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An improved Hamiltonian constraint operator is introduced in loop quantum cosmology. Quantum
dynamics of the spatially flat, isotropic model with a massless scalar field is then studied in detail using
analytical and numerical methods. The scalar field continues to serve as ‘‘emergent time’’, the big bang is
again replaced by a quantum bounce, and quantum evolution remains deterministic across the deep Planck
regime. However, while with the Hamiltonian constraint used so far in loop quantum cosmology the
quantum bounce can occur even at low matter densities, with the new Hamiltonian constraint it occurs
only at a Planck-scale density. Thus, the new quantum dynamics retains the attractive features of current
evolutions in loop quantum cosmology but, at the same time, cures their main weakness.
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I. INTRODUCTION

The spatially flat, isotropic model was recently inves-
tigated in detail in the setting of loop quantum cosmology
(LQC) [1]. (For a brief summary of results, see [2].) That
investigation introduced a conceptual framework and ana-
lytical and numerical tools to construct the physical sector
of the quantum theory. These methods enabled one to
systematically explore the effects of quantum geometry
both on the gravitational and matter sectors and to extend
the previous results in LQC.

If the only matter source is a massless scalar field, every
classical solution has a singularity which, furthermore,
persists in the Wheeler-DeWitt theory. Therefore, to bring
out effects which can be unambiguously attributed to the
quantum nature of geometry underlying LQC, this model
was analyzed in detail in [1,2]. The analysis led to the
following results: i) the scalar field was shown to serve as
an internal clock, thereby providing a detailed realization
of the ‘‘emergent time’’ idea; ii) the physical Hilbert space,
Dirac observables and semiclassical states were con-
structed rigorously; and, iii) the Hamiltonian constraint
was solved numerically to show that in the backward
evolution of states which are semiclassical at late times,
the big bang is replaced by a quantum bounce. Further-
more, thanks to the nonperturbative, background indepen-
dent methods, unlike in other approaches the quantum
evolution is deterministic across the deep Planck regime.

These results are attractive and add to the growing
evidence [3–5] suggesting that the quantum geometry
effects of loop quantum gravity (LQG) hold a key to
many long standing questions. Control over the physical
sector of the theory and availability of numerical methods
also enabled to us to analyze the physics of the bounce in

greater detail than could be done in previous investigations.
These details enriched our understanding of both the semi-
classical and deep Planck regimes. However, they also
brought out a serious limitation of the framework: the
critical value �crit of the matter density at which the bounce
occurs can be made arbitrarily small by increasing the
momentum p� of the scalar field (which is a constant of
motion). Now, large values of p� are permissible and even
preferred for semiclassical considerations at late times.
Since it is physically unreasonable to expect quantum
corrections to significantly modify classical predictions at
low matter densities, this limitation is a serious drawback.
Indications of such problems had appeared also in some of
the earlier results based on effective equations (see, e.g.,
[5,6]). However, since the approximations inherent to ef-
fective equations break down in the deep Planck regime,
one did not have an a priori reason to believe that these
were consequences of the underlying quantum equations of
LQC, rather than artifacts of approximation schemes. The
analysis of [1] unambiguously showed that the problem
lies with the quantum equations themselves. Thus, while
the quantum evolution predicted by the existing LQC
constraint operator has a number of attractive features, it
has one major weakness. A key question then is whether
one can change the definition of the constraint operator in a
subtle way so that this problem is overcome, but the
attractive features of the evolution are all preserved.

As reported in [1,2], the answer is in the affirmative. The
purpose of this paper is to justify this assertion by provid-
ing the detailed construction of the new Hamiltonian con-
straint and analyzing the resulting quantum dynamics. We
will find that the required change is in fact physically well
motivated and conceptually quite compelling.

The main ideas can be summarized as follows. Recall
that, to obtain the expression of the quantum constraint,
one has to first introduce an operator representing curva-
ture of the gravitational connection. Now, a key feature of
LQC—inherited directly from full loop quantum gravity
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(LQG)—is that while there are well-defined quantum
analogs of holonomies, there is no operator corresponding
to the connection itself [7–9]. Thus, one is naturally led to
define the curvature operator in terms of holonomies. In the
classical theory, curvature can be expressed as a limit of the
holonomies around a loop as the area enclosed by the loop
shrinks to zero. In quantum geometry, however, one can
not continuously shrink the loop to zero area; there is a
smallest nonzero area eigenvalue, or an ‘‘area gap’’ � [10–
12]. The physical idea then is to incorporate the existence
of the mass gap � [4] in the limiting procedure. However,
in the existing definition of the quantum constraint, this
physical idea was mathematically implemented in a rather
indirect manner. Initially, it was meant to be only a first
step to gain a qualitative understanding of dynamics within
LQC. Nonetheless, as more and more physically appealing
features of this dynamics were discovered, the constraint
operator obtained by this procedure was taken more and
more seriously and constituted the basis of a number of
approximation schemes and effective descriptions.

The new Hamiltonian constraint introduced in this paper
is based on the same principles but the curvature operator is
now constructed by a more direct implementation of the
underlying physical ideas. The structure of the final con-
straint operator does change significantly but, when suit-
ably recast, its form is actually somewhat simpler. Fur-
thermore, it has additional conceptually attractive features.
For example, its Wheeler-DeWitt (WDW) limit naturally
comes with the ‘‘covariant factor ordering’’ of that theory.
Once the new constraint is introduced, we apply analytical
and numerical methods of [1] to extract physical predic-
tions from the theory. Specifically, we will build the physi-
cal Hilbert space H phy from solutions to the new quantum
constraint, introduce on it a complete family of Dirac
observables, construct suitable families of states which
are semiclassical at ‘‘late times’’ (e.g., ‘‘now’’), and nu-
merically evolve them back in time. As in [1], we will find
that in this backward evolution, the big bang is again
replaced by the quantum bounce. Qualitative features of
the evolution are very similar to those observed in [1],
except that the big bounce occurs precisely when the
matter density enters the Planck regime, irrespective of
the value of p� and other initial conditions.

To summarize, the Hamiltonian constraint will be im-
proved by implementing the physical idea of [4] in a more
satisfactory manner. The resulting dynamics will retain the
attractive features of the older quantum evolution but free it
from its main drawback. This rather delicate interplay
between physics and mathematics is both interesting and
instructive. We wish to emphasize however that the present
procedure still retains a basic limitation of the existing
treatments: the Hamiltonian constraint is not systemati-
cally derived from the full theory. Indeed, this important
task can not yet be undertaken because there is no unam-
biguous Hamiltonian constraint in the full theory which

can serve as the natural starting point for a systematic
reduction.

The organization of this paper parallels that of [1] and
we use the same notation. We direct the reader to that
paper for motivations as well as further technical details.
In Sec. II we introduce the new Hamiltonian constraint
operator. In Sec. III we discuss the WDW theory that
results when one ignores the effects of quantum geometry.
As in [1], we find that the singularity is not resolved in that
limit. In Sec. IV we return to LQC and construct the
physical sector of the theory. Quantum states which are
semiclassical at ‘‘late times’’ are then numerically evolved
backwards in Sec. V. We find that the classical big bang is
replaced by a quantum bounce which occurs when the
matter is compressed enough to acquire a density of the
Planck scale. Thus, in the deep Planck regime, quantum
geometry has the effect of making gravity strongly repul-
sive. A key virtue of the new constraint operator is that
these effects are completely negligible when the matter
density is significantly smaller than the Planck density.
Section VI summarizes the main results and briefly dis-
cusses possible extensions. While our detailed analysis is
restricted to a specific and rather simple model, the key
ideas behind the construction of the new constraint opera-
tor can be applied much more generally. This is illustrated
in Appendix A where we allow for the presence of a
cosmological constant. (Other models will be discussed
also by other authors in forthcoming papers.) Appendix A
discusses conceptual issues that are especially relevant to
approximation schemes used in constructing effective
equations.

