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Utilizing the ADM equations, we derive a metric and reduced field equations describing a general,
spherically symmetric perfect fluid. The metric describes both the interior perfect fluid region and exterior
vacuum Schwarzschild spacetime in a single coordinate patch. The exterior spacetime is in generalized
Painleve-Gullstrand coordinates which is an infinite class of coordinate systems. In the static limit the
system reduces to a Tolman-Oppenheimer-Volkoff equation on the interior with the exterior in
Schwarzschild coordinates. We show the coordinate transformation for the nonstatic cases to comoving
coordinates, where the metric is seen to be a direct generalization of the Lemaitre-Tolman-Bondi
spacetime to include pressures.
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I. INTRODUCTION

The Lemaitre-Tolman-Bondi (LTB) class of solutions of
Einstein’s field equations describing spherically symmet-
ric, inhomogeneous dust [1–3] are well known. However,
despite many years of work, the generalization to a general
perfect fluid1 source is not known. There are a number of
exact solutions with specific matter distributions or geome-
tries, for example, the Tolman-Oppenheimer-Volkoff
(TOV) static models, the FRW models with homogeneous
pressure and energy density, and the list goes on.

Much work has been done on the collapse of self-similar
perfect fluids (see for e.g. [7,8] and [9] for a more recent
review). The field equations for simple equations of state
reduce to systems of ordinary differential equations and
can therefore be analyzed in great detail using various
methods of dynamical systems. Giambo et. al. [10,11]
recently reduced the Einstein field equations for a perfect
fluid with barotropic equation of state to a single, second
order quasilinear differential equation on the metric coef-
ficients. This work was achieved using area-radial coordi-
nates, and enabled the analysis of naked singularities in the
collapse of fluids of this type.

One specific purpose of exact solutions is to describe
either a stellar or galactic system. In particular, the equa-
tions of hydrostatic equilibrium describes the pressure
required to support these bodies from collapsing under
their own gravitational field. Furthermore, the nonstatic
cases are interesting in that they describe the collapse of
these systems, and hence the possible formation of black
holes.

However, many known matter solutions only describe
the region that contains the matter. The exterior region is
considered as an additional extra, the matching of which

provides boundary conditions for the collapse process (see
for e.g. [5]). However, recently [12] expressed a metric that
describes both interior and exterior regions of a collapsing
body as a single solution of the field equations. This
alleviates the requirement for the matching schemes at
the interface, a process which is sometimes difficult due
to the matching of two separate coordinate systems.

In [12], the interior region of the spacetime is a margin-
ally bound ball of homogeneous dust, and the exterior
spacetime is the Schwarzschild spacetime in Painleve-
Gullstrand coordinates [13,14]. In [15] we generalized
this model to nonmarginally bound inhomogeneous dust
for the interior, with the Scwarzschild spacetime in gener-
alized Painleve-Gullstrand coordinate system for the exte-
rior region. The coordinate system for the dust region of
the spacetime is such that shell-crossing singularities ap-
pear as simple fluid shock waves [16].

In this paper, we generalize [15] to include pressure in
the form of a perfect fluid. The interior region is first
derived as a generalization of the coordinates used in
[15], and we further show the coordinate transformation
to put this into comoving coordinates. In this way, the
solution is shown to be a generalization of the LTB space-
time to include pressures.

By taking the static limit of our coordinates we find the
system reduces to the TOV equation for hydrostatic equi-
librium. This solution matches smoothly onto exterior
Schwarzschild coordinates. Considering the minimum ra-
dius for a static star is larger than the apparent horizon, this
implies the static system is everywhere regular in these
coordinates. However, if we consider the Schwarzschild
coordinates for the collapsing case, then at some point
through the evolution, the surface of the star will be inside
the event horizon. Therefore, the spacetime will cease to be
everywhere regular. However, the generalized Painleve-
Gullstrand coordinates which are the exterior for the non-
static cases are everywhere regular, and therefore the entire
collapse process is everywhere well defined.
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1The definition of perfect fluid we utilize in this article follows

that of [4–6]
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By considering only the interior, perfect fluid region,
and reversing the direction of the time coordinate the
solution is a cosmological model describing the expansion
of the universe.

The article is set up as follows. In Sec. II we describe the
method for deriving the reduced Einstein field equations.
Section III analyses the initial and boundary conditions
required to solve this set of equations. The coordinate
transformation to put the metric into a generalized version
of the LTB coordinates is given in IV, and the apparent
horizon is briefly discussed in V. We look at the indepen-
dence of the pressure on the tidal forces for the entire
spacetime in VI and finally reduce the system to known
solutions in Sec. VII.

