Z,

where VolS3 is the volume of the S3. This is the S3 on
which the original N � 4 is defined. Notice that the
coupling constant is given in terms of K. This implies the
weak coupling limit corresponds to large K. The theory
only has Poincaré invariance on R2;1 subspace x0, x4, x5.
Truncating this theory by keeping only states invariant
under the SU�2�L that acts on S3 we recover the 2� 1
dimensional Yang-Mills Chern-Simons in (E14). This 5�
1D theory can also be reduced to a 4� 1 dimensional super
Yang-Mills theory on R2;1 � S2 if we replace S3 with
S3=Zk and reduce on the fiber direction of the latter in
the similar way in Sec. II A 2.

Similarly, the 4� 1 dimensional Yang-Mills theory (F1)
can be reduced to a 3� 1 dimensional Yang-Mills theory
on R1;1 � S2 by truncating by U�1�L � SU�2�L which acts
on S3. Alternatively, this theory can be obtained through
the uplifting procedure applied to the D2 brane theory on
R� S2 that we discussed in Sec. II A 2.

APPENDIX G: COMPUTATION OF THE INDEX
COUNTING BPS STATES

In this appendix we compute the index (2.1) for various
situations. We are interested in computing this index for
single trace states in the ’t Hooft N � 1 limit. Since the
index is basically a counting problem we can use Polya
theory, as explained in [21,87]. What we want to do is the
following. We have a set of ‘‘letters’’ which are the various
oscillator modes. This set depends on the vacuum we
expand around. We define the single particle partition
function

 z �
X

bosons

e��iQi �
X

fermions

e��iQi ; (G1)

where Qi are various charges. The single trace states are
counted by

 Zs:t � �
X1
n�1

’�n�
n

log�1� z�n�i�	: (G2)

Where ’�n� is the Euler Phi function which counts number
of integers less than n that are relatively prime with n.
’�1� 
 1, ’�2� � 1, ’�3� � 2, etc.

When we compute (2.1) only states with U 
 H4 

E� 2S�

P
iJi � 0 contribute. Let us first consider the

states in the first Kaluza Klein mode, which is in the
representation in Fig. 7(a). For convenience we will use
Yj to denote SO�6� scalars and Xi for SO�3� scalars in this
appendix. The bosons that contribute are given by Yj �
iYj�1, j � 1; 3; 5 and X� � X1 � iX2. The fermions that
contribute have the indices  �;���,  �;���,  �;���
where the indices indicate the charges under �S; J1; J2; J3�
and S is one of the generators of SU�2� � SU�2j4�. Then
we find
 

z1 � e��2��3 � e��1��3 � e��1��2 � e�2��1��2��3�

� e�2�1��2��3 � e��1�2�2��3 � e��1��2�2�3

�1� z1� � �1� e��1��2��1� e��2��3��1� e��1��3�:

(G3)

We can now use the formula

 �
X1
n�1

’�n�
n

log�1� qn� �
q

�1� q�
(G4)

in order to write (G2) in terms of (G3) to obtain

 Is:t:N5�1 �
e��2��1

1� e��2��1
�

e��3��1

1� e��3��1
�

e��3��2

1� e��3��2
:

(G5)

In order to read off which representations are contributing
it is useful to compute the index for the doubly atypical
representations of the form �a1; a2; a3ja4ja5� �
�0; p; 0j0j0�. This notation refers to the Dynkin labels,
see Fig. 7(g) and [7] for further details. We obtain
 

I�0;p;0j0j0� � e�p��1��2�
�1� e��2��3��1� e��1��3�

�1� e�1��3��1� e�2��3�

� cyclic: (G6)
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We can see that if we sum this over p we obtain

 Is:t:N5�1 �
X1
p�1

Ip: (G7)

This discussion implies that all the BPS representations
that contribute to the index for theN5 � 1 case are the ones
we expect from the doubly atypical representations to
which the string ground state tr�ZJ	 belongs to. Of course,
in order to show that these representations are protected we
do not need any of this technology, since doubly atypical
representations cannot be removed [7]. All we are showing
here is that we find no evidence of further BPS representa-
tions for the N5 � 1 vacuum. This result is not totally
trivial since we can certainly construct individual single
trace states in other atypical representations. These are
singly atypical representations. But we find that they al-
ways come in pairs that could combine into long represen-
tations. Of course, the explicit analysis we described in
Sec. II C shows that they all do combine. Before we leave
this simple case, let us understand how we connect these
results to the spectrum of the string theory in light cone

gauge. It is convenient to focus on the fSU�2j2� subgroup infSU�2j4�, the energy Ê in fSU�2j2� is the same as Ê � E�
J3 in SU�2j4�. So we are interested in taking a limit where
�3 is large and�1 � �2 is small. We place no constraint on
�1 � �2. Actually, to be more precise, note that the choice
of generator J3, or field Z � Y5 � iY6 leaves a subgroupfSU�2j2� � SU�2�G � fSU�2j4� unbroken. The chemical
potential �1 � �2 couples to the generator in the global