A brief overview of LQG emphasizing these develop-
ments in LQC can be found in [13].

II. THE IMPROVED CONSTRAINT OPERATOR

This section is divided into three parts. In the first two
we introduce the key new elements and in the third we put
them together to construct the new Hamiltonian constraint
operator.

A. Strategy

Let us first collect the required background material and
notation. (For details, see [1,4].) In a systematic
Hamiltonian treatment of spatially flat, isotropic models,
one has to first introduce an elementary cell V and restricts
all integrations to this cell. Fix a fiducial flat metric oqab
and denote by Vo the volume of the elementary cell V in
this geometry. The gravitational phase space variables—
the connections Aia and the density weighted triads Eai —
can be expressed as

 Aia � cV��1=3�
o

o!i
a; and Eai � pV��2=3�

o
�����
qo
p oeai ;

(2.1)

where �o!i
a; oeai � are a set of orthonormal cotriads and
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triads compatible with oqab and adapted to the edges of the
elementary cell V . Thus, the symmetry reduced gravita-
tional phase space is only 2-dimensional, with coordinates
�c; p� . Thanks to the availability of the fiducial cell V , the
coordinates �c; p� are insensitive to the choice of the
fiducial metric, i.e., remain unchanged under the rescaling
oqab ! �2 oqab. The fundamental Poisson bracket is given
by

 fc; pg �
8�G�

3
; (2.2)

where � is the Barbero-Immirzi parameter. The gravita-
tional part of the Hamiltonian constraint can be written as

 Cgrav � ���2
Z
V
d3x"ijke�1EaiEbjFkab � �

6

�2 c
2 ����
p
p

;

(2.3)

where e �:
��������������
j detEj

p
.

In quantum theory, following Dirac, one first constructs
a kinematical description. The Hilbert space H grav

kin is the
space L2�RBohr; d�Bohr� of square integrable functions on
the Bohr compactification of the real line. To specify states
concretely, it is convenient to work with the representation
in which the operator p̂ is diagonal. Eigenstates of p̂ are
labeled by a real number � and satisfy the orthonormality
relation:

 h�1j�2i � ��1;�2
: (2.4)

Since the right side is the Kronecker delta rather than the
Dirac delta distribution, a typical state in H grav

kin can be
expressed as a countable sum; j�i �

P
nc
�n�j�ni where

c�n� are complex coefficients and the inner product is given
by

 h�1j�2i �
X
n

�c�n�1 c�n�2 : (2.5)

The fundamental operators are p̂ and dexpi��c=2�:

 p̂j�i �
8��l2Pl

6
�j�i and

d
exp

i�c
2
j�i � j�� �i

(2.6)

where � is any real number. Since the holonomy h���k of the
gravitational connection Aia along a line segment � oeak is
given by1:

 h���k � cos
�c
2
I� 2 sin

�c
2
	k (2.7)

the corresponding holonomy operator has the action:

 

ĥ���k j�i �
1

2
�j�� �i � j�� �i�I

�
1

i
�j�� �i � j�� �i�	k: (2.8)

However, just as there is no operator corresponding to the
connection itself in full LQG [7–10], there is no operator ĉ
on H grav

kin [4,14].
To describe quantum dynamics, we have to first intro-

duce a well-defined operator on H grav
kin representing the

Hamiltonian constraint Cgrav. Since there is no operator
corresponding to c itself, we return to the integral expres-
sion of the constraint from the full LQG

 Cgrav � ���2
Z
V
d3x"ijke�1EaiEbjFiab: (2.9)

For passage to quantum theory, we first need to express this
classical constraint in terms of the elementary variables p
and h���k which have unambiguous quantum analogs. As in
the full theory [9,15], the term involving triads can be
written as

 

"ijke�1EajEbk �
X
k

�sgnp�

2��G�V1=3
o

o"abc o!k
c

� Tr�h���k fh
����1
k ; Vg	i� (2.10)

where V � jpj3=2 is the volume of elementary cell V in
the physical metric determined by p and the holonomy h���k
is evaluated along the segment � oeak (i.e., a segment of
oriented length � along the kth edge of the elementary cell
V ). Note that this identity holds for any choice �, even
when it is allowed to be a function of p. Let us allow for
this possibility and fix the appropriate � at the end.

For the field strength Fiab, we use the standard strategy
employed in gauge theories. Consider a square �ij in the
i-j plane spanned by a face of the elementary cell, each of
whose sides has length �V1=3

o with respect to the fiducial
metric oqab. Then, ‘the ab component’ of the curvature is
given by

 Fkab � �2 lim
Ar�!0

Tr
�h����ij

� 1

�2V2=3
o

�
	k o!i

a
o!j

b: (2.11)

Here Ar� is the area of the square under consideration, and
the holonomy h��o�

�ij
around the square �ij is just the

product of holonomies (2.7) along the four edges of �ij

 h����ij
� h���i h

���
j �h

���
i �
�1�h���j �

�1: (2.12)

Combining Eqs. (2.10) and (2.11), Cgrav can be written as

1Here I is the unit 2� 2 matrix and 	k is a basis in the Lie
algebra su�2� satisfying 	i	j �

1
2 "ijk	

k � 1
4�ij. Thus, 2i	k � 
k,

where 
i are the Pauli matrices.
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Cgrav � lim
Ar�!0

C���grav where

C���grav � �
4sgn�p�

8��3�3G

X
ijk

"ijk Tr�h���i h
���
j �h

���
i �
�1�h���j �

�1

� h���k f�h
���
k �
�1; Vg�

� sin�c
�
�

4

8�G�3

sgn�p�

�3

X
k

Tr	kh
���
k f�h

���
k �
�1; Vg

�
� sin�c (2.13)

where in the last step we have used a symmetric ordering of
the three terms for later convenience. Since the constraint
is now expressed in terms of elementary variables which
have unambiguous quantum analogs, it is straightforward
to write down the quantum operator Ĉ���grav. However, the
limit Ar� ! 0 of this operator does not exist. This is not
accidental; had the limit existed, there would be a well-
defined local operator corresponding to the curvature Fiab
and we know that even in full LQG, while holonomy
operators are well-defined, there are no local operators
representing connections and curvatures. This feature is
intimately intertwined with the quantum nature of
Riemannian geometry of LQG. The viewpoint in LQC is
that the failure of the limit to exist is a reminder that there
is an underlying quantum geometry where eigenvalues of
the area operator are discrete, whence there is a smallest
nonzero eigenvalue, �, i.e., an area gap. Thus, quantum
geometry is telling us that, on physical grounds, it is
inappropriate to let Ar� go to zero; the ‘‘correct’’ proce-
dure must take into account the existence of the area gap.

Up to this stage, we have followed the standard LQC
reasoning, first introduced in [4]. The difference comes in
the implementation of the above idea. The viewpoint we
now adopt is that since quantization of area refers to
physical geometries, we should shrink the loop �ij till
the area enclosed by it, as measured by the physical metric
qab, reaches the value �. Since the physical area of faces of
the elementary cell is jpj and since each side of �ij is �
times the edge of the elementary cell, we are led to choose
for � a specific function ���p�, given by

 �� 2jpj � � � �2
���
3
p
���‘2

Pl (2.14)

While �� is a nontrivial function on the phase space, its
analog �o in the existing LQC treatments was required to
be a constant.2 Technically, this contrast turns out to be
important. If we write the quantum constraint using the j�i
basis, the constraint operator of [1,4] is a difference opera-

tor with uniform step size, given by 4�o. In this basis the
action of the new quantum constraint would be again given
by a difference operator, but the step size now depends on
the state j�i it operates on. This difference turns out to be
subtle enough to remove the major weakness of the current
LQC constraint operator, while retaining its physically
desirable features. Conceptually, the new strategy has im-
portant ramifications for the fundamental curvature opera-
tor. In both treatments, it is nonlocal. However, while the
nonlocal operator used in the existing literature depends
only on the connection, the nonlocal operator introduced
here depends both on the connection and the geometry. In
the classical limit, effects of quantum geometry are negli-
gible and the classical limits of both operators yield the
standard expression of the curvature Fab.

