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We provide strong numerical evidence for a new no-scalar-hair theorem for black holes in general
relativity, which rules out spherical scalar hair of static four-dimensional black holes if the scalar field
theory, when coupled to gravity, satisfies the Positive Energy Theorem. This sheds light on the no-scalar-
hair conjecture for Calabi-Yau compactifications of string theory, where the effective potential typically
has negative regions but where supersymmetry ensures the total energy is always positive. In theories
where the scalar tends to a negative local maximum of the potential at infinity, we find the no-scalar-hair
theorem holds provided the asymptotic conditions are invariant under the full anti-de Sitter symmetry
group.
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I. INTRODUCTION

Inspired by the uniqueness theorems for static [1] and
stationary [2] asymptotically flat vacuum black holes in
Einstein-Maxwell theory, Wheeler famously conjectured
[3] that ‘‘black holes have no hair’’ in more general (sen-
sible) matter theories, in four dimensions. Following
Wheeler’s conjecture a number of rigorous no-hair theo-
rems—which however are manifestly limited in scope—
were established [4–6]. On the other hand, Wheeler’s
hypothesis was proven wrong in e.g. Einstein-Yang-Mills
[7] and Einstein-Skyrme [8] theory, in various combina-
tions with dilaton [9] or Higgs [10] fields. Some, but not
all, of these hairy black holes are unstable. For gravity
coupled to scalar fields, however, possibly in combination
with Abelian gauge fields, a precise formulation of the no-
hair conjecture has not yet been given. In this arena there
still remains interesting ground to explore between several
rigorous (but limited) no-hair theorems, and a number of
explicit hairy black hole solutions which appear to dis-
prove Wheeler’s conjecture in its most general form.

The first no-scalar-hair theorems applied to the massless
scalar [4], and to the neutral scalar field with a monotoni-
cally increasing self-interacting potential [6]. They show
there are no regular asymptotically flat spherical black hole
solutions with scalar hair for minimally coupled scalar
fields with convex potentials. These theorems were later
generalized to the case of minimally coupled scalar fields
with arbitrary positive potentials [11], and also to scalar
multiplets [12] and to nonminimally coupled scalars1 [17].
Using similar techniques, it was shown more recently [18]

there are no hairy asymptotically anti-de Sitter (AdS) black
holes where the scalar field asymptotically tends to the
global (negative) minimum of the potential.

Recent developments in string theory, however, indicate
there is little or no justification to restrict attention to
positive scalar potentials, or to asymptotic conditions de-
fined with respect to the global minimum of the scalar
potential. Potentials with a local negative maximum which
fall off exponentially are familiar indeed in supersymmet-
ric AdS compactifications. Similarly, a large class of super-
symmetric string theory compactifications of the form
M4 � K, where M4 is four-dimensional Minkowski space
and K is a Ricci flat, compact manifold admitting a cova-
riantly constant spinor, give rise to effective four-
dimensional potentials with negative regions [19]. These
include compactifications on all simply connected Calabi-
Yau and G2 manifolds. The underlying mathematical rea-
son for this is that all simply connected compact manifolds
of dimension five, six, or seven admit Riemannian metrics
with positive scalar curvature. From an effective four-
dimensional standpoint, positive scalar curvature on K
acts as negative energy density.2

On the other hand, the Positive Energy Theorems (PET)
ensure that the total Arnowitt-Deser-Misner (ADM) energy
remains positive in supersymmetric string theory compac-
tifications [20,21]. This can be understood as a general-
ization of the well-known phenomenon that gravity can
stabilize a false vacuum [22]. For Calabi-Yau compactifi-
cations, this means that the negative regions of the effective
four-dimensional potentials must be separated by a positive
barrier from the local minimum at zero, which corresponds
to a metric on K on the moduli space. In other words the
metrics with positive scalar curvature on K lie a finite
distance away from the moduli space of Ricci flat metrics.
The PET ensures that in all (nonsingular) asymptotically
flat solutions, the positive energy density of the barrier
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1The BBM black hole [13] and its magnetic monopole exten-

sion [14] provides, strictly speaking, a counterexample to the no-
hair theorems for conformally coupled scalars. This hardly
compromises the spirit of the no-hair conjectures, however,
because the hair amounts to a discrete parameter [15], and the
black hole is known to be linearly unstable [16].

2The effective potentials are generally unbounded from below,
since one can rescale the metric on K and make the scalar
curvature arbitrarily large.
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‘‘screens’’ and cancels out any negative energy density of
the central regions of solutions, rendering the total energy
positive.

It is therefore natural to ask whether the no-scalar-hair
conjecture holds in supersymmetric string theory compac-
tifications. To gain some insight in this problem we exam-
ine here the no-hair conjecture for gravity coupled to scalar
field theories with potentials that are qualitatively similar
to those that arise in string theory compactifications. It is
widely believed that spherical asymptotically flat black
holes with scalar hair generally exist when the scalar
potential has negative regions.3 This is due, in part, to the
proliferation in recent years of neutral [24,25] (and charged
[26]) asymptotically AdS black hole solutions with scalar
hair, where the scalar asymptotically tends to a local
negative extremum of the potential. When this is a maxi-
mum (which we assume satisfies the Breitenlohner-
Freedman (BF) bound [27]) the scalar generically decays
slower than usual. Nevertheless, it has been verified that
some of the asymptotic black hole solutions preserve the
full AdS symmetry, and that the conserved charges asso-
ciated with the asymptotic symmetries are well defined and
finite [25,28].