Geometrized units are employed throughout whereby
c � G � 1. Greek indices run from 0. . .3, Latin from
1. . .3 and we follow index conventions of [5].

II. REDUCED EFES

The metric representing a spherically symmetric space-
time can be expressed in 3� 1 form, without loss of
generality, as

 ds2 � ��2dt2 �
1

1� E
��dt� dr�2 � r2d�2; (1)

where ��t; r�> 0 is the lapse function, ��t; r� is the radial
component of the shift vector, E�t; r�>�1 and d�2 :�
d�2 � sin2�d�2.

The energy-momentum tensor for a perfect fluid [4–6]
is given by2

 T�� � ��� P�n�n� � Pg��; (2)

which is related to the Einstein tensor via G�� � 8�T��.
Here, � is the energy density, P is the pressure and n� is the
vector field tangent to the fluid, which is timelike and
normalized

 n�n� � �1: (3)

Further demanding this satisfies Frobenius’ theorem

 n��r�n	� � 0; (4)

where square brackets denote antisymmetrization, implies
the normal vector is hypersurface forming. The normal
being timelike implies the hypersurfaces are spacelike. A
particular solution to Eq. (4) is

 n� � ��r�t; (5)

where t is the temporal coordinate which implies the
normal one-form can be written in component form as

 n� � ���; 0; 0; 0�: (6)

The 3� 1 formalism allows for great simplification in
spherically symmetric spacetimes. In particular, consider
any trace-free, symmetric, spatial two-form, Wij say.
Component-wise, spherical symmetry implies W�

� �

W�
�. Furthermore, the tensor being spatial implies Wt

t �

0. Now, as the tensor is trace-free, the radial component
must be related to the angular components according to
W�

� � �2Wr
r. Therefore, one can write

 Wij � w�t; r�Pij; (7)

where w�t; r� is the distinct eigenvalue of Wij, and

 Pi
j :�

�2 0 0
0 1 0
0 0 1

0@ 1A: (8)

Many of the 3� 1 variables can be expressed in terms of
their eigenvalues, analogously with Eqs. (7) and (8)3;

(i) The trace-free extrinsic curvature

 Aij :� Kij �
1
3 ?ij K :� a�t; r�Pij: (9)

(ii) The trace-free three-Riemann tensor

 

3Qij :� 3Rij �
1
3 ?ij

3R :� q�t; r�Pij: (10)

(iii) The trace-free Hessian of the lapse function

 

1

�
DiDj��

1

3�
?ij D

kDk� :� 
�t; r�Pij: (11)

Here, Kij and K are, respectively, the extrinsic curvature
and its trace, ?ij is the three-metric on spatial hypersurfa-
ces, 3Rij and 3R are the three-Ricci tensor and scalar,
respectively, and Di is the unique metric connection asso-
ciated with ?ij .

The conservation of energy-momentum and ADM equa-
tions can now be expressed as scalar equations rather than
complicated tensorial relations. The conservation equa-
tions come from the twice contracted Bianchi identities
which can be expressed in terms of the energy-momentum
tensor

 r�T�� � 0: (12)

By decomposing this onto and orthogonal to the spacelike
hypersurfaces, one can derive an equation which relates the
extrinsic curvature to the comoving derivative of the en-
ergy density

 L n� � ��� P�K; (13)
2For more detailed discussion of relativistic hydrodynamic

equations, refer to the review article, [17]. In particular, one
can further split � into a rest-mass density component and
specific energy density component.

3The terms defined here are expressed in terms of their metric
coefficients in the appendix.
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where Ln denotes Lie differentiation with respect to the
normal vector field. The other equation coming from the
Bianchi identities is Euler’s equation, which reduces to a
single component relating the pressure gradient to the lapse
function

 

@P
@r
� �

��� P�
�

@�
@r
: (14)

An interesting aspect of Eqs. (13) and (14) is that the
equation of state P � ��, implies both � and P are con-
stants. This case is equivalent to a vacuum solution with
cosmological constant, and while this is interesting itself
we shall exclude it from the remainder of the analysis.

The ADM system consists of ten equations separated
into four constraints which are satisfied on all spacelike
hypersurfaces, and six evolution equations. In spherical
symmetry, these equations reduce to just two constraint
and two evolution equations. The two constraint equations
are the Hamiltonian constraint

 

3R� 2
3K

2 � 6a2 � 16��; (15)

and the momentum constraint

 

@
@r
�ar3� �

�r3

3

@K
@r
: (16)

After some algebra, the evolution equations can be shown
to be

 2LnK �
1

2
3R� K2 � 9a2 �

2

�
DkDk� � 24�P; (17)

 L na� aK � 
� q � 0: (18)