Finally, some heuristics involving full LQG can be used
rather effectively to bring out the physical difference be-
tween the two strategies. In the sector of full LQG consist-
ing of a small but a finite neighborhood of homogeneous
isotropic cosmologies, one should be able to carry out
partial gauge fixing, enabling one to speak of 3-metrics
(rather than their equivalence classes under diffeomor-
phisms). Let us consider quantum geometry states based
on graphs and for simplicity focus on the fixed fiducial cell.
Then, one would expect that, as the scale factor a grows,
the number N of vertices in the graph contained in the
fiducial cell would grow as N � Koa

3 for some constant
Ko. In the Hamiltonian constraint of full LQG, the operator
Fab would have to be evaluated at these vertices. A natural
procedure is to introduce an ‘‘elementary cube’’ around
each vertex and calculate the holonomy around the faces of
that cube. Since the number N of elementary cubes con-
tained in the fiducial cell increases as a grows, the area of
their faces, as measured by the fixed fiducial metric would
decrease as Aroele � �1=N�

2=3 � 1=jpj. Hence, as measured
by the fiducial metric, the length of each edge of the face
around which the holonomy is evaluated would go as
1=

�������
jpj

p
—i.e. precisely as ��. Thus the functional depen-

dence of �� on � can be thought of as the remnant left
behind by the sector of the full theory of interest to cos-
mology, on the mini-superspace considered in this paper.
Fixing the edge length to be �o, i.e., making it state
independent, amounts to ignoring the ‘‘creation of new
vertices’’ that one expects to accompany the expansion of
the universe. These considerations complement ideas re-
cently advocated by Bojowald to incorporate inhomogene-
ities in LQC [16].

B. The operator dexpi� ��c=2�

Having fixed � to be the specific function ���p�, we are
now led to write the expression of the quantum constraint
by replacing � in the right side of (2.13) by ��, the holon-
omies and the volume functions by corresponding opera-
tors, and the Poisson bracket by 1=i@ times the
commutator. However, to carry out this task, we first

2The procedure used in LQC (and specifically in [1,4]) so far
can be summarized as follows. One notes that, regarded as a state
in the connection representation, each holonomy h��o�

k is an
eigenstate of the area operator (associated with the face of the
elementary cell orthogonal to the kth direction). One fixes �o by
demanding that this eigenvalue be � and finds �o � 3

���
3
p
=2, a

constant.
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need to define the operators dcos� ��c=2� and dsin� ��c=2�, i.e.

the operator dexpi� ��c=2�. This task is a somewhat subtle
because i) there is no operator corresponding to c and
hence to ��c, and, ii) since �� is a function of p,
expi� ��c=2� can not be expressed as a function of the
‘‘elementary variables’’—p and expi�kc=2� where k is a
constant.

However, in this task we are aided by geometric consid-
erations. Let us begin with states ~���� in the Schrödinger
Hilbert space, L2�R; d��. For any real constant k we have:

 

dei�kc=2� ~���� � ~���� k� � ek�d=d�� ~����: (2.15)

Thus, the action of the operator is to drag the state along the
vector field k d

d� . Now, the 1-parameter family of diffeo-
morphisms generated by the vector field d=d� has a well-
defined action also on the Hilbert space H grav

kin now under
consideration. Therefore, Eq. (2.15) holds also for states
~���� in H grav

kin provided expkd=d� is interpreted simply
as the operator that drags the state a unit affine parameter
distance along the vector field k d

d� . This suggests that it is
natural to set

 e
di� ��c=2� ~���� � e ���d=d�� ~����; (2.16)

so the right side would be the image of ~� under the finite
diffeomorphism obtained by moving a unit affine parame-
ter distance along the integral curve of the vector field � �
�� d

d� . The affine parameter v along this vector field is
given by:

 v � Ksgn���j�j3=2; where K �
2
���
2
p

3
���������
3
���
3
pp : (2.17)

Although the geometrical meaning of this action ofdexpi� ��c=2� is simple, since v is a rather complicated
function of �, its expression in the �-representation is
complicated:
 

e
di� ��c=2� ~���� � ~��sgn� ~�� j ~� j2=3�; where

~� � sgn���j�j3=2 �
1

K
:

(2.18)

However, it is well-defined because v��� is an invertible
(andC1) function of�. Furthermore, for�	 1, the action
reduces to the form

 e
di� ��c=2� ~���� 
 ~���� ���; (2.19)

familiar from the ‘‘standard’’ LQG analysis where �� is
replaced by a constant �o (see Eq. (2.15)). However, as is
clear from the exact expression (2.18), this form with a
‘‘simple displacement’’ of the argument is highly inaccu-
rate for small �.

The complicated action of dexpi� ��c=2� just reflects the
fact that the variable � determined by eigenvalues of p̂ is
not well-adapted to the vector field �. Let us therefore
change the basis j�i to jvi. This basis is more directly
adapted to the volume operator V̂ (associated with the
elementary cell V ):

 V̂jvi �
�
8��

6

�
3=2 jvj

K
‘3

Pljvi: (2.20)

(It follows from (2.17) that, like �, v is dimensionless.)
These kets also constitute an orthonormal basis in H grav

kin :
hv1jv2i � �v1;v2

. The two bases are of course closely
related because V̂ and p̂ are just functions of one another.
In terms of representations, we can simply set ��v� �
~����. In the v-representation, the action of dexpi� ��c=2�
is extremely simple:

 ei
d��c=2��v� � ��v� 1�: (2.21)

Therefore, in what follows we will use the v representa-
tion. Many of the expressions obtained using the new
constraint will then have a form rather similar to those
obtained in [1,4]. But it is important to keep in mind that
while those expressions were written in the � representa-
tion, the ones in this paper are written in the
v-representation. This difference is a key reason why the
present Hamiltonian constraint is free of the drawback of
the one used in the literature so far.

Note that the operator dexpi� ��c=2� is unitary. We can
extend the definition in the obvious manner: By setting

 e
dik� ��c=2���v� � ��v� k� (2.22)

for any constant k, we obtain a unitary representation on
H grav

kin of the 1-parameter group of diffeomorphisms gen-
erated by the vector field �. On the classical phase space,
the function ��c=2 generates a 1-parameter family of (fi-
nite) canonical transformations. It is precisely the lift to the
phase space of the 1-parameter group of diffeomorphisms
on the p or � space, generated by the vector field ��d=d�.

The action of dexpi� ��c=2� simply promotes this relation to
the quantum theory.

Remark: While the geometric interpretation of the action

of dexpi� ��c=2�makes its definition quite natural, one might
nonetheless ask for the relation between our factor order-
ing and that normally used. We will now argue that the
choice we have specified in fact originates in ordinary
quantum mechanics.