However, a careful analysis of the scalar field theories
that admit hairy black hole solutions reveals that none of
them satisfies the PET. One finds that either the potential
barrier around the local extremum is too low to compensate
for all the negative energy density [23], or that the (AdS)
black holes obey unusual boundary conditions for which
there are solutions4 with negative total energy [24,25].
Based on this and on extensive numerical evidence that
we present below, we conjecture that there are no static
asymptotically flat and asymptotically AdS black holes
with spherical scalar hair if the scalar field theory, when
coupled to gravity, satisfies the Positive Energy Theorem.

In other words we argue that, rather than the presence of
a cosmological constant or the fact that the scalar potential
has negative regions, the nonperturbative stability of the
ground state is the only relevant feature of the theory that
determines whether or not the no-scalar-hair conjecture
holds. This applies to all scalar potentials (bounded and
unbounded) with a local minimum at zero, and to all
potentials with a negative local extremum. When the latter
is a local maximum at or slightly above the BF bound,
however, one must require the asymptotic conditions are
invariant under the full AdS symmetry group. Indeed, we
show hairy black holes do exist in certain stable ‘‘designer
gravity’’ theories [29], where one considers AdS gravity
coupled to tachyonic scalars with boundary conditions that
break some of the AdS symmetries.

A brief outline of this paper is as follows. In Sec. II, we
consider gravity minimally coupled to a scalar field and we

review what are the necessary and sufficient conditions on
the scalar potential for the theory to satisfy the PET. This
enables us in Sec. III to construct a large class of ‘‘critical
potentials’’ which are on the verge of violating the PET. In
Sec. IV we provide strong numerical evidence that scalar
theories which are critical in this sense, also separate the
set of theories where the no-scalar-hair theorem (and the
PET) hold from those where it does not. These numerical
calculations are performed for a wide range of theories,
with asymptotically flat and with asymptotically AdS
boundary conditions, which should be representative for
all scalar field theories with asymptotic conditions speci-
fied with respect to a local (or global) minimum of V. In
Sec. V we extend these findings to scalar field theories
where � reaches a negative maximum of V at infinity (for
all choices of AdS-invariant boundary conditions). We also
study the no-hair conjecture in designer gravity theories,
where the asymptotic conditions break the conformal sym-
metry. We find a branch of hairy black holes in a consistent
truncation of N � 8 D � 4 gauged supergravity with
boundary conditions for which the AdS/conformal field
theory (CFT) duality [30] indicates the gravity theory
should satisfy the PET. We conclude in Sec. VI with
some comments on possible generalization of our results,
and the significance of no-hair theorems in general. The
details of the numerical calculations that support the ex-
tension of the no-scalar-hair conjecture to potentials with
negative regions are given in the appendix.

II. POSITIVE MASS

We consider gravity in d � 4 spacetime dimensions
minimally coupled to a scalar field with potential V���.
So the action is

 S �
Z
ddx

�������
�g
p

�12R�
1
2�r��

2 � V����; (1)

where we have set 8�G � 1. We require the potential can
be written as

 V��� � �d� 2�P02 � �d� 1�P2 (2)

for some function P���. Scalar potentials of this form arise
in the context of N � 1 supergravity coupled to N � 1
matter, in which case P��� is the superpotential. We are
interested in configurations where � asymptotically ap-
proaches a local extremum of P at � � �0. An extremum
of P is always an extremum of V, and V��0� 	 0. Hence
configurations where �! �0 at infinity correspond to
asymptotically flat or asymptotically anti-de Sitter
solutions.

At an extremum of P one has

 V 00 � 2P00��d� 2�P00 � �d� 1�P� (3)

so a local extremum of P corresponds to a minimum of V
except when 0< �d� 2�P00 < �d� 1�P, or when �d�
1�P< �d� 2�P00 < 0. This is a quadratic equation for

3See e.g. [23] for explicit examples.
4These need not be black holes.
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P00, which has a real solution if and only if

 V 00 � �
�d� 1�2P2

2�d� 2�
�
�d� 1�V��0�

2�d� 2�
� �

�d� 1�2

4l2
; (4)

where l2 is the AdS radius. Hence we recover the BF bound
m2

BF � �
�d�1�2

4l2
on the scalar mass, which is required for

AdS solutions to be perturbatively stable.
By generalizing Witten’s spinorial proof of the Positive

Energy Theorem for asymptotically flat spacetimes [20],
Townsend has shown [31] (see also [21]) that for the case
of a single scalar field a potential V��� admits a PET if and
only if V can be written in terms of a ‘‘superpotential’’
P���, and � asymptotically decays (sufficiently fast5) to
an extremum of P.

The argument in [31] obviously concerns the positivity
properties of the energy as defined by the spinor charge6

 Q @t �
I

B; (5)

where the integrand is the dual of the Nester 2-form, with
components

 Bab �
1
2�

� ��c�d�e�r̂e � H:c:��abcd; (6)

 is taken to be an asymptotically supercovariantly con-
stant spinor field and

 r̂ a �
�
ra �

1������������������
2�d� 2�

p �aP���
�
 (7)

with P��� given by (2). This definition of the covariant
derivative enabled [31] to express the spinor charge (5) as a
manifestly non-negative quantity, provided  satisfies the
spatial Dirac equation �iD̂i � 0. In the context of N � 1
supergravity P is the superpotential, but the argument of
[31] applies to any gravity scalar theory, irrespective of
whether it is a sector of a supergravity theory.

III. CRITICAL POTENTIALS

Townsend’s result [31] implies that all potentials that are
on the verge of violating the PET must correspond to
functions V that are on the boundary of when one can
solve (2) for P. This provides a clear criterion for a

potential to be critical in this sense, which can be expressed
as a local analytic condition on P as follows.

First consider potentials with a local extremum at �0

where V 	 0 and V 00 � m2
BF, and with a global minimum

at � � 0. An example is shown in Fig. 1. To construct P
we try to solve

 P0��� �
1������������
d� 2
p

�������������������������������
V � �d� 1�P2

q
(8)

starting with P �
��������������������������
�V=�d� 1�

p
at �0.