Now, we would like to utilize the ADM equations to
express the metric in terms of physical variables. By writ-
ing out the momentum constraint (16) in terms of the
metric coefficients (see appendix), a first order differential
equation on E and � results

 

�1

1� E
LnE �

2�

�2

@�
@r
; (19)

where Ln operating on a scalar is

 L n �
1

�
@
@t
�
�
�
@
@r
: (20)

In general, Einstein’s field equations are second order in
the metric coefficients. However, it is noted in Eq. (19) that
all second order derivative terms cancelled one another to
leave a first order differential equation. While this was the
case for the momentum constraint, it does not occur for the
remainder of the equations. However, by combining linear
combinations of the remaining equations, we can search
for combinations of terms whereby higher order derivative
terms vanish. For instance, the combination 3R� 12q
gives a zeroth order expression in E. Therefore, adding
Eq. (17) to 6 times Eq. (18) gives an algebraic expression

for E in terms of first order derivatives of other metric
coefficients,

 � E � 2r�1� E�
@
@r

ln�� 8�Pr2 � 2rLn
�
�
�

�
�
�

�
2
:

(21)

Substituting this back through the Hamiltonian constraint
(15) implies the metric coefficients can be related to the
energy density. This equation contains a single radial de-
rivative of the metric coefficients and pressure term

 4��r2 �
@
@r

�
r2�1� E�

@
@r

ln�� r2Ln
�
�
� 4�Pr3

�
:

(22)

Integration of (22) implies the left-hand side becomes a
‘‘mass’’ function4 measured at some radius

 M�t; r� :� 4�
Z r

	�0
�	2d	: (23)

The integration of the right-hand side of (22) requires the
consideration of the boundary at r � 0. In particular, a
physical requirement for the treatment of a stellar system is
that the radial derivative of the pressure vanish at r � 0.
Along with Euler’s equation and the regularity of � and E
at r � 0, this implies the first term on the right-hand side
vanishes at r � 0. Regularity of �, � and P at r � 0
further implies that the remaining two terms in the right-
hand side also vanish at r � 0. Therefore, the integration
process, and the substitution of Euler’s equation yields

 

M

r2
� 4�Pr � Ln

�
�
�

1� E
��� P�

@P
@r
; (24)

where � � �P.
Substituting Eq. (24) through Eq. (21) results in an

algebraic expression for the lapse, shift and E

 E�
2M
r
�

�
�
�

�
2
: (25)

While the metric being explicitly dependant on the lapse
function is necessary due to Euler’s equation, Eq. (25)
implies we no longer require explicit dependence on the
shift function. Instead, everywhere we substitute the shift
function �, for

 � � �

�����������������
2M
r
� E

s
; (26)

where we have taken only the positive root. Consistently
taking the negative root gives an expanding model rather
than a contracting model. This can be seen as changing the

4We note that this is not a physical mass quantity, however the
quantity arising in a natural way suggests to the authors it is of
some importance. Furthermore, in the dust limit this becomes the
familiar mass of the LTB dust solutions, and in the vacuum limit
becomes the Schwarzschild mass.
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sign of the shift vector is equivalent to reversing the time
coordinate (i.e. t! �t).

Putting Eq. (26) back through Eq. (19) we find an
evolution equation for the energy function relating to the
pressure gradient

 

1

1� E
LnE � 2

�����������������
2M
r
� E

s
1

�� P
@P
@r
: (27)

Substituting (26) into Eq. (24) we find

 L n

�����������������
2M
r
� E

s
�

1� E
�� P

@P
@r
�
M

r2 � 4�Pr: (28)

Finally, by expanding out the Lie derivative in the above
equation and utilizing the evolution equation on the energy
function, we can reduce this to a much simpler equation

 L nM � 4�r2P

�����������������
2M
r
� E

s
: (29)

Summarily, the system can be expressed as the line
element along with two evolution equations

 ds2 � ��2dt2 �
��

����������������������
2M=r� E

p
dt� dr�2

1� E
� r2d�2;

(30)

 

@M
@t
� �

�����������������
2M
r
� E

s �
@M
@r
� 4�Pr2

�
� 0; (31)

 

@E
@t
� �

�����������������
2M
r
� E

s �
@E
@r
� 2

1� E
�� P

@P
@r

�
� 0; (32)

where � � �P, and the lapse function satisfies Euler’s
equation

 

1

�

@�
@r
�
�1

�� P
@P
@r
: (33)

As it stands the system is underdetermined and must be
closed by providing an equation of state

 f��; P� � 0: (34)

Once the equation of state is prescribed, Eq. (33) can be
integrated to find the lapse in terms of the energy density,
and then the coupled equations (31) and (32), can be solved
simultaneously.