Consider 1-d Schrödinger quantum mechanics, where
states ~��x� are generally taken to be functions in
L2�R; dx�. Consider a function f�x�p on the classical phase
space. The canonical transformation it generates is again
the lift to the phase space of the diffeomorphism generated
by the vector field � � f�x� d

dx on the configuration space
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(i.e., the x-axis). One would expect that this geometric
action would be carried over also to quantum theory. Is
this in fact the case? In the textbook treatments one does
not take into account such geometric considerations but

constructs a self-adjoint operator d�fp� :� �@=2i��
�f d

dx�
d
dx f� using a symmetric ordering. Its actiond�fp� ~� � �@=i��f d

dx
~�� 1

2
d
dx f

~�� does not correspond to
the Lie-derivative of ~� with respect to the vector field �,
which is captured just in the first term. (The second term,
1
2

d
dx f

~�, multiplies ~� by the divergence of the vector field
�, i.e., by the Lie-derivative of the Lebesgue measure with
respect to �.) Hence, the action of the 1-parameter group of

unitary transformations Û��� :� expid�fp� on wave func-
tions ~��x� is different from that of the diffeomorphisms
generated by �. However, this is simply because the
Lebesgue measure dx fails to be invariant under the
diffeomorphism.

Let us represent quantum states by densities � of weight
1/2 —or, more precisely, half-forms—so that the scalar
product is given simply by ��1;�2� �

R
R

��1�2 without

the need of a measure. (Thus, �~�1
~�2dx� ��1�2. For de-

tails, see, e.g., [17].) On these half forms, the action of d�fp�
is precisely that of a Lie derivative; d�fp�� � �@=i�L��.
Therefore, the action of the unitary transformation U��� is
given by

 Û�����v� � ��v� �@�

where v is the affine parameter of the vector field � on R.
Thus, the initial geometric expectation is indeed realized if
one proceeds with the standard factor ordering from
Schrödinger quantum mechanics, but represents states by
half forms. In the polymer representation the measure is
invariant under the action of any diffeomorphism on the
�-axis. Hence the additional ‘‘divergence term’’ is unnec-
essary. In this sense, states in H grav

kin are analogs of den-
sities of weight 1=2—or, half forms—in the Schrödinger
representation.

C. Expression of the constraint operator

We can now collect the results of the last two subsec-
tions to obtain the quantum constraint operator starting
from the classical expression (2.13). We have
 

Ĉgrav � sin� ��c�
�

24isgn���

8��3 ��3‘2
Pl

�
sin
�

��c
2

�
V̂ cos

�
��c
2

�
� cos

�
��c
2

�
V̂ sin

�
��c
2

���
sin� ��c�

�: sin� ��c�Â sin� ��c�; (2.23)

where, for clarity of visualization, we have suppressed hats
over the operators sin� ��c=2�, cos� ��c=2� and sgn���= ��3.
Let us focus on the operator Â first. Some care is needed in

its evaluation because, while all other operators in this
expression are densely defined, sgn��� is unambiguously
defined only on those states ��v� whose support excludes
the point v � 0. However, a straightforward calculation
shows that
 

24i

8��3 ��3‘2
Pl

�
sin
�

��c
2

�
V̂ cos

�
��c
2

�
� cos

�
��c
2

�
V̂ sin

�
��c
2

��
��v�

� �
27K

4

�������
8�
6

s
‘Pl

�3=2
jvj�jv� 1j � jv� 1j���v�: (2.24)

(The expression in round brackets (containing the trigno-
metric functions and V̂) is already diagonal in the jvi basis.
Hence there is no factor ordering problem between this part
of the operator and the prefactor involving 1=j ��j3.) Since
the right-hand side vanishes at v � 0, it is in the domain of
sgn���, whence Â is well-defined and given by

 Â��v� � �
27K

4

�������
8�
6

s
‘Pl

�3=2
jvjjjv� 1j � jv� 1jj��v�:

(2.25)

Thus, jvi is an eigenket of Â. Since the eigenvalues of Â are
real and negative, it is a negative definite self-adjoint
operator on H grav

kin . The form of Ĉgrav in (2.23) immediately
implies that it is also self-adjoint and negative definite on
H grav

kin . Its action is given by
 

Ĉgrav��v� � f��v���v� 4� � fo�v���v�

� f��v���v� 4�; (2.26)

with

 f��v� �
27

16

�������
8�
6

s
K‘Pl

�3=2
jv� 2jjjv� 1j � jv� 3jj

f��v� � f��v� 4� fo�v� � �f��v� � f��v�:

(2.27)

Thus, the new gravitational constraint is again a difference
operator. However, whereas the operator used so far in the
literature involves steps which are constant (4�o) in mag-
nitude in the eigenvalues of p̂, the new constraint involves
steps which are constant in eigenvalues of the volume
operator V̂. In the j�i basis these steps vary, becoming
smaller for large �. Note also that although �� diverges at
v � 0, individual operators entering the constraint—and
hence the full constraint operator itself—are well-defined
on the state jv � 0i.

Finally, to write the complete constraint operator we also
need the matter part of the constraint. For the massless
scalar field, in the classical theory it is given by

 Cmatt � 8�Gjpj��3=2�p2
�: (2.28)
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Thus, as usual, the nontrivial part in the passage to quan-
tum theory is the function jpj�3=2. However, as with the
cotriad operator (2.10), this can be used by the method
introduced by Thiemann in the full theory [9,15]. In this
quantization, there are two ambiguities [5,18], labeled by
an half integer j and a real number ‘ in the range 0< ‘<
1. As in [1], following the general considerations in
[19,20], we will set j � 1=2. For ‘, a general selection
criterion is not available and values ‘ � 1=2 and ‘ � 3=4
have been used varyingly in the literature. Qualitative
features of our results do not depend on this choice.
Since ‘ � 1=2 makes expressions simpler and since we
used ‘ � 3=4 in [1], for simplicity and variety we will set
‘ � 1=2 in this paper. Then, the point of departure is the
identity

 jpj��1=2� � sgn�p�
�

4

8�‘2
Pl� ��

Tr
X
k

	kh� ���
k fh

� ����1
k ; V1=3g

�
(2.29)

on the classical phase space. In the LQC literature, this
identity is generally used with a constant �o in place of ��.
However, since volume depends only on p, in the Poisson
bracket only the derivative with respect to c of the holon-
omy appears. Therefore, the identity continues to hold
although �� is a function of �.3

Again in the passage to quantum theory, some care is
needed because of the presence of sgn�p� on the right side.
However, again the image of the operator defined by the
expression in the square brackets is in the domain of
sgn�p�, whence the total operator on the right side is
densely defined
 djpj��1=2���v� �

3

2

�
6

8��‘2
Pl

�
1=2
K1=3jvj1=3jjv� 1j1=3

� jv� 1j1=3j��v�: (2.30)

For jvj 	 1, the eigenvalue is given by �6=8��‘2
Pl�

1=2�

sgn���j�j�1=2�1�O�1=j�j4�� � sgn�p�jpj�1=2, whence
the classical behavior is recovered. However, the operator
is well-behaved on the ket jv � 0i; in fact, as usual in LQC
it is an eigenvector and the eigenvalue vanishes.

Since
d

1=
�������
jpj

p
is a well-defined, self-adjoint operator, we

can take its cube to obtain the action of d1=jpj3=2. It is
diagonal in the v representation, with action

 

djpj��3=2���v� �
�

6

8��‘2
Pl

�
3=2
B�v���v�; (2.31)

where

 B�v� � �32�
3Kjvjjjv� 1j1=3 � jv� 1j1=3j3: (2.32)

Collecting these results we can express the total con-
straint

 Ĉ��v� � �Ĉgrav � Ĉmatt���v� � 0; (2.33)

as follows:
 

@2
���v;�� � �B�v���1�C��v���v� 4; ��

� Co�v���v;�� � C��v���v� 4; ���

�: ����v;��; (2.34)

where the coefficients C�v� and Co�V� are given by

 C��v� �
3�KG

8
jv� 2jjjv� 1j � jv� 3jj

C��v� � C��v� 4� Co�v� � �C��v� � C��v�:

(2.35)

This is the Hamiltonian constraint we will work with in the
remainder of the paper. As discussed in [1], the form of this
constraint is similar to that of a massless Klein-Gordon
field in a static space-time, with � playing the role of time
and the difference operator � of the spatial Laplace-type
operator. Hence, the scalar field � can again be used as
emergent time in the quantum theory. We will examine the
operator � in some detail in Secs. IV and V. Finally, in the
above construction we made a factor ordering choice, the
most significant of which is to write the gravitational part
of the constraint as sin ��cÂ sin ��c by splitting the sin2 ��c
term [21] (see (2.13) and (2.23)). Since Â is self-adjoint and
negative definite (and sin ��c is self-adjoint), this ordering
directly endows the same properties on the gravitational
constraint Ĉgrav. However, there are other possibilities
which may well be better suited in more complicated
models. For the model under consideration, we considered
one other natural candidate in [1] and found that the main
results were not affected by the change. Therefore we did
not use other factor orderings in the numerical simulations
with the new constraint.