A solution to (8) exists unless the quantity inside the
square root becomes negative. As we integrate out from
�0, P is increasing and the square root remains real be-
cause the scalar satisfies the BF bound. Hence if the global
minimum at � � 0 is not very much lower than the local
extremum at �0, a global solution for P will exist and
P0�0�> 0. This is expected, since the PET holds for po-
tentials of this form. If the global minimum is too deep,
however, the quantity under the square root will become
negative before the global minimum is reached, and a real
solution will not exist. Clearly the critical potential corre-
sponds to one where V � �d� 1�P2 just vanishes as the
global minimum is reached. In other words, the condition7

for a potential V to be on the verge of violating the PET is
simply P0�0� � 0. This applies to all critical potentials that
are bounded from below, since every potential for which
the theory (1) satisfies the PET is of the form (2) for some
P.

This yields a simple prescription for constructing critical
potentials. As an illustration, consider potentials of the
following form in four dimensions,

 V��� � �3� 50�2 � A�3 � B�6; (9)

where A and B are free parameters. For combinations
�A;B� in region III and IV in Fig. 2, these are qualitatively
similar to the potential shown in Fig. 1. That is, V has a
local minimum at �0 < 0 where V 	 0, and a global
minimum at � � 0. For combinations �A;B� in region II
one has V > 0 at �0, and in region I there is no local
extremum at �0 at all. Finally, for combinations of pa-
rameters in region V one has V��0�< V�0�.

We have numerically solved (8) for a range of parame-
ters, tuning the combination �A;B� such that P0�0� � 0.
This yields a one-parameter family of critical potentials,8

given by the function Bc�A� that separates region III from
region IV in Fig. 2. Potentials in region III do not satisfy the
PET for solutions where �! �0 at infinity, whereas
potentials in region IV do admit the PET for these asymp-
totic conditions. The critical potential shown above in

5Requiring � approaches an extremum of P at infinity
uniquely specifies the asymptotic behavior of the fields, except
when �0 corresponds to a negative local maximum of V. In this
case � generically decays as a combination of two modes. The
PET [31] holds, in general, only for scalar boundary conditions
that select the mode with the faster falloff [32]. This is what we
mean here by decaying ‘‘sufficiently fast.’’ The connection
between the PET and the validity of the no-hair theorem for
different choices of scalar boundary conditions is analyzed in
Sec. V.

6Townsend’s theorem also establishes the positivity of the
conserved energy associated with the Hamiltonian generator
H @t , because this equals the spinor charge when �! �0
sufficiently fast.

7We have verified that this condition agrees with the criterion
proposed in [33], which states that the volume contribution to the
total mass of a certain class of spherical time-symmetric initial
data vanishes for critical potentials.

8A similar class of critical potentials exists in region V for
configurations where asymptotically �! 0.
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Fig. 1 corresponds to the marked point at A � 80 on Bc.
Potentials where V��0� � 0 are represented by the func-
tion Bf�A� in Fig. 2. This function joins9 Bc at �A;B� �
�57:6; 10:8718�, which thus yields a potential that is on the
verge of violating the PET with asymptotically flat bound-
ary conditions �! �0.

We have not been able to find a simple local condition on
P which characterizes critical potentials that are un-
bounded from below,10 but one can still solve (8) to gen-

erate numerically a large set of (approximately) critical
potentials of this type. As before, Townsend’s result im-
plies that all unbounded potentials V which are on the
verge of violating the PET can be constructed this way.

Consider e.g. the following class of potentials,

 V��� � ���2 � C�3; (10)

where � 	 0 is a cosmological constant, and C controls
the height h � 4=27C2 of the barrier around the local
minimum at � � 0. One can solve (8) for P, starting
with P0 � 0 at � � 0 and tuning ��; C� so that a global
solution P��� just exists. This yields a class of critical
potentials, where the barrier around the local minimum at
� � 0 is just high enough to ensure all configurations
where �! 0 at infinity have positive total mass. These
critical theories can be specified by a function hc���,
which we plot in Fig. 3. The critical potential for � � 0
is shown in Fig. 4.
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FIG. 3 (color online). The function hc��� that specifies a set of
critical potentials of the form (3.3), which are unbounded from
below.
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FIG. 2 (color online). The function Bc�A� represents a set of
critical potentials of the form (3.2), with a local AdS minimum at
�0 < 0 and a global minimum at � � 0. The function Bf�A�
corresponds to potentials with a local minimum at �0 where
V��0� � 0. The combination �A;B� � �57:6; 10:87� where Bc �
Bf yields a critical potential with a local minimum at zero.
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FIG. 4. A potential V��� that is on the verge of violating the
Positive Energy Theorem for solutions that asymptotically ap-
proach the local minimum at � � 0.
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FIG. 1. A potential V��� that is on the verge of violating the
Positive Energy Theorem for solutions that asymptotically ap-
proach the local AdS minimum at �0.

9The dashed continuation of Bc toward smaller values of A
represents theories where V��0� � 0, which are critical only in
the sense that they separate potentials with an unstable de Sitter
false vacuum at �0 (in region II) from potentials with a stable
AdS false vacuum (in region IV).