We make a quick note here regarding the remaining
coordinate freedom associated with the line element given
in (30). It is straightforward to see this is invariant under
the usual rotation of the two-sphere, and a rescaling of the
time coordinate. This is pertinent for the following sec-
tions, as one can see when the radial derivative of the
pressure vanishes, Eq. (33) implies that the lapse function
is simply a function of the temporal coordinate. However,

using the freedom to rescale this coordinate, this function
can be scaled to unity.

III. INITIAL AND BOUNDARY CONDITIONS

A. Initial conditions

Equations (31)–(34) are intrinsically difficult to solve
analytically, in part due to the freedom associated with
specifying an equation of state. Whether solving analyti-
cally or numerically, these equations require the input of
initial and boundary conditions. As we are establishing a
physical problem, it is desirable to simply prescribe two
quantities on the initial hypersurface

 ��0; r� and
@�
@t

��������t�0
: (35)

Through the definition for the mass (23), this implies the
initial mass and its time rate of change are known.
Furthermore, an equation of state implies the initial pres-
sure and its time rate of change are known, and through
Euler’s equation (33), the initial lapse function is known.
Equation (31) can be rearranged such that

 E �
�

1

��4�r2��� P��

@M
@t

�
2
�

2M
r
; (36)

implying the energy function on the initial hypersurface is
also determined. Thus, prescribing the two quantities as-
sociated with the density on the initial hypersurface pro-
vides sufficient initial conditions.

B. Boundary conditions

Before discussing the free boundary condition we first
look at the simpler interior and exterior conditions.

At r � 0, all functions are required to be regular for a
finite time in the evolution. This will cease to be correct
once the matter has collapsed to a point, at which point
only the Schwarzschild solution remains. Extra to the
regularity condition is that the radial derivative of the
pressure vanishes at r � 0.

There are many ways to utilize boundary conditions at
the interface between the matter filled interior and the
vacuum exterior. If we were to simply let the energy
density, as well as the pressure vanish at a single free-
boundary, then in general, the interior and exterior do not
continuously match. This is seen by looking at Eq. (32) and
Euler’s equation (33), which imply the energy function E,
and the lapse function �, are, respectively, not defined
unless the radial derivative of the pressure vanishes faster
than �� P. We note that simple equations of state, for
example, a linear equation of state, do not satisfy this
condition. We can therefore always prescribe this condition
as a boundary condition for the equation of state.
Alternatively, we can define the equation of state such
that the pressure drops to zero faster than the energy
density. In this way, there is a finite region consisting of
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dust, such that the pressure has become negligible.
Physically, this represents a sparse atmosphere around
the collapsing object and is consistent with the concepts
introduced in [5] to explain phenomena such as white
dwarfs. Of course, one does not have to impose this con-
dition, in which case the vacuum will not match continu-
ously to the interior.

The mathematics that has come from providing the
atmosphere has prompted reasonable physics. The ob-
server for the spacetime is travelling with some velocity
relative to the coordinates given by the shift function. We
can imagine the transition as the observer travels from the
vacuum region into the matter region. If the observer is
suddenly confronted with a region of perfect fluid with
nonzero pressure, then the velocity of this observer will
contain a jump discontinuity. However, if they first travel
through an atmosphere, then both transitions may be made
continuously.

We therefore have two free boundaries for the space-
time. The first, denoted r@1

�t�, is the interface defined by
the point at which the pressure vanishes and energy density
remains. The second free boundary, denoted r@2

�t�>
r@1
�t�, is the interface defined by the vanishing of the

energy density. In this way, our equation of state is now
given by

 0 �
�
f��; P� for r 2 �0; r@1

�

P for r 2 �r@1
; r@2
�:

(37)

The inner of the two free boundaries r@1
�t�, can now be

determined by specifying an initial radius r@1
�0�, where P

goes to zero. Demanding � (hence M), and E be continu-
ous, and P � 0, in Eqs. (31)–(33) enables the evolution of
this boundary to be determined.

The outer free boundary, r@2
�t�, is given such that � �

P � 0 for all r > r@2
�t�. This implies the mass function is a

constant, and furthermore, one can show that this mass in
the exterior region must necessarily be equivalent to the
exterior mass on the initial hypersurface. Thus, the mass in
the exterior is given by the Schwarzschild mass.

The boundary condition on both free boundaries for the
energy function is the simple demand of continuity. That is,

 lim
r!r@�t��

E�t; r� � lim
r!r@�t��

E�t; r� � 0: (38)

This boundary condition can then be used to determine the
unique coordinate system for the Schwarzschild spacetime
that describes both the interior and exterior regions in a
single coordinate patch.