III. THE WHEELER-DEWITT THEORY

In this section we will discuss the WDW limit of LQC in
which effects specific to quantum geometry in the differ-
ence Eq. (2.34) are ignored. Although this limiting theory
is straightforward, we present it in some detail because it
provides a simpler and more familiar setting for construct-
ing the physical Hilbert space, Dirac observables and
semiclassical states and because this discussion will enable
us to compare and contrast the WDW theory with LQC in
detail.

The section is divided into two parts. In the first we
obtain the WDW limit of (2.34) and its general solution. In

3Indeed, one could replace it by any other suitably regular
function of �. We will refrain from doing so because the
function �� was already determined for us in the gravitational
part of the Hamiltonian and choosing another function in an ad
hoc manner for the matter part would make the operator less
natural.
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the second we construct the physical sector of the theory,
using the scalar field � as emergent time and show that the
big bang singularity is not resolved in the WDW limit.

A. The WDW constraint and its general solution

To obtain the WDW limit of (2.34) we will follow the
same procedure that we used in [1]. In particular, since the
geometrodynamical description is insensitive to the choice
of triad orientation—i.e., to the sign of v—we will restrict
ourselves to wave functions ��v� which are symmetric
under v! �v. As in [1], the WDW analogs of the LQC
quantities will be written with an underbar.

Let us begin by setting:

 ��v� :� �jvjjjv� 1j � jv� 1jj����v� 2� ���v� 2��;

(3.1)

so that the gravitational part (2.26) of the Hamiltonian
constraint can be written as

 Ĉ ��
grav��v� �

27K‘Pl

16

��������
8�

6�3

s
���v� 2� � ��v� 2��:

(3.2)

To obtain the WDW limit, let us assume jvj 	 1 and ��v�
is smooth. Then, we have

 Ĉ ��
grav��v� � 54K‘Pl

��������
8�

6�3

s
d

dv

�
jvj

d��v�
dv

�
�O

�
vn�3 dn�

dvn

�
; (3.3)

where n � 3. Thus, if we restrict ourselves to wave func-
tions � which are slowly varying in the sense that the
second term on the right-hand side is negligible compared
to the first, we obtain the WDW limit of the gravitational
part of the constraint

 Ĉ wdw
grav ��v� � 54K‘Pl

��������
8�

6�3

s
d

dv

�
jvj

d��v�
dv

�
: (3.4)

This approximation is not uniform because the terms
which are neglected depend on �. We will show at the
end that these assumptions are realized in a self-consistent
manner on semiclassical states of interest. For now we only
note that Ĉwdw

grav is self-adjoint and negative definite on the
kinematic Hilbert space H wdw

kin � L2�R; dv� of the WDW
theory.

Finally, recall that the full constraint is given by

 Ĉ � Ĉgrav � 8�G
�

6

8��‘2
Pl

�
3=2
B�v�p̂2

�; (3.5)

where the function B�v� is defined in (2.32). This function
is well-approximated by B�v� :� Kjvj�1 for jvj 	 1.
Hence, the WDW limit of the full constraint is given by:

 @2
���v;�� � 12�Gv@v�v@v��v;��� �: �� ��v;��:

(3.6)

The operator � commutes with the ‘‘parity’’ operator �
which flips the triad orientation: ���v� � ���v�.4

Hence it preserves the space of wave functions under
consideration, namely, the eigenspace of � with eigen-
value �1.

Note that if, as is in geometrodynamics, we were to
represent quantum states as functions ~��a;��, the operator
� would have the action: � ~� � �4�G=3��a@=@a��
�a@=@a�� ~��. Now, in geometrodynamics, the classical
constraint has the form GABpApB � 0 where GAB is the
DeWitt metric on the 2-dimensional configuration space
spanned by the pair �a;��. In quantum theory, the natural
choice of factor ordering is to use the Laplace-Beltrami
operator of GAB [22]. Then, the WDW equation has the
form: @2

�
~� � �4�G=3��a@=@a��a@=@a� ~� [23], which is

precisely our Eq. (3.6). Thus the WDW limit of the current,
‘‘improved’’ Hamiltonian constraint, automatically yields
the ‘‘natural’’ factor ordering of the WDW theory. This
provides an indirect support for the factor ordering in LQC
that led us to (2.34).

Since the form of the WDW limit is symmetric in � and
v we could use either the volume of the universe or the
scalar field as the emergent time and the other variable as
the true dynamical degree of freedom. However, as noted
in [1,2], in the (k � 1) closed model, � is better suited as
the time variable. More importantly, the form of the LQC
constraint (2.34) is such that it would be technically diffi-
cult to regard v as time beyond the WDW limit. Therefore,
we will regard � as time so that the dynamics is described
by the evolution of the volume of the universe with respect
to this emergent time, �. As emphasized in [1], it is not
essential to make a specific choice of an emergent time;
one can construct the physical sector of the theory without
making a choice. However, choosing � as time provides a
heuristic understanding of the intermediate stages of the
procedure and lets us interpret the final results in the
language of the more familiar notion of ‘‘evolution’’ rather
than in terms of a ‘‘frozen formalism’’.

The form of the WDW Eq. (3.6) is very simple; if we set
x � lnv, the WDW constraint assumes the form of a
massless Klein-Gordon equation in the flat space spanned
by x and�. However, to bring out similarities and contrasts
between this WDW theory and the LQC description pre-
sented in Secs. IV and V, we will use the same steps as the
ones used there.

4In the full classical theory, the orientation reversal is a phase
space symmetry because both triad eai and its conjugate variable
kia :� kabe

bi change signs under this transformation. In the
present model, this corresponds to the symplectomorphism
�c; p� ! ��c;�p� which is then naturally lifted to an automor-
phism of the quantum algebra. The mapping � is the induced
action of this automorphism on states.
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Let us first note that the operator � is positive definite
and self-adjoint on the Hilbert space L2

s�R; K
�1B�v�dv�

where the subscript s denotes the restriction to the sym-
metric eigenspace of �. Its eigenfunctions ek with eigen-
value !2�� 0� are 2-fold degenerate on this Hilbert space.
Therefore, they can be labeled by a real number k:

 e k�v� :�
1�������
2�
p eik lnjvj; (3.7)

where k is related to ! via ! �
�������������
12�G
p

jkj. On
L2
s�R; K�1B�v�dv�, they form an orthonormal basis:
�ek; e

0
k� � ��k; k0�. A general solution to (3.6) with initial

data in the Schwartz space of rapidly decreasing functions
can be written as

 ��v;�� �
Z 1
�1

dk ~���k�ek�v�ei!� � ~���k��ek�v�e�i!�;

(3.8)

for some ~��k� also in the Schwartz space. Following the
terminology generally used in the Klein-Gordon theory, the
solution will be said to be ‘‘incoming’’ (‘‘contracting’’) if
~��k� have support only on the positive half of the k axis
and ‘‘outgoing’’ or (‘‘expanding’’) if they have support
only on the negative half of the k axis. If ~���k� vanishes,
the solution will be said to be of positive frequency and if
~���k� vanishes it will be said to be of negative frequency.