10This would necessarily involve the shape of V at large � [19].
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IV. BLACK HOLES WITH SCALAR HAIR

We now turn to the no-scalar-hair conjecture that we
have proposed, which states that in theories of gravity
coupled to a single scalar with potential V, the PET holds
if (and only if) the theory admits no regular static black
hole solutions with spherical scalar hair. Writing the metric
for static spherical solutions in d spacetime dimensions as

 ds2
d � �h�r�e

�2��r�dt2 � h�1�r�dr2 � r2d�2
d�2 (11)

the Einstein equations read

 h�;rr �

�
�d� 2�h

r
�

r
�d� 2�

�2
;rh� h;r

�
�;r � V;�;

(12)

 �d� 3��1� h� � rh;r �
r2

�d� 2�
�2
;rh �

2

�d� 2�
r2V���;

(13)

 �;r � �
r�2

;r

�d� 2�
: (14)

At the event horizon Re one has h � 0. Regularity at Re
requires

 �0�Re� �
V;�
h;r
�

�d� 2�ReV;�e

�d� 2��d� 3� � 2R2
eV��e�

; (15)

where �e � ��Re�. Rescaling t shifts � by a constant, so
its value at the event horizon is arbitrary. Asymptotically
we require � tends (sufficiently fast) to an extremum of V
at �0, with V��0� 	 0. So the metric function h can be
written as

 h�r� �
r2

l2
� 1�

m�r�

rd�3
; (16)

where l2 is the AdS radius when V��0�< 0. Substituting
this form of h in the field equations allows us to integrate
(13), which yields the following expression for the mass11

(5),
 

M �
�d� 2�

2
Vol�Sd�2� lim

r!1
m�r�

� e�F1
�
Ms � Vol�Sd�2�

Z 1
Re
eF�~r�

�
V��� ��

�
1

2

�
1�

~r2

‘2

�
�2
;~r

�
~rd�2d~r

�
; (17)

where Vol�Sd�2� is the volume of a unit (d� 2)-sphere,
and F�r� � 1

d�2

R
r
Re
dr̂ r̂�2

;r̂ with F1 � F�r � 1�. The
Schwarschild-(AdS) black hole mass Ms is given by

 Ms �
�d� 2�

2
Vol�Sd�2�

�
1

l2
Rd�1
e � Rd�3

e

�
: (18)

We emphasize that regular spherical black hole solutions
with scalar hair would be specified by a single charge. The
existence of spherical hairy black holes with positive mass
would therefore provide a genuine counterexample to the
no-scalar-hair theorem that we propose, because there
would be a vacuum Schwarschild (or Schwarschild-AdS)
black hole with ��r� � �0 everywhere and with the same
mass.

One can verify whether black holes with scalar hair exist
in a given theory by numerically integrating (12)–(14)
outward from the horizon for a range of Re and �e, and
see if there exists a combination �Re;�e� for which �!
�0 at infinity. We have done this analysis for theories of the
form (9) and (10), where �0 corresponds to a local mini-
mum of V. In particular, we have integrated the field
equations for several one-parameter families of potentials,
labeled by �, that are represented by functions B��A� (in
Fig. 2) and h���� (in Fig. 3) that intersect the curvesBc and
hc of critical potentials at � � 0. In other words, the scalar
field theories represented by B� and h� admit the PET for,
say � � 0, whereas for � < 0 the PET does not hold. In the
appendix we show that for all functions B��A� and h����
of this form, � < 0 if and only if there exists (precisely
one) value �e � �0 (for each horizon size Re) for which
the scalar profile obeys the prescribed asymptotic condi-
tions. Regular black hole solutions with scalar hair cease to
exist when �! �0, either because �e reaches the global
minimum in this limit or because �e ! 1 (for all Re). We
refer the reader to the appendix for the details of these
numerical calculations.

Since potentials of this form should be representative for
all (single) scalar field theories with asymptotic conditions
specified with respect to a local (or global) minimum of V,
this strongly indicates that the no-scalar-hair theorem holds
in theories that satisfy the PET, and it shows that black
holes with scalar hair exist if V does not admit the PET. We
emphasize that our analysis includes bounded and un-
bounded potentials, with asymptotically flat as well as
with asymptotically AdS boundary conditions. In the
next section we argue these findings extend to all scalar
field theories where� reaches a negative maximum of V at
infinity, provided the asymptotic conditions preserve the
full AdS symmetry group.

V. DESIGNER GRAVITY

When �0 corresponds to a negative local maximum
of V, requiring �! �0 at infinity does not uniquely
specify its asymptotic profile. This is already evident
from the linearized wave equation r2���m2�� � 0
for tachyonic scalars in an AdS background. Solutions
with harmonic time dependence e�i!t decay asymptoti-

11The mass (5) receives an extra finite contribution from the
scalar field if this saturates the BF bound [34].
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cally as12

 ��

�

r��
�

	

r��
; (19)

where � and 	 are functions of t and the angles and

 �� �
d� 1

2
�

1

2

������������������������������������
�d� 1�2 � 4l2m2

q
: (20)

For scalar masses in the following range

 m2
BF 	 m2 <m2

BF �
1

l2
< 0 (21)

both modes are normalizable, and hence represent a priori
physically acceptable fluctuations.

To have a well-defined theory one must specify bound-
ary conditions at spacelike infinity. In general this amounts
to choosing a functional relation between � and 	 in (19).
The standard choice of boundary condition, for which
Townsend’s Positive Energy Theorem applies, corresponds
to taking � � 0. When one takes in account the self-
interaction of the scalar field, as well as its backreaction
on the geometry, one finds this is consistent with the usual
set of asymptotic conditions on the metric components that
is left invariant under SO�d� 1; 2� [35].