IV. GENERALIZED LEMAITRE-TOLMAN-BONDI

General inhomogeneous dust solutions are most com-
monly expressed in LTB [1–3] coordinates. We therefore
find the coordinate transformation such that the perfect
fluid system is in coordinates that generalize the LTB
model. By letting �t; r; �; ��� �T; R; �; ��, such that t �

t�T� � T and r � r�T; R� where

 

�
@r
@T

�
2
� �2

�
2M
r
� E

�
; (39)

where now �, M and E are all functions of T and R, the
metric becomes

 ds2 � ��2dT2 �
1

1� E

�
@r
@R

�
2
dR2 � r2d�2: (40)

Furthermore, this coordinate transformation can be put
through Eqs. (31) and (32) to give

 

@M
@T
� 4�Pr2�

�����������������
2M
r
� E

s
; (41)

 

@r
@R

@E
@T
� 2

1� E
�� P

@P
@R

�

�����������������
2M
r
� E

s
; (42)

and Euler’s equation reads

 

1

�

@�
@R
�
�1

�� P
@P
@R

: (43)

While the system in the �t; r� coordinates described the
black hole region of the spacetime, and the time reverse
(i.e. t! �t) described the white hole region, the �T; R�
coordinates now describe both these regions. Furthermore,
the Jacobian of transformation is zero only when @r=@R
vanishes.

It is apparent how the system of equations (39)–(43)
reduces to the LTB system as the pressure vanishes. This is
therefore a direct generalization of the LTB model to
include inhomogeneous pressures. Furthermore, by look-
ing at this reduction of the system, one can appreciate the
function E, is simply the energy function of the standard
LTB model. In this way, the cases of E being positive,
negative or equivalently zero correspond to unbound,
bound and marginally bound models, respectively.

It is interesting to note that the mass function is still in
terms of the original definition given in Eq. (23), which
now reads

 M�T; R� :� 4�
Z r�T;R�

	�0
�	2d	: (44)

This can be differentiated with respect to the LTB radial
coordinate R, and rearranged to give

 ��T; R� �
M0

4�r0r2 ; (45)

where a prime denotes differentiation with respect to R.
This is the standard equation for the pressure-free LTB
solution (see for e.g. [18,19]), and indicates shell-crossing
singularities occur for r0�T; R� � 0 and shell-focussing
singularities for r�T; R� � 0. The occurrence of these sin-
gularities is now implicitly dependant on the pressure due
to Eq. (41).
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An interpretation of these singularities is awkward due
to the choice of coordinates, implying they are exhibited
simply as an infinite density. However, in the �t; r� coor-
dinates, the singularities are exhibited as a multivalued
mass function. This is akin to fluid shock waves (cf.
pressure-free case [15,16]). Further analysis of these
shocks will appear in a future article.

V. APPARENT HORIZON

To establish the apparent horizon for a spacetime, one
must analyze both the metric as well as the equations of
motion. In particular, utilizing the unique affine parameter
associated with the metric, �, and the Euler-Lagrange
equations, there are five equations governing the dynamics
of all null geodesics,
 

L �
��2�1� 2M=r�

1� E
_t2 �

2�
����������������������
2M=r� E

p
1� E

_t _r�
_r2

1� E
� r2 _�2 � r2sin2� _�2 � 0; (46)

 0 �
d
d�

@L
@ _x�
�
@L
@x�

; (47)

where a dot represents differentiation with respect to �, and
L � L� _x�; x�� is the Lagrangian. Spherical symmetry
implies only the radial geodesics are required, and we
therefore set _� � _� � 0. By utilizing the remaining three
equations, one can solve for _t and _r with one arbitrary
constant of integration. We next define a null vector ac-
cording to

 k� :�
dx�

d�
; (48)

which is therefore everywhere tangential to the congruence
of radial null geodesics. The arbitrary constant acts to scale
this vector, and it is therefore set to unity without loss of
generality. We find

 k� �
�������������
1� E
p �

1

�
;
�������������
1� E
p

�

�����������������
2M
r
� E

s
; 0; 0

�
; (49)

where the radial coordinate is now parametrized by the
temporal coordinate. It is straightforward to verify this
vector is null, and the expansion of this vector field is
simply its divergence,

 � :� r�k�: (50)

This is a measure of the convergence and divergence of the
congruence of radial, null geodesics. The limiting case of
the converging and diverging geodesics are those given by
a vanishing expansion factor, � � 0, and this defines the
apparent horizon [20]. Evaluating this term gives

 � �

�������������
1� E
p

�r2

@
@r

�
�r2�

�������������
1� E
p

�

�����������������
2M
r
� E

s ��
: (51)

By setting � � 0, integrating from r � 0 to some finite
radius and using the regularity of the functions at r � 0
implies the apparent horizon is given by the parametric
equation

 r�t� � 2M�t; r�t��: (52)

This simple form shows that at the interface between the
matter and vacuum regions, where the mass function sim-
ply becomes the Schwarzschild mass, the apparent horizon
reduces to the familiar event horizon in the Schwarzschild
spacetime.