SU�2�G which is not part of the fSU�2j2� supergroup. Our
goal is to relate (G5) to an index we can compute on the
string world sheet of the form

 I ��; ~�� � Tr���1�F2S3e��̂�Ê�S3�~S3�e��Êe�~�JG3 	 (G8)

which is the same as (2.92) except that we have added a
chemical potential for the generator JG3 in SU�2�G. It is
clear that we should identify � � �3 and ~� � �1 � �2.
Let us state the final result and then we will justify it. We
have
 

lim
�1��2!0

�
Is:t:��i��

q
�1�q�

�
��I����3; ~���1��2�:

(G9)

Let us explain how we obtained this. The states giving rise
to string world sheets in the plane-wave limit have very
large values of E. So we need to isolate from (G5) the
contribution from states with large values of E. The first
idea is to isolate from (G5) terms with large powers of q �
e��1��2 but low powers of e��3 . The only such states are
the ones in the first term in (G5). Unfortunately, such states
have no �3 dependence at all and correspond to the ground
states. This is related to the fact that (G8) would vanish if
we had not inserted J3. In (G5) the absence of high powers

of q in the �3 dependent terms is due to the fact that each
representation with large p contributes with a factor of
(1� q) to terms with finite powers of e��3 . This factor
arises as follows. Among the supercharges with U � 0 we
have one which has zero Ê. It has quantum numbers
Qy�;���. This supercharge does not annihilate �3 depen-
dent terms and gives rise to the �1� q� factor. This can be
seen more explicitly by rewriting the first term in (G6) as

 q�p
�
1� �1� q�

�
q�1=2e��3�e~�=2 � e�~�=2� � e�2�3�1� 1=q�

�1� q�1=2e~�=2��3��1� q�1=2e�~�=2��3�

�
;

(G10)

 ~� � �1 � �2; q � e��1��2 : (G11)

The term independent of �3 is the contribution to the
ground state of the string and is explicitly subtracted in
(G9). The other terms in (G10) as well as the second and
third terms in (G6) contain a factor of (1� q). So these
contributions would vanish if we took the q! 1 limit. In
order to avoid this problem we introduce a factor w2S when
we compute the contribution of each BPS representation.
We then take a derivative with respect to w, set w � 1 and
take q! 1. This gives us a finite answer for each p in
(G6). In fact we get to strip off a factor of (1� wq) and
replace it by (� 1), since we are interested in taking the
large p limit. We can equivalently obtain this limit by
simply starting from the full expression and taking the
limit in (G7) since terms which involve finite powers of
q will cancel out due to the (1� q) factor, while the sum
over many terms involving a power of qp will give a
1=�1� q� cancelling the explicit factor of (1� q). In other
words, if we were to truncate the sum (G7) to a finite
number of terms and then take q! 1 then we would get
zero for all �3 dependent terms.

The limit (G9) gives us

 I � �
e��3�~�=2

1� e��3�~�=2
�

e��3�~�=2

1� e��3�~�=2
: (G12)

This is indeed the result we get for I if we compute the
contribution in the string theory side for a �4; 4�m world
sheet theory with fields in the fundamental representation

of fSU�2j2� and the fundamental of SU�2�G. These are
precisely the fields coming from the first four directions
of the string world sheet.

Now let us now consider vacua with N5 > 1. In order to
compute the index in these cases it is useful to write a
general formula for the index for an arbitrary SU�2j4�
representation. If the representation is typical then the
index vanishes. We can understand this as follows. On a
typical SU�2j4� representation we find that, for the pur-
poses of counting the states, the supercharges act like
fermionic creation and annihilation operators. In fact,
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when we look at the expression for the characters in [84]
we find that there is a factor of the form

 