To get an idea whether the no-scalar-hair conjecture that
we have proposed extends to theories of this form we
consider the following class of potentials in four dimen-
sions,

 V��� � �3��2 �D�4; (22)

where D is a free parameter. The scalar generically decays
as�
 �=r� 	=r2 at infinity. Solving (8) for a range ofD
reveals that the PET holds for � � 0 boundary conditions
provided D< 3=4. In the appendix we show that this
parameter regime coincides precisely with the regime
where there exists no finite (nonzero) value of the scalar
field at the horizon for which the asymptotic 1=r mode is
switched off completely. Instead, for all �e the scalar
asymptotically behaves as a combination of the two modes.
By contrast, when D> 3=4 there is always one value �e
for which asymptotically �
 1=r2. Hence it appears that
at least with standard boundary conditions on tachyonic
scalars in AdS, which select the mode with the faster
falloff, the PET forbids spherical scalar hair of black
holes.13

What is, however, the status of the no-scalar-hair theo-
rem for different scalar boundary conditions, defined by
� � 0 and 	 � 	���? The backreaction of the �-branch
of the scalar field (as well as its self-interaction) modify the

asymptotic behavior of the gravitational fields, but it has
recently been shown that the Hamiltonian generators of the
asymptotic symmetries remain well defined and finite
when � � 0 [25,28,29]. The generators acquire, however,
an explicit contribution from the scalar field. In particular,
the conserved mass H �@t� of spherical solutions is given
by

 M � Vol�Sd�2�

�
�d� 2�

2
M0 � ���	� ��� � ���W

�
;

(23)

where M0 is the coefficient of the 1=rd�1 term in the
asymptotic expansion of grr, and where we have defined
the function

 W��� �
Z �

0
	�~��d~� (24)

which defines the choice of boundary conditions. These so-
called ‘‘designer gravity’’ boundary conditions (24) gen-
erally break the AdS symmetry to <� SO�d� 1�, since
the asymptotic scalar profile changes under the action of

r. The full AdS symmetry group is preserved, however,
for asymptotic conditions defined by

 W��� � k�d�1=�� ; (25)

where k is an arbitrary constant without variation.14

The dynamical properties of the theory—including the
possible formation of hairy black holes—depend signifi-
cantly on the choice of W. Townsend’s Positive Energy
Theorem [31] need not hold with designer gravity bound-
ary conditions [32], but the AdS/CFT correspondence in-
dicates there is a lower bound on the conserved energy in
those designer (super)gravity theories that, for W � 0,
admit a dual description in terms of a supersymmetric
conformal field theory. In the context of the AdS/CFT
correspondence, adopting more general scalar boundary
conditions defined by a function W � 0 corresponds to
adding a potential term

R
W�O� to the dual CFT action,

where O is the field theory operator that is dual to the bulk
scalar [36,37]. Certain deformations W give rise to field
theories with additional, possibly metastable vacua. The
AdS/CFT correspondence asserts that the expectation val-
ues hOi in different field theory vacua can be obtained from
regular static solitons in the bulk. The precise correspon-
dence between solitons and field theory vacua is given by
the following function [29],

 V ��� � �
Z �

0
	s�~��d~��W���; (26)

where 	s��� is obtained from the asymptotic scalar profile
of soliton solutions for different values of� at the origin. It
has been shown [29] that for any W the location of the

12For fields that saturate the BF bound, �� � �� � � and
�� � �

r�
lnr� 	

r�
.

13The analysis in [32] of spherical soliton solutions in a wide
range of models where �0 corresponds to a maximum of V
provides further support for the validity of the no-hair conjecture
proposed here.

14The function W that specifies AdS-invariant boundary con-
ditions is more complicated at certain discrete values of the
scalar mass [28].
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extrema of V yield the vacuum expectation values hOi �
�, and that the value of V at each extremum yields the
energy of the corresponding soliton. Hence V ��� can be
interpreted as an effective potential for hOi.

This led [29] to conjecture that (a) there is a lower bound
on the gravitational energy in those designer gravity theo-
ries where V ��� is bounded from below, and that (b) the
solutions locally minimizing the energy are given by the
spherically symmetric, static soliton configurations found
in [29]. It would follow, in particular, that the true vacuum
of the theory is given by the lowest energy spherical
soliton. For V ��� � 0 everywhere one recovers the usual
positivity properties of the energy, with perfect AdS as the
ground state of the theory.

Here we are concerned with the connection between the
nonperturbative stability of designer gravity theories and
the validity of the no-scalar-hair theorem. Hairy black
holes have been found in designer gravity [24–26], for
AdS-invariant boundary conditions (25) as well as for other
choices of W���. In all known examples, however, the
boundary conditions render the usual AdS vacuum un-
stable. This suggests that the PET excludes spherical scalar
hair in designer gravity, in line with our results for standard
� � 0 boundary conditions. We now show, however, that
the situation in designer gravity is slightly more subtle.

Consider gravity minimally coupled to a single scalar
with potential

 V��� � �2� cosh�
���
2
p
��: (27)

This is a consistent truncation of N � 8 supergravity in
four dimensions, which arises as the low energy limit of M
theory compactified on S7. The potential has a maximum at
� � 0 corresponding to an AdS4 solution with unit radius.
It is unbounded from below, but small fluctuations have
m2 � �2, which is slightly above the BF bound in d � 4.
Hence in all asymptotically AdS solutions � decays at
large radius as

 � �
�
r
�
	

r2 ; (28)

where r is an asymptotic area coordinate, and 	��� in
designer gravity. Writing the metric as g�� � �g�� � h��
where �g�� is the metric of perfect AdS spacetime, the
corresponding asymptotic behavior of the metric compo-
nents is given by
 

hrr � �
�1� �2=2�

r4 �O�1=r5�; hrm � O�1=r2�;

hmn � O�1=r�: (29)

If we adopt boundary conditions defined by the function

 	bc��� � �
1
5�

2 � 1
30�

3 (30)

the conserved mass (23) of spherical solutions is given by

 M � 4��M0 �
15
4�

3 � 1
6�

4�: (31)

To find hairy black hole solutions we numerically inte-
grate the field equations (12)–(14) for static spherical
solutions outward from the horizon. The scalar asymptoti-
cally behaves as (28), so we obtain a point in the ��;	�
plane for each combination �Re;�e�. Repeating for all �e
gives a curve 	Re���. In Fig. 5(a) we show this curve for
hairy black holes of two different sizes. As one increases
Re, the curve decreases faster and reaches larger (negative)
values of 	. We also show the curve obtained in a similar
way for regular solitons, which were discussed in [29].
Finally, the dotted line corresponds to the boundary con-
dition curve (30).