VI. TIDAL FORCES

Ellis [21] showed that the tidal forces of a spherically
symmetric spacetime are given by the electric conformal
curvature Eij, which arises from the decomposition of the
Weyl tensor. The electric conformal curvature is a trace-
free, spatial two-tensor, and therefore has a unique eigen-
value, denoted �. Spherical symmetry further implies this
is the only nonzero contribution from the Weyl tensor. A
constraint equation from the gravito-electromagnetic sys-
tem of equations relates the divergence of the electric
curvature to the gradient of the energy density

 DkEki �
8�
3
Di�: (53)

Evaluating this in terms of its eigenvalue implies the
equation can be integrated, and we find the relation be-
tween � and � is given by

 � �
�r
3

@
@r

�
M

r3

�
: (54)

It is interesting to note the tidal forces on the spacetime are
explicitly independent of the pressure (this is the same
result achieved in [15]). Furthermore, the exterior
Schwarzschild spacetime is described by M � Ms, and
the usual tidal force for the Schwarzschild spacetime
results.

While in general these are Petrov type D solutions, the
system can be reduced to a Petrov type 0 solution. These
are found when the above eigenvalue vanishes, which in
turn gives an FRW interior solution. The FRW solutions
have homogeneous matter distributions, implying the pres-
sure and density are constant along each t equals constant
slice. This homogeneity, along with the spherical symme-
try, in turn implies there are no tidal forces felt by any
particles in the spacetime.

VII. ANALYTIC SOLUTIONS

There are many methods available to us in searching for
analytic solutions of Eqs. (31)–(33). For instance, one can
employ an equation of state, solve (33) and attempt to solve
the remaining two coupled equations. This process, while
its motivations are purely physical, is overrun with mathe-
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matical difficulties. For instance, choosing an arbitrary
equation of state will, in general, imply the time variation
equation on the mass is highly nonlinear.

We therefore make assumptions which are more directed
at simplifying the mathematics, in order to grasp a better
handling of the physics. Once the mathematics is simpli-
fied, we can analyze the resulting equation of state to
ascertain its physical relevance.

We have already determined that utilizing an equation of
state such that P � 0 implies the system reduces to the
LTB dust interior with generalized Painleve-Gullstrand
exterior region [15]. Another major class of important
solutions are the static solutions.

A. Static solutions

We retrieve static solutions of the field equations by
removing all time dependence. From Eq. (31) we either
derive P � ��, which is a static (anti) de-Sitter model, or

 E � �
2M
r
: (55)

This is a statement implying that the shift vector �, is
identically zero. The metric is therefore given by

 ds2 � ��2dt2 �
dr2

1� 2M=r
� r2d�2; (56)

and furthermore, Eq. (27) implies E � E�r�, which implies
M � M�r�, and in turn � � ��r�. Finally, putting this back
through Eq. (28) and utilizing Euler’s equation

 

�1

�� P
dP
dr
�

M� 4�Pr3

r2�1� 2M=r�
�

1

�
d�
dr
; (57)

which is exactly the TOV equation of hydrostatic
equilibrium.

The static solutions are a special case of the equations
we have derived, and all other cases (that is, with E �

�2M=r), result in nonstatic systems. While this is not a
new result, it is interesting to note that letting the pressure
and density vanish at some finite radius implies an exterior
region is simply given by the Schwarzschild spacetime in
Schwarzschild coordinates. To see this we let P! 0 and
�! 0 (by utilizing the atmosphere discussed in Sec. III),
and find the solution for the lapse function is

 � �

������������������
1�

2Ms

r

s
: (58)

Putting this into (56) gives the Schwarzschild metric in
Schwarzschild coordinates.

Therefore, the natural coordinates for the exterior of the
static model are the Schwarzschild coordinates. While the
generalized Painleve-Gullstrand coordinates are every-
where regular, the Schwarzschild coordinates have a coor-
dinate singularity at a finite radius, r � 2Ms. However, the
interior for the static case must necessarily have r@ > 2Ms,

and therefore the coordinates for the entire spacetime are
still everywhere regular.