As usual, the positive and negative frequency solutions
satisfy first order evolution equations, obtained by taking a
square-root of the constraint (3.6)

 � i@���v;�� �
�����
�

p
��v;��: (3.9)

If f�v� is the initial data for these equations at ‘time
� � �o’, the solutions are given by:

 ��v;�� � ei
���
�
p
����o�f�v�: (3.10)

B. Physics of the WDW theory

Solutions (3.8) to the WDW equation are not normal-
izable in H wdw

kin (because zero is in the continuous part of
the spectrum of the WDW operator). Our first task is to
endow the space of these physical states with a Hilbert
space structure. There are several possible avenues. As in
[1], we will begin with one that is somewhat heuristic but
has direct physical motivation. The idea [24,25] is to
introduce operators corresponding to a complete set of
Dirac observables and select the required inner product
by demanding that they be self-adjoint. In the classical
theory, since p� is a constant of motion, it is a Dirac
observable. While v is not a constant of motion, on each
dynamical trajectory v��� is a monotonic function of �,
whence vj���o

is a Dirac observable for any fixed �o.
These form a complete set and it is straightforward to write
the corresponding quantum operators. However, because
we are interested only in states ��v;�� which are sym-

metric under v! �v, it suffices to consider jvj�o
in place

of vj�o
. Now, since p̂� commutes with the WDW operator

in (3.6), given a (symmetric) solution ��v;�� to (3.6),

 p̂ ���v;�� :� �i@
@�

@�
; (3.11)

is again a (symmetric) solution. So, we can just retain this
definition of p̂� from H wdw

kin . The Schrödinger type evo-
lutions (3.10) enable us to define the other Dirac observable
jv̂j�o

: Given a (symmetric) solution ��v;�� to (3.6), we
can first decompose it into positive and negative frequency
parts ��v;��, freeze them at � � �o, multiply this
‘‘initial datum’’ by jvj and evolve via (3.10)

 jv̂j�o
��v;�� � ei

���
�
p
����o�jvj���v;�o�

� e�i
���
�
p
����o�jvj���v;�o�: (3.12)

The result is again a (symmetric) solution to the WDW
Eq. (3.6). Furthermore, both these operators preserve the
positive and negative frequency subspaces. Since they
constitute a complete family of Dirac observables, we
have superselection. In quantum theory we can restrict
ourselves to one superselected sector. In what follows,
for definiteness we will focus on the positive frequency
sector and, from now on, drop the suffix �.

We now seek an inner product on the space of positive
frequency solutions ��v;�� to (3.10) (invariant under the
v reflection) which makes p̂� and jv̂j�o

self-adjoint. Each
of these solutions is completely determined by its initial
datum ��v;�o� and the Dirac observables have the fol-
lowing action on the datum:
 

jv̂j�o
��v;�� � jvj��v;�o�; and

p̂���v;�o� � @
�����
�

p
��v;�o�:

(3.13)

Therefore, it follows that (modulo an overall rescaling,) the
unique inner product which will make these operators self-
adjoint is just

 h�1j�2iphy �
Z
���o

dvB�v� ��1�v;���2�v;�� (3.14)

(see e.g. [24,25]). Note that the inner product is conserved,
i.e., is independent of the choice of the ‘‘instant’’ � � �o.
Thus, the physical Hilbert space H wdw

phy is the space of
positive frequency wave functions ��v;�� which are sym-
metric under the v reflection and have a finite norm,
defined by ((3.14)). The procedure has already provided
us with a representation of our complete set of Dirac
observables on this H wdw

phy :

 jv̂j�o
��v;�� � ei

���
�
p
����o�jvj��v;�o�; and

p̂���v;�� � @

�����
�

p
��v;��:

(3.15)

Arguments of [1] can be repeated to show that the same
representation of the algebra of Dirac observables can be
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obtained by the group averaging method [26,27] which is
mathematically more streamlined.

Finally, using the physical Hilbert space and this com-
plete set of Dirac observables we can now introduce semi-
classical states and study their evolution. Let us fix an
‘‘instant of time’’ � � �o and construct a semiclassical
state which is peaked at p� � p�� and vj�o

� v�. Since we
would like the peak to be at a point that represents a large
classical universe, we are led to choose v� 	 1 and (in the
natural classical units c � G � 1) p�� 	 @. In the closed
(k � 1) models, for example, the second condition is nec-
essary to ensure that the universe expands out to a size
much larger than the Planck scale. At ‘‘time’’ � � �o,
consider the state
 

��v;�o� �
Z 1
�1

dk ~��k�ek�v�ei!��o����; where

~��k� � e���k�k
��2=2
2�:

(3.16)

Here k� � �p��=
������������������
12�G@2
p

and �� �

� lnjv�j=
������������������
1=12�G

p
��o. It is easy to evaluate the inte-

gral in the approximation ! � �
�������������
12�G
p

k—which is jus-
tified because ~��k� is sharply peaked at k� and
k� � �1—and calculate mean values of the Dirac observ-
ables and their fluctuations. One finds that, as required, at
� � �o the state is sharply peaked at values v�, p��. The
above construction is closely related to that of coherent
states in nonrelativistic quantum mechanics. The main
difference is that the observables of interest are not v
and its conjugate momentum but rather v and p�—the
momentum conjugate to time, i.e., the analog of the
Hamiltonian in nonrelativistic quantum mechanics.

We can now ask for the evolution of this state. Does it
remain peaked at the classical trajectory defined by p� �
p�� and passing through v � v� at � � �o? This question
is easy to answer because (3.10) implies that the (positive
frequency) solution to ��v;�� (3.6) defined by the initial
data (3.16) is obtained simply by replacing �o by � in
(3.16)! Since 
, the measure of dispersion in (3.16), does
not depend on �, it follows that ��v;�� continues to be
peaked at a trajectory

 � �

�������������
1

12�G

s
ln
jvj
jv�j
��o (3.17)

which is precisely the classical solution of interest. This is
precisely what one would hope during the epoch in which
the universe is large. However, the property holds also in
the Planck regime and, in the backward evolution, the
semiclassical state simply follows the classical trajectory
into the big bang singularity. (Had we worked with positive
k�, we would have obtained a contracting solution and then
the forward evolution would have followed the classical
trajectory into the big crunch singularity.) In this sense, the
WDW evolution does not resolve the classical singularity.

We will show in Secs. IV and V that the situation is very
different in LQC. This can occur because the WDW equa-
tion is a good approximation to the discrete equation only
for large v. Furthermore, as noted before, the approxima-
tion is not uniform but depends on the state: in arriving at
the WDW equation from LQC we had to neglect � depen-
dent terms of the form O�vn�3 dn�

dvn � for n � 3. For semi-
classical states considered above, this implies that the
approximation is excellent for v	 k� but becomes inade-
quate when the peak of the wave function lies at a value of
v comparable to k�. Then, the LQC evolution departs
sharply from the WDW evolution. We will find that, rather
than following the classical trajectory into the big bang
singularity, the peak now exhibits a bounce. Since large
values of k� are classically preferred, the value of v at the
bounce can be quite large. However, as remarked in Sec. I,
we will find that the matter density at the bounce point is
comparable to the Planck density, independent of the value
of k�.

Remark: In the above discussion for simplicity we re-
stricted ourselves to eigenfunctions ek�v� which are sym-
metric under v!�v from the beginning. Had we
dropped this requirement, we would have found that there
is a 4-fold (rather than 2-fold) degeneracy in the eigen-
functions of �. Indeed, if �v� is the step function (�v� �
0 if v < 0 and � 1 if v > 0), then �v�ejkj, �v�e�jkj,
��v�e�jkj, ��v�e�jkj are all continuous functions of v
which satisfy the eigenvalue equation (in the distributional
sense) with eigenvalue !2 � 12�Gk2. This fact will be
relevant in the next section.