Given a choice of boundary conditions 	���, the al-
lowed black hole solutions are simply given by the points
where the black hole curves intersect the boundary condi-
tion curve: 	Re��� � 	���. It follows immediately that for
designer gravity boundary conditions (30) there are two
hairy black holes of a given horizon size if Re is sufficiently
small. On the other hand, it is clear there are no large hairy
black holes with these boundary conditions. The mass (31)
of both branches of solutions is plotted in Fig. 5(b). One
sees all hairy black holes have positive mass, and in fact
they are always more massive than a Schwarschild-AdS
black hole of the same size. The hairy black holes provide a
genuine example of black hole nonuniqueness, since for a
given mass M (below a critical value) there are three
distinct black hole solutions.

From the soliton curve 	s��� one can compute the
‘‘effective potential’’ (26) for the vacuum expectation val-
ues hOi, for anyW. The result for boundary conditions (30)
is plotted in Fig. 6. One sees that V � 0 everywhere. The
AdS/CFT correspondence suggests, therefore, that the bulk
theory (27) with boundary conditions (24) satisfies the
PET, and hence that empty AdS remains the true ground
state.15 The black hole solutions given here are, to our
knowledge, the first examples of regular spherical black
holes with scalar hair in a theory of gravity coupled to a
single scalar field for which the PET should hold. We
emphasize again, however, that the asymptotic solutions
are not invariant under the full AdS symmetry group.

Figure 6 shows that V has three extrema; a global
minimum at � � 0 and two extrema at � � 0 where V >
0. Hence the dual field theory has three different vacua, and
one can consider excitations about each. The usual
Schwarschild-AdS black holes correspond to typical ex-
citations of mass M about the � � 0 vacuum. On the other
hand, the hairy black holes are interpreted in the dual
theory as thermal excitations about the metastable vacua
with hOi � 0 [29]. In particular, the top branch of hairy
black holes in Fig. 5(b) corresponds to excitations about

15See [38] for a stability analysis of this theory (with more
stringent conditions on W) using purely gravitational arguments.
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the local maximum of V , whereas the bottom branch
corresponds to excitations about the local (metastable)
minimum.16 The dual field theory description of hairy
black holes, therefore, nicely resolves the black hole non-
uniqueness in the bulk.17

Each branch of hairy black holes, associated with ex-
citations about a particular vacuum in the dual field theory,
tends to a spherical static soliton solution �s�r� in the limit
Re ! 0. One would expect, therefore, that the no-scalar-
hair theorem should hold in all designer gravity theories
which do not admit regular spherical solitons. It would be

interesting, however, to be able to characterize designer
gravity theories where the no-scalar-hair theorem holds
purely in terms of properties of the scalar potential.

The connection between the validity of the no-hair con-
jecture and the absence of spherical static scalar solitons
also means that the PET does exclude spherical scalar hair
for all AdS-invariant designer gravity boundary conditions
(25). This is because if there exists a soliton�s�r�, then the
conformally rescaled configurations ���r� � �s��r� pro-
vide, for � < 1=

������������
d� 1
p

, explicit examples of regular ini-
tial data with (arbitrary) negative mass [32,40]. Together
with the no-hair results for standard � � 0 boundary con-
ditions, this shows that the PET forbids spherical hairy
asymptotically AdS black hole solutions in all single scalar
field theories where � reaches a maximum of V at infinity.

VI. CONCLUSION

We have formulated an extension of the no-scalar-hair
theorem for black holes in general relativity, which rules
out spherical scalar hair of static asymptotically flat and
asymptotically AdS black holes if (and only if) the scalar
field theory, when coupled to gravity, satisfies the Positive
Energy Theorem. This clarifies the status of Wheeler’s
hypothesis that ‘‘black holes have no hair’’ for e.g.
Calabi-Yau compactifications of string theory, where the
effective potential typically has negative regions but where
supersymmetry ensures the PET holds.

The numerical results that we have presented here pro-
vide, we believe, strong support for the no-hair conjecture
we propose. In particular, we have shown that potentials
which are on the verge of violating the PET also separate
the set of theories where the no-scalar-hair theorem (and
the PET) holds from those where it does not. This applies
to all bounded and unbounded scalar potentials with a local
minimum at zero, as well as to all potentials with a negative
local extremum. When the latter is a local maximum at or
slightly above the BF bound, one can adopt a large class of
different boundary conditions. Our calculations indicate

ν

α
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FIG. 6. The effective potential V ��� for the vacuum expecta-
tion values hOi in the dual field theory with deformation W �
� 1

15�
3 � 1

120�
4.

β

α M/4π

Re

1 2 3 4 5 6
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-0.6

-0.4
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FIG. 5. The left panel shows the functions 	��� obtained from the solitons and from hairy black holes of two different sizes. The full
line shows the soliton curve 	s���, the dot-dashed line shows the 	Re ��� curve for Re � :2 black holes, and the dashed line is the
Re � 1 curve. One sees the boundary condition function 	bc��� � �

1
5�

2 � 1
30�

3, given by the dotted line, intersects the curves
	Re ��� twice for small Re. The right panel shows the mass of the hairy black holes that obey these boundary conditions. The full line
gives the masses of the second (perturbatively stable) branch of solutions, which are associated with the second intersection point of
the curves 	Re ��� with 	bc���, and hence have more hair.

16This interpretation is supported by the fact that the top branch
has an unstable spherically symmetric scalar perturbation,
whereas the bottom branch does not [29,39].