Y
j

�1� e��iH
j
i �; (G13)

where j runs over half of the supercharges and Hj
i are the

Cartan charges of this supercharge. The index we have
defined is simply a character evaluated for special values of
�i which are such that a particular supercharge, Qy�;���,
gives a contribution of the form �1� 1� � 0. This ensures
that the index vanishes for long (or typical) representa-
tions. In atypical representations one finds that the charac-
ter does not contain the full factor (G13). In fact, the index
will receive contributions only from states with U � 0
[see (2.2)]. So we can truncate the SU�2j4� superalgebra to

the elements that have U � 0. This gives a fSU�1j3� super-
algebra. So the states contributing to the index formfSU�1j3� representations. The index is the same as the

character of the fSU�1j3� representation. It turns out that

if we consider an atypical representation of fSU�2j4� of the
form �a1; a2a3ja5 � 1ja5� then states with U � 0 form a

typical representation of fSU�1j3�. Doubly atypical repre-

sentations of fSU�2j4� give rise to atypical representations

of fSU�1j3�. Let us be more explicit. Let us start with the

atypical fSU�2j4� representation r labeled by
�a1; a2; a3ja5 � 1ja5�. The index evaluated on this repre-
sentation gives us

 I�a1;a2;a3ja5�1ja5�
� ���1�a5e�Q�

P
i
�i��1� e��1��2��1

� e��1��3��1� e��2��3���a1;a2�
�g�;

(G14)

where

 Q � 2� a5 � a3 �
2
3a2 �

1
3a1; (G15)

and ��a1;a2�
is a character of an SU�3� representation with

�a1; a2� Dynkin labels and evaluated on an SL�3�matrix of

the form g � diage�1=3�
P

i
�i�e��1 ; e��2 ; e��3�. When we

derived (G14) we used the fact that we obtain a typical

representation of fSU�1j3� and we used the typical charac-
ter formulas in [84] to write the character in terms of SU�3�
representations. Notice that in (G14) we see the factor of
the form (G13) which comes from the supercharges infSU�1j3� [84].36

Returning to our problem, we want to evaluate the single
particle contribution to the index from the additional
Kaluza Klein multiplets that we have for a fuzzy sphere.
These multiplets transform in the representations
�0; 0; 0j2�l� 2� � 1j2�l� 2��, l � 2, where l � 2 corre-
spond to the multiplet with a Young supertableau with
four vertical boxes as in Fig. 7(d). The vacuum associated
to N5 fivebranes has multiplets with l � 2; � � � ; N5, in
addition to the multiplet present for the trivial vacuum
which is given by Fig. 7(a). Using (G14) we can evaluate
the single particle contribution from each of these multip-
lets as
 

zl � �e
�2�l�1��

P
i
�i��1� e��1��2��1� e��1��3�

� �1� e��2��3�; (G16)

where l > 1. Then we see that we can represent the full
single particle contribution as
 

1� z1 �
XN5

l�2

zl � �1� e��1��2��1� e��1��3�

� �1� e��2��3�
�1� e�2N5��1��2��3��

1� e�2��1��2��3�
:

(G17)

Inserting (G17) into (G2) and using (G4) we obtain (2.94).
The final result (2.94) contains all the information about
possible surviving BPS representations for the single string
case which can be obtained by group theory alone. Notice
that this was obtained purely from representation theory
and no assumptions were made on the dynamics, other than
the planar approximation, which implies that single trace
states do not mix with multiple trace states. It could well be
possible that by using more detailed properties of the
dynamics one might be able to obtain more detailed infor-
mation about BPS states. In other words, the index gives us
a lower bound on the number of BPS states, but the actual
number could be bigger.

We see that the structure of the index is such that we get
one contribution that is common to all vacua, which is what
we had for the trivial vacuum at N5 � 1, plus some extra
terms that arise only for N5 > 1, which are written in
(2.94). It is clear that these extra terms are the ones that
contain the information about the extra four dimensions of
the string. Focusing on these terms and taking the limit
(G9) we obtain the value of the world sheet index over the
last four coordinates (2.96). As expected, we do not get any
terms involving ~� since we expect that the SU�2�G sym-
metry only acts on the first four dimensions.

Let us be more explicit about the atypical representa-
tions that contribute to the index. We find

 Is:t:N5
� Is:t:N5�1 �

X1
n�1;n�0 mod �N5�

e�2n��1��2��3�: (G18)

36The formulas in [84] say that the character of typical repre-
sentation of the SU�njm� supergroup are given by the product of
the characters of the U�1� � SU�n� � SU�m� representations
associated to the highest weight state times a factor of the
form (G13) which arises from half of the supercharges (the
supercharges are split into raising and lowering and we get
(G13) from the lowering ones).
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And each term can be written as