IV. ANALYTICAL ISSUES IN LOOP QUANTUM
COSMOLOGY

We will now analyze the model using LQC. Since the
form of the LQC ‘‘evolution equation’’ is very similar to
that of the WDW theory, we will be able to construct the
physical Hilbert space and Dirac observables following the
ideas introduced in Sec. III B.

A. Emergent time and the general solution to the LQC
Hamiltonian constraint

Recall that the LQG Hamiltonian constraint is given by
Eq. (2.34)
 

@2
���v;�� � �B�v���1�C��v���v� 4; ��

� Co�v���v;�� � C��v���v� 4; ���

�: ����v;��; (4.1)

where the coefficients C, Co are given by (2.35).5 Since

5Note that this fundamental evolution equation makes no
reference to the Barbero-Immirzi parameter � or the area gap
�. This is the equation used in numerical simulations. To
interpret the results in terms of scale factor, however, values of
� and � become relevant.
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the operator � acts only on the argument v of ��v;��, we
have a neat separation of variables. The form of the con-
straint now suggests that it is natural to regard � as
emergent time. To implement this idea, let us introduce
an appropriate kinematical Hilbert space for both geometry
and the scalar field: H total

kin
:� L2�RBohr; B�v�d�Bohr� �

L2�R; d��. Since � is to be thought of as time and v as
the genuine, physical degree of freedom which evolves
with respect to this time, we chose the standard
Schrödinger representation for � but the ‘‘polymer repre-
sentation’’ for v to correctly incorporate the quantum
geometry effects. This is a conservative approach in that
the results will directly reveal the manifestations of quan-
tum geometry. Had we chosen a nonstandard representa-
tion for the scalar field, these effects would have been
mixed with those arising from an unusual representation
of time evolution and, furthermore, comparison with the
WDW theory would have become more complicated.
(However, the use of a ‘‘polymer representation’’ for �
may become necessary to treat inhomogeneities in an
adequate fashion.)

The form of (2.34) is the same as that of the WDW
constraint (3.6) and � is again a positive self-adjoint
operator, now on L2�RBohr; B�v�d�Bohr�. The main differ-
ence is that while the WDW � is a differential operator, the
LQC � is a difference operator. This gives rise to certain
technically important distinctions. For, now the space of
physical states—i.e. of appropriate solutions to the con-
straint equation—is naturally divided into sectors each of
which is preserved by the evolution and by the action of our
Dirac observables. Thus, there is superselection. Let Lj"j
denote the ‘‘lattice’’ of points fj"j � 4n; n 2 Zg on the
v-axis, L�j"j the lattice of points f�j"j � 4n; n 2 Zg

and let L" � Lj"j [L�j"j where as usual Z denotes the
set of integers. Let H grav

j"j , H grav
�j"j and H grav

" denote the
subspaces of L2�RBohr; B�v�d�Bohr� with states whose sup-
port is restricted to lattices Lj"j, L�j"j and L". Each of
these three subspaces is mapped to itself by � which is
self-adjoint and positive definite on all three Hilbert
spaces.

However, since H grav
j"j and H grav

�j"j are mapped to each
other by the parity operator �, only H grav

" is left invariant
by �. Now, because � reverses the triad orientation, it
represents a large gauge transformation. In gauge theories,
we have to restrict ourselves to sectors, each consisting of
an eigenspace of the group of large gauge transformations.
(In QCD, in particular, this leads to the  sectors.) The
group generated by � is just Z2, whence there are only two
eigenspaces, with eigenvalues 1. Since there are no
fermions in our theory, there are no parity violating pro-
cesses whence we are led to choose the symmetric sector
with eigenvalue �1. Thus, we are primarily interested in
the symmetric subspace of H grav

" ; the other two Hilbert
spaces will be useful only in the intermediate stages of our
discussion.

Our first task is to explore properties of the operator �.
Since it is self-adjoint and positive definite, its spectrum is
non-negative. Therefore, as in the WDW theory, we will
denote its eigenvalues by!2. Let us first consider a generic
", i.e., not equal to 0 or 2, so that the lattices Lj"j are
distinct. On each of the two Hilbert spaces H grav

j"j, we can
solve for the eigenvalue equation �e!�v� � !2e!�v�, i.e.,
 

C��v�e!�v� 4� � Co�v�e!�v� � C��v�e!�v� 4�

� !2B�v�e!�v� (4.2)

Since this equation has the form of a recursion relation and
since the coefficients C�v� never vanish on the lattices
under consideration, it follows that we will obtain an
eigenfunction by freely specifying, say, ��v�� and ��v� �
4� for any v� on the lattice Lj"j or L�j"j. Hence the
eigenfunctions are 2-fold degenerate on each of H grav

j"j

and H grav
�j"j. On H grav

" , therefore, the eigenfunctions are
4-fold degenerate as in the WDW theory. Consequently
H grav

" admits an orthonormal basis eI! where the degen-
eracy index I ranges from 1 to 4, such that

 heI!je
I0
!0 i � �I;I0��!;!

0�: (4.3)

(The Hilbert space H grav
" is separable and the spectrum is

equipped with the standard topology of the real line.
Therefore we have the Dirac distribution ��!;!0� rather
than the Kronecker delta �!;!0 .) As usual, every element
��v� of H grav

" can be expanded as

 ��v� �
Z 1

0
d! ~�I�!�e

I
!�v� where ~�I�!� � he

I
!j�i:

(4.4)

The numerical analysis of Sec. V and comparison with the
WDW theory are facilitated by making a convenient choice
of this basis in H grav

" , i.e., by picking specific vectors from
each 4 dimensional eigenspace spanned by eI!�v�. To do
so, note first that, as one might expect, every eigenvector
eI!�v� has the property that it approaches specific eigen-
vectors of the WDW differential operator � as v! 1.
(The precise rate of approach is discussed in Sec. VA.) The
idea is to use this fact to synchronize the basis in LQC with
that in the WDW theory. However, in general the two
limiting WDW eigenfunctions are distinct. Indeed, because
of the nature of the WDW operator �, its eigenvectors can
be chosen to vanish on the entire negative (or positive)
v-axis; their behavior on the two half lines is uncorrelated.
(See the remark at the end of Sec. III B.) Eigenvectors of
the LQC operator � on the other hand are rigid; their
values at any two lattice points determine their values on
the entire lattice Lj"j. Therefore, the synchronization can
be done only at one end and we choose to do so at v � 1.
As in the WDW theory, let us introduce a real variable k
satisfying !2 � �12�G�k2 and use k in place of ! to label
the orthonormal basis. Then the basis of interest will be the
following:
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(i) Denote by e
�jkj�v� the basis vector in H grav

j"j with
eigenvalue !2, which is proportional to the WDW
e�jkj�v� in the limit v! 1; (i.e., it has only out-
going or expanding component in this limit);

(ii) Denote by e
jkj�v� the basis vector in H grav

j"j with
eigenvalue !2 which is orthogonal to e

�jkj�v�.
(Since eigenvectors are 2-fold degenerate in each
of H grav

j"j, the vector e
jkj�v� is uniquely determined

up to a multiplicative phase factor.)
We thus have an orthonormal basis ek in H grav

" with k 2
R: hek je


k0 i � ��k; k0�, and he�k je

�
k0 i � 0. The four eigen-

vectors with eigenvalue !2 are now e�
jkj; e

�
�jkj which have

support on the lattice Lj"j, and e�
jkj, e

�
�jkj which have

support on the lattice L�j"j. As we will see in Sec. VA,
this basis is well-suited for numerical analysis.