17The dual description also suggests one can view hairy black
hole solutions of stable designer gravity theories somewhat as
excited atoms in nonperturbative gravity. A thermodynamic
analysis along the lines of [39] confirms this picture, showing
that in the canonical ensemble hairy black holes are unstable
against decay into a standard Schwarschild-AdS black hole.
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that the PET excludes spherical scalar hair for all possible
choices of AdS-invariant boundary conditions.

If the no-hair conjecture that we propose is proven
correct this would mean that the no (spherical) scalar-
hair theorem holds in all theories where it can reasonably
be expected to hold, and where it is meaningful to even
think about it in the first place. Indeed, the significance of
the no-hair theorems rests on the validity of the cosmic
censorship hypothesis, and there is no cosmic censorship in
theories that do not admit the Positive Energy Theorem
[33,34]. It is also worth noting that the no-hair conjecture
we propose here places asymptotically flat spacetimes on
equal footing with asymptotically AdS spacetimes.18

Given the proliferation of hairy AdS black hole solutions
in recent years, this comes as an appealing simplification.

We have concentrated on gravity minimally coupled to a
single scalar field in four dimensions, but we believe our
results—and hence the proposed extension of the no-sca-
lar-hair conjecture—should generalize to scalar multiplets
and to nonminimally coupled scalars, possibly in combi-
nation with Abelian gauge fields. In the case of a single
scalar field it appears that the PET is a sufficient as well as
a necessary condition for the no-hair theorem to hold. It
would be interesting to see whether the conjecture general-
izes in both ways to scalar multiplets, where there are
potentials satisfying the PET that cannot be written in
terms of a superpotential. One would expect there should
be a strong connection between the PET and the no-scalar-
hair theorem in higher dimensions too, perhaps with some
restrictions on the horizon topology. It would also be
interesting, of course, to prove the no-scalar-hair conjec-
ture analytically. It seems, however, that none of the meth-
ods that have been successfully used to establish no-scalar-
hair theorems for positive definite scalar potentials can
readily be generalized to potentials with negative regions.

Finally we have shown that black holes with spherical
scalar hair do exist in certain stable designer gravity theo-
ries where the boundary conditions on the tachyonic scalar
break the asymptotic conformal symmetry. Some of these
designer gravity theories have a dual description in terms
of a field theory with one or several metastable vacua, and
the hairy black holes have a dual interpretation as thermal
excitations around one of these vacua. Furthermore, a
metastable field theory vacuum itself corresponds to a
nontrivial static spherical soliton solution on the gravity
side. The fact that in designer gravity one captures the
physics of a dual theory with multiple vacua distinguishes
these boundary conditions from the usual asymptotically
flat or AdS boundary conditions, and provides a qualitative
explanation for why the PET does not go together with the
no-scalar-hair theorem in designer gravity.
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APPENDIX: NUMERICAL RESULTS

In this appendix we discuss in more detail the numerical
calculations that support the conjecture that in theories of
gravity coupled to a single scalar with potential V, the
Positive Energy Theorem holds if and only if the theory
admits no regular static black hole solutions with spherical
scalar hair. We first consider asymptotically flat black
holes, and then turn to potentials with a negative
extremum.

1. Asymptotically flat black holes

First consider potentials of the form

 V��� � �3� 50�2 � A�3 � B�6; (A1)

where A and B are free parameters. We concentrate on
combinations �A;B� for which V has a local minimum at
�0 where V � 0, and a global minimum at � � 0. These
potentials are represented by the function Bf�A� that sep-
arates region II from region III in Fig. 2.

For large values of A the theory does not satisfy the PET
for configurations where asymptotically �! �0. The
PET holds, however, for A 	 Ac � 57:6, where Bf�A�
joins the function Bc�A� of critical potentials Vc that are
on the verge of violating the PET with asymptotically flat
boundary conditions. In Fig. 7 (left panel) we illustrate
how the potential deforms when one decreases A from A �
65 (dashed line) to its critical value (full line). The position
of the local extremum at �0 increases for decreasing A to
�0�Ac� � 1:06 for the critical potential.

We have integrated the field equations (12)–(14) for
static spherical solutions to see when theories on Bf admit
regular asymptotically flat black hole solutions with scalar
hair. Starting at the horizon for a given radius Re, this
amounts to verifying whether there exists a value �e so
that asymptotically �! �0. One then repeats this proce-
dure for different values of Re, and finally for a range of A
along Bf. We illustrate the results of this analysis in Fig. 7
(right panel), where we plot the value of the scalar field at
the horizon (for which �! �0 at infinity) as a function of
�0, for several radii Re. One sees that for all radii Re,�e !
0 precisely when A! Ac. At the critical point, (spherical)
hairy black hole solutions cease to exist. Furthermore, we
have verified there exists no asymptotically flat regular
spherical hairy black holes in the regime A < Ac where
the PET holds.

Next we consider a class of potentials that are un-
bounded from below

 V��� � �2 � C�3: (A2)

Here C> 0 is a free parameter which controls the height

18It appears that the no-hair conjecture should hold even in the
presence of a positive cosmological constant. Indeed, asymptoti-
cally de Sitter spacetimes do not satisfy the PET and admit hairy
black holes [41].
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h � 4=27C2 of the positive barrier that separates the nega-
tive region at small � from the local minimum at � � 0.
We have seen in Sec. III that the PET holds for asymptoti-
cally flat boundary conditions if h > hc � :3 In Fig. 8 (left
panel) we illustrate how the potential changes when we
increase h towards its critical value hc.