B. Nonstatic solutions

1. Linear mass equation

The form of the mass equation (31) is interesting.
Essentially, once an equation of state is prescribed, both
the pressure and the lapse function can be written in terms
of radial derivatives of the mass function. We therefore ask
the question: under what conditions will Eq. (32) be a
quasilinear differential equation? That is, with a linear
radial derivative. This question can be expressed mathe-
matically as

 �
�
@M
@r
� 4�r2P

�
� k

@M
@r

; (59)

where k is a constant of proportionality. Rearranging, and
using the definition of the mass function implies

 � �
k�

�� P
: (60)

Substituting this through Euler’s equation (33) implies

 

P
���� P�

@�
@r
� 0: (61)

Therefore, Eq. (31) is linear either in the absence of
pressure (see [15]) or if the energy density is independent
of the radial coordinate. Considering a reasonable equation
of state with this latter condition implies P is also inde-
pendent of the radius. These two conditions are exactly an
FRW interior with vacuum exterior.

The right-hand side of Euler’s equation (33) now van-
ishes, implying the lapse is simply a function of the time
coordinate. Residual coordinate freedom can be utilized to
rescale the time coordinate such that � � 1 without loss of
generality. This implies only a linear, barotropic equation
of state is valid

 P � �k� 1��: (62)

The differential equation on the mass function (31) can
now be expressed in terms of the density and energy
functions

 

d�
dt
�

3

r

�������������������������
8�
3
�r2 � E

s
��� P�: (63)

Functional dependence for this equation is consistent if and
only if

 E�t; r� � ��t�r2: (64)

These solutions are actually characterized by another as-
pect of the solution. Namely, they form a subset of the
shear-free solutions. Shear-free solutions are those such
that Aij � 0, which in the formalism given above is equiva-
lent to a�t; r� � 0. In general, these solutions can be shown
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to satisfy
����������������������
2M=r� E

p
� rf�t�, for some function of inte-

gration f�t�. The set of shear-free solutions we discuss
differ from the shear-free solutions in [6] as Aij is a
coordinate dependant quantity.

Returning to the smaller class of FRW solutions, � and �
now satisfy a coupled system of first order ordinary differ-
ential equations

 

d�
dt
� 3

��������������������
8�
3
�� �

s
��� P�; (65)

 

d�
dt
� 2

��������������������
8�
3
�� �

s
�: (66)

This system can be solved for the interior region using the
equation of state (62), to give

 �3k � A�2; (67)

where A is an integration constant. This system can further
be solved analytically when the constant k, is specified.
Furthermore, at some finite radius on the initial hypersur-
face, the density and pressure will be zero. In this region,
Eq. (66) can be calculated to find the unique exterior region
of the spacetime that matches onto the FRW interior.

2. Spatially quasiflat solutions

We can also search for solutions that contain some sense
of spatial flatness. Letting the three-Ricci tensor vanish
implies spacelike hypersurfaces are flat. This condition
implies the energy function necessarily vanishes, which
in turns gives P � P�t�. This is therefore equivalent to the
FRW solutions discussed above.

Alternatively, we can let the three-Ricci scalar 3R, van-
ish. This implies E � f�t�=r, where f�t� is a function of
integration. Without loss of generality, we can utilize
residual coordinate freedom to rescale the time coordinate
such that f � 1. The energy function is therefore given by

 E �
1

r
: (68)

Therefore, the energy plays a similar role to the mass
function as they are both represented via terms which are
inversely proportional to the radial coordinate. By rewrit-
ing Eq. (32), and using Euler’s equation, we find

 

1

2r�r� 1�
�

1

�� P
@P
@r
�
�1

�
@�
@r
: (69)

Without an equation of state, this equation can be inte-
grated for the lapse function, yielding

 � � g�t�

������������
1�

1

r

s
; (70)

where g�t� is a function of integration. Furthermore, by just
specifying P � P���, we find a formal integral for the

energy density

 

Z 1

P��� � �
dP
d�

@�
@r
dr � ln

�
1

g�t�

������������
r

r� 1

r �
: (71)

Upon specifying an equation of state, Eqs. (70) and (71)
can be substituted back through the evolution equation for
the mass (31) to establish constraints for the arbitrary
function g�t�.

3. Self-similar solutions

While self-similar fluid solutions have been readily
treated in the literature (for a recent review see [9]), it is
a worthwhile exercise to establish how they arrive in the
context of the equations derived herein.

Spherically symmetric self-similar solutions can be put
into a form where all dimensionless quantities are func-
tions of the self-similar variable 
 :� t=r [7]. For instance,
we define H�
� :� 2M=r and p�
� :� 4�Pr2.
Furthermore, �, E and � are all dimensionless, and are
therefore functions of the self-similar variable 
. This
implies the density becomes

 8��r2 � H �
dH
d



: (72)

Equations (31)–(33) respectively become

 

dH
d

�
��H � 2p�

1� �

; (73)

 

1

1� E

dE
d

�

�4�
��1� �
�

�
dp
d


� 2p

�
; (74)

 

1

�

d�
d

�
�2

�


�
dp
d


� 2p

�
; (75)

where

 ��
� :� H �
dH
d



� 2p; (76)

and

 ��
� � �
��������������
H � E
p

: (77)

The system has therefore reduced to a complicated set of
coupled ordinary differential equations. Although the sys-
tem is now written as ordinary differential equations, it is
apparent that they are still highly coupled, and therefore
difficult to solve analytically. However, physical aspects of
the solutions can be explored through methods of dynami-
cal systems.