 � e�2n��1��2��3� �
X1
p�0

I�0;p;0j2�n�1��1j2�n�1��; (G19)

where

 I�0;p;0j2�n�1��1j2�n�1�� � �e
�2n�

P
�i��1� e��1��2��1� e��1��3��1� e��2��3� �

�
e�p��1��2�

�1� e�1��3��1� e�2��3�
� cyclic

�
(G20)

is the contribution of an atypical representation with the
Young supertableau in Fig. 7(f). We interpret the sum over
p as indicating that we can add any number of Zs. So the
resulting BPS states could be matched by thinking that we
have the usual BPS states in the first four dimensions, the
same we had for N5 � 1 plus BPS states along the other
four dimensions with Ê � 2n. In conclusion, we interpret
each term of the form (G19) as giving rise to a BPS state in
the second four dimensions with Ê � 2n and S3 � ~S3 � n.
This is the contribution we would get from an fSU�2j2�
supermultiplet with a single column of 2n boxes.

Finally, let us explain why (2.92) is an index that counts
BPS states for the theory on the string. We start by defining

 � � Tr���1�Fw2S3e��̂�Ê�S3�~S3�e��Ê	; (G21)

which is a character of fSU�2j2�. Let us denote by V 


Ê� S3 � ~S3 the generator that is conjugate to �̂. Then we
see that there are two supercharges Qy�;�, Qy�;� (and their
complex conjugates) which have V � 0 eigenvalue. In

addition, in fSU�2j2� all supercharges have Ê � 0 eigen-
values.37 On a long representation these two supercharges
give rise to a factor of the form �1� w��1� 1=w�. We see
that for w � 1 long representations do not contribute.
However, we also see that short representations do not
contribute either because they typically have one factor
of �1� w�1�jw�1. The solution to this problem is to take
the derivative of (G21) with respect to w and then set w �
1. Then long representations will not contribute but short
representations will contribute. This proves that (2.92) is an

index. Short representations of SU�2j2� are, for example,
those that have a single column or a single row.

If we take the free theory that is associated to the second
four coordinates of the IIA pp wave we find that the single
particle excitations transform in a short representation offSU�2j2� given by a single column of two boxes [as in
Fig. 7(a)]. This representation contains two BPS states,
with V � 0 contributing to (2.92). These are a boson of
spins �S3; ~S3� � �1; 0� and a fermion with spins �12 ;

1
2�. Only

when these particles have zero momentum in the spatial
dimension can they contribute to the index. We can thus
evaluate the index in the Fock space by simply writing

 I Fock � @w

�
1� we�2�

1� w2e�2�

�
w�1
�
X1
n�1

e�2n�

�
e�2�

�1� e�2��
; (G22)

where we used that only a single bosonic and fermionic
oscillator contribute. We see that this expression contains

the contributions expected from fSU�2j2� states with Young
supertableaux with a column of 2n boxes. Such multiplets
contain two BPS states with �S3; ~S3� � �n; 0�; �n�
1=2; 1=2� and energy Ê � 2n.

APPENDIX H: FORMULAS FROM [14]

For completeness we review the formulas for the general
form of the solutions in [14].

The IIB ansatz is

 

ds2
10 � �

2y����������������
1� 4z2

p �dt� V�2 � y

��������������
1� 2z
1� 2z

s
d�2

3 � y

��������������
1� 2z
1� 2z

s
d ~�2

3 �

����������������
1� 4z2

p
2y

�dy2 � dxidxi�

F5 � �
1

4

�
d
�
y2 1� 2z

1� 2z
�dt� V�

�
� y3 �3 d

�z� 1
2

y2

��
^ d3��

1

4

�
d
�
y2 1� 2z

1� 2z
�dt� V�

�
� y3 �3 d

�z� 1
2

y2

��
^ d3 ~�;

(H1)

where dV � 1
y �3 dz, i � 1, 2 and �3 is the flat space epsilon symbol in the three dimensions parametrized by y, x1, x2. The

function z obeys the equation

37In fact all generators have Ê � 0 eigenvalues, so one can truncate this algebra to PSU�2j2�. We are not interested in doing this here.
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 @i@iz� y@y

�@yz
y

�
� 0: (H2)

The M theory ansatz is
 

ds2
11 � �4e2��1� y2e�6���dt� V�2 � 4e2�d�2

5 � y
2e�4�d ~�2

2 �
e�4�

1� y2e�6� �dy
2 � eDdxidxi�

G4 �

�
�4d�y3e�6��dt� V�	 � 2~�3

�
y2@y

�
1

y
@ye

D
�
dy� y@i@yDdx

i
��
^ d2 ~�;

(H3)

where Vi �
1
2 ij@jD, e�6� �

@yD
y�1�y@yD�

and ~�3 is the 3D flat space  symbol. The function D obeys

 @i@iD� @
2
ye
D � 0: (H4)
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