Integrating the field equations (12)–(14) for this set of
theories reveals that the value of the scalar field at the
horizon of regular asymptotically flat hairy black holes
becomes infinitely large when h increases toward its criti-
cal value. We illustrate this in Fig. 8 (right panel) where we
plot the height of the barrier as a function of�e, for several
radii Re. Furthermore, there exist no regular (spherical)
hairy black holes for h 	 hc.

2. Asymptotically AdS black holes

Now we turn to potentials with a negative local extre-
mum, which can be used to specify AdS boundary
conditions.

We consider again potentials of the form (A1), but here
we concentrate on the subset with A � 80. This includes a
critical potential Vc for Bc � 43:6, which has �0 � :73
and �c � Vc��0� � �:88. In Fig. 9 (left panel) we illus-
trate how V changes if we decrease B from B � 46 (dashed
line) towards its critical value Bc (full line).

In Fig. 9 (right panel) we show, for several radii Re, the
value of the scalar field at the horizon of regular spherical
hairy black holes as a function of �. As before, one sees
that�e ! 0 when �! �c. Furthermore, we find there are
no regular (spherical) hairy black holes for B< Bc when
the AdS solution corresponding to � � �0 is nonpertur-
batively stable.

To analyze the status of the no-hair theorem for poten-
tials with a negative minimum at �0 that are unbounded
from below, we consider

 V��� � �1��2 � C�3: (A3)

We have seen in Sec. III that even a tiny barrier hc � :04 is
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FIG. 8. The left panel shows a potential (full line) that is unbounded from below, and on the verge of violating the PET for
asymptotically flat solutions. The right panel shows how�e changes, for four different values of Re, when one increases the height h of
the barrier to its critical value hc � :3. The full line in the right panel corresponds to Re � 10, the dashed line to Re � 5, the dot-
dashed line to Re � 2, and the dotted line to Re � 1. One sees that for all radii Re, �e ! 1 when the height of the barrier reaches its
critical value. For h > hc there are no regular asymptotically flat hairy black holes.
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FIG. 7. The left panel shows a potential (full line) that is on the verge of violating the PET for asymptotically flat solutions. Also
shown is a small deformation of this potential (dashed line) that does not satisfy the PET. The right panel shows how�e, the value of�
at the horizon of regular spherical asymptotically flat hairy black holes, changes, for three different values of Re, when one decreases A
from A � 65 toward its critical value Ac � 57:6, while keeping the local minimum at zero. This corresponds to a deformation where
the potential changes from the dashed line in the left panel, for which�0 � :92, to the one given by the full line where �0 � 1:06. The
full line in the right panel shows �e as a function of �0 for Re � 5, the dashed line corresponds to Re � 2 black holes and the dot-
dashed line to Re � 1. One sees that for all radii Re, �e ! 0 when A! Ac. There are no regular asymptotically flat hairy black holes
for A < Ac.
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FIG. 10. The left panel shows a potential (full line) that is unbounded from below, and on the verge of violating the PET for
asymptotically AdS solutions. The right panel shows how �e changes, for four different values of Re, when one increases the height h
of the barrier to its critical value hc � :044. The full line in the right panel corresponds to Re � 10, the dashed line to Re � 5, the dot-
dashed line to Re � 2, and the dotted line to Re � 1. One sees that for all radii Re, �e ! 1 when the height of the barrier reaches its
critical value. For h > hc there are no regular asymptotically AdS black holes with spherical scalar hair.
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FIG. 9. The left panel shows a potential (full line) that is on the verge of violating the PET for solutions where � asymptotically
decays to the local AdS minimum at �0. The potential that is given by the dashed line does not satisfy the PET for these asymptotic
conditions. The right panel shows �e as a function of � � V��0�, for four different values of Re, when one decreases � towards its
critical value �c � �:88. The full line in the right panel corresponds to Re � 10, the dashed line to Re � 5, the dot-dashed line to
Re � 2, and the dotted line to Re � 1. One sees that for all radii Re, �e ! 0 precisely when �! �c. There are no regular spherical
hairy black holes where �! �0 at infinity for �<�c when the false vacuum is stable.
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FIG. 11. The left panel shows a potential (full line) that is on the verge of violating the PET for solutions where � asymptotically
decays as 
1=r2 to the local maximum at � � 0. It has m2 � �2 and a critical negative quartic coupling �D�4 where Dc � 3=4.
The potential given by the dashed line has D>Dc, and hence violates the PET for the same asymptotic conditions. The right panel
shows how �e, the value of � at the horizon of regular hairy black holes where �
 1=r2 at infinity, changes, for four different values
of Re, when one decreases the coupling constant D from D � 1 to its critical value Dc. The full line in the right panel corresponds to
Re � 10, the dashed line to Re � 5, the dot-dashed line to Re � 2, and the dotted line to Re � 1. One sees that in all cases, �e ! 1
when D! Dc. For D<Dc the scalar hair of regular asymptotically AdS black holes behaves as �
 1=r�O�1=r2� for all �e.
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sufficient to stabilize the vacuum at � � 0. Integrating the
field equations (12)–(14) we again find that�e ! 1 if one
raises the height of the barrier to its critical value hc. We
illustrate this in Fig. 10 (right panel) where we plot h
versus �e, for several radii Re.

We have also discussed theories where � approaches a
negative maximum of V at infinity. Consider the following
class of potentials (in d � 4)

 V��� � �3��2 �D�4; (35)

where D is a free parameter. The scalar generically decays
as �
 �=r� 	=r2 at infinity. If one requires the scalar
asymptotically behaves as �
 r�2, the PET holds pro-
vided D< 3=4. In Fig. 11 (right panel) we show that the
value of the scalar field at the horizon of regular spherical
hairy black holes with � � 0 becomes infinitely large, for
all radii Re, if one decreases D towards its critical value.
Furthermore, for D< 3=4 the scalar always behaves as a
combination of the two asymptotic modes.
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