VIII. CONCLUSION

We have derived reduced field equations describing a
spherically symmetric spacetime with a perfect fluid region
in the interior and an exterior vacuum region. The interior
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is shown to be a direct generalization of the LTB dust
solutions to include inhomogeneous pressures. A general
solution to these reduced field equations is not found, and it
is not obvious that one such solution exists. Despite this,
we have shown a handful of specific solutions that were
already known. It is part of the robustness of the formalism
that everything from the static, TOV equations, as well as
the FRW models, the self-similar solutions and many more
known solutions fall naturally from the equations derived
herein.

Before contemplating exact solutions of the reduced
equations, an equation of state must be prescribed.
Within the present work we have made no attempt to
prescribe such an equation due to the unreliability of the
present understanding of microscopic physics under ex-
treme pressures and densities. Rather than prescribe an
equation of state, it is a common technique to use geomet-
rical or mathematical simplifications such that the field
equations are put into a form that is soluble (see [6] for a
review). From this point, mathematically plausible equa-
tions of state are derived. While this method yields trac-
table solutions, it is still an open question as to whether the
derived equations of state are physically reasonable for
high density and pressure regimes.

The above method is often used to analyze the TOV
equation describing the static case. This is because only a
handful of analytic solutions are known with simple poly-
tropic equations of state. While we claim no new ground on
this solution, we point out that it arises naturally from our
formalism. The TOV equation is the only case that has a
diagonal metric, implying it is also the only case where the
Schwarzschild coordinates provide a natural description
for the exterior region.

An interesting aspect of this is that the solution is always
regular through the horizon. This is obvious in the collaps-
ing cases, whereby both the interior and exterior regions
are described by coordinate systems that are everywhere
regular (r � 0). However, we showed the static case re-
duces to the diagonal metric, with Schwarzschild coordi-
nates in the exterior. This system is still everywhere
regular, as a static object must necessarily have fluid cover-
ing r � 2Ms.

There are many avenues for future work within the
realms of this formalism. Obviously, solving the system
of derived differential equations both analytically and nu-
merically with prescribed equations of state is a desirable
research goal. Another aim is to study the formation and
evolution of both shell-crossing and shell-focussing singu-
larities. While this has been extensively researched for the
dust models, very little is understood about the cases with
the inclusion of pressures.

The model we have described is also able to be gener-
alized through many avenues. Firstly, the inclusion of heat
flux and anisotropic pressure terms will allow for more
realistic stellar models. With only a perfect fluid interior
and Schwarzschild exterior, the model is akin to a pressure
cooker. As the system collapses, the temperature will
naturally rise, however, there is no allowance within the
model for the inclusion of radiation in the form of either
photons or gravitational waves. The inclusion of anios-
tropic terms for the interior, and generalizing the exterior
to the Vaidya spacetime will allow for incoherent null
radiation (see for e.g. [22–24], and references therein).
Relaxing the spherical symmetry to quasispherical sym-
metry will allow for gravitational radiation where the ex-
terior will be a Robinson-Trautman spacetime. One final
achievable generalization of the model presented herein is
to derive fluid equations for the axisymmetric case. This
will include a rotating fluid for the interior with a Kerr
exterior.

ACKNOWLEDGMENTS

All calculations were checked using the computer alge-
bra programme MAPLE. The authors wish to thank the
referees for their constructive comments and useful sug-
gestions regarding the manuscript. One of the authors
(P. L.) wishes to thank the Australian government.

APPENDIX

Terms in the ADM equations are expressed as functions
of the metric coefficients for clarity

 K �
1

�r2

@
@r
�r2�� �

1

2�1� E�
LnE; (A1)

 a �
�r
3�

@
@r

�
�
r

�
�

1

6�1� E�
LnE; (A2)

 

3R �
�2

r2

@
@r
�rE�; (A3)

 q �
r
6

@
@r

�
E

r2

�
; (A4)

 
 �
�r

�������������
1� E
p

3�
@
@r

� �������������
1� E
p

r
@�
@r

�
; (A5)

 

1

�
DkDk� �

�������������
1� E
p

�r2

@
@r

�
r2

�������������
1� E
p @�

@r

�
: (A6)
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