Since physical states use only the symmetric sector of
H ", in this analytic discussion we will be interested only
in the symmetric combinations

 e�s�k �v� �
1
2�e
�
k �v� � e

�
k ��v� � e

�
k �v� � e

�
k ��v�� (4.5)

of the basis vectors which are invariant under �. Any
symmetric element ��v� of H grav

" can be expanded as

 ��v� �
Z 1
�1

dk ~��k�e�s�k �v�: (4.6)

We can now write down the general symmetric solution
to the quantum constraint (2.34) with initial data in H grav

"

 ��v;�� �
Z 1
�1

dk� ~���k�e
�s�
k �v�e

i!�

� ~���k� �e
�s�
k �v�e

�i!��; (4.7)

where ~��k� are in L2�R; dk�. As v! 1, these ap-
proach solutions (3.8) to the WDW equation. However,
the approach is not uniform in the Hilbert space but varies
from solution to solution. As mentioned in Sec. III B, the
LQC solutions to (2.34) which are semiclassical at late
times can start departing from the WDW solutions for
relatively large values of v (more precisely, at v� k).

As in the WDW theory, if ���k� vanishes, we will say
that the solution is of positive frequency and if ���k�
vanishes we will say it is of negative frequency. Thus,
every solution to (2.34) admits a natural positive and
negative frequency decomposition. The positive (respec-
tively negative) frequency solutions satisfy a Schrödinger-
type first order differential equation in �

 � i
@�
@�

�
�����
�
p

�; (4.8)

but with a Hamiltonian
�����
�
p

(which is nonlocal in v).
Therefore the solutions with initial datum ��v;�o� �
f�v� are given by

 ��v;�� � ei
���
�
p
����o�f�v;��: (4.9)

So far, we considered a generic ". We will conclude by
summarizing the situation in the special cases, " � 0 and
" � 2. In these cases, differences arise because the indi-
vidual lattices are invariant under the reflection v! �v,
i.e., the lattices Lj"j and L�j"j coincide. As before, there is
a 2-fold degeneracy in the eigenvectors of � on any one
lattice. For concreteness, let us label the Hilbert spaces
H grav
j"j and choose the basis vectors e�k �v�, with k 2 R as

above. Now, symmetrization can be performed on each of
these Hilbert spaces by itself. So, we have

 e�s�k �v� �
1���
2
p �e�k �v� � e

�
k ��v��: (4.10)

However, the vector e�s�
jkj�v� coincides with the vector

e�s�
�jkj�v� so there is only one symmetric eigenvector per

eigenvalue. This is not surprising: the original degeneracy
was 2-fold (rather than 4-fold) and so there is one sym-
metric and one antisymmetric eigenvector per eigenvalue.
Nonetheless, it is worth noting that there is a precise sense
in which the Hilbert space of symmetric states is only half
as big in these exceptional cases as they are for a generic ".

For " � 2, there is a further subtlety because C� van-
ishes at v � �2 and C� vanishes at v � 2. Thus, in this
case, as in the WDW theory, there is a decoupling and the
knowledge of the eigenfunction e�k �v� on the positive
v-axis does not suffice to determine it on the negative v
axis and vice versa. However, the degeneracy of the
eigenvectors does not increase but remains 2-fold
because the (2.34) now introduces two new constraints:
C�2�e�k �6�� �!2B�2��Co�2��e�k �2��0. Con-
ceptually, this difference is not significant; there is again a
single symmetric eigenfunction for each eigenvalue.

B. The physical sector

Results of Sec. IVA show that while the LQC operator
� differs from the WDW operator � in interesting ways,
the structural form of the two Hamiltonian constraint
equations is the same. Therefore, apart from the issue of
superselection sectors, introduction of the Dirac observ-
ables and determination of the inner product either by
demanding that the Dirac observables be self-adjoint or
by carrying out group averaging is completely analogous in
the two cases. Therefore, we will not repeat the discussion
of Sec. III B but only summarize the final structure.

The sector of the physical Hilbert space H "
phy labeled

by " 2 �0; 2� consists of positive frequency solutions
��v;�� to (4.8) with initial data ��v;�o� in the symmet-
ric sector of H "

grav. Equation (4.7) implies that they have

the explicit expression in terms of our eigenvectors e�s�k �v�

 ��v;�� �
Z 1
�1

dk ~��k�e�s�k �v�e
i!�; (4.11)

where, as before, !2 � 12�Gk2 and e�s�k �v� is given by
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(4.5) and (4.10). By choosing appropriate functions ~��k�,
this expression will be evaluated in Sec. VA using fast
Fourier transforms. The resulting ��v;�� will provide,
numerically, quantum states which are semiclassical for
large v. The physical inner product is given by

 h�1j�2i" �
X

v2fj"j�4n;n2Zg

B�v� ��1�v;�o��2�v;�o�;

(4.12)

for any �o. The action of the Dirac observables is inde-
pendent of ", and has the same form as in the WDW theory
 

jv̂j�o
��v;�� � ei

���
�
p
����o�jvj��v;�o�; and

p̂���v;�� � �i@
@��v;��
@�

:
(4.13)

The kinematical Hilbert space H total
kin is nonseparable but,

because of superselection, each physical sector H "
phy is

separable. Eigenvalues of the Dirac observable jv̂j�o
con-

stitute a discrete subset of the real line in each sector. The
set of these eigenvalues in distinct sectors is distinct.
Therefore which sector actually occurs is a question that
can be in principle answered experimentally, provided one
has access to microscopic measurements which can distin-
guish between values of the scale factor which differ by
�1:3‘Pl. This will not be feasible in the foreseeable future.
Of greater practical interest are the coarse-grained mea-
surements, where the coarse graining occurs at signifi-
cantly greater scales. For these measurements, different
sectors would be indistinguishable and one could work
with any one.

Remark: The procedure used in this section is quite
general in the sense that it is applicable for a large class
of systems. In this sense, the physical Hilbert spaces H "

phy

constructed here are natural. However, using the special
structures available in this model, one can also construct an
inequivalent representation which is closer to that used in
the WDW theory. The main results on the bounce also hold
in that representation. See Appendix C of [1].

V. LQC: NUMERICAL ISSUES

In this section, we will find physical semiclassical states
in LQC and analyze their properties numerically. This
section is divided into three parts. In the first we study
eigenfunctions ek ��� of � and introduce a method of
constructing a ‘‘general’’ physical state by direct evalu-
ation of the right side of (4.11). In the second part we solve
the initial value problem starting from initial data at � �
�o, thereby obtaining a general solution to the difference
Eq. (4.1). In the third we summarize the main results.
Readers who are not interested in the details of simulations
can go directly to the third subsection.

A large number of simulations were performed within
each of the approaches by varying the parameters in the

initial data and working with different lattices L" intro-
duced in Sec. IV. They show the robustness of final results.
To avoid making the paper excessively long, we will only
show illustrative plots.

A. Eigenfunctions of the � operator, direct evaluation
of the integral representation of the state

Here we will establish properties of the general eigen-
functions e!�v� of � introduced in Sec. IVA, briefly
present the method of explicit calculation of eigenfunc-
tions in the symmetric sector and construct semiclassical
states through direct evaluation of their integral represen-
tation given by (4.7). This method is an exact analog of the
one used in [1] and plays only an auxiliary role, namely, to
incorporate the lattice L"�0 which is difficult to handle by
the evolution method described in Sec. V B. Therefore our
discussion will be brief.

Let us choose a lattice, say Lj"j. Consider an eigenfunc-
tion e!�v� of ĈWDW

grav , i.e. a solution to �e!�v� � !2e!�v�.
Since the left side of this equation approaches
�ĈWDW

grav �e!jLj"j as jvj ! 1 one expects every solution
e!�v� to (4.2) to converge to some WDW eigenfunction
e!�v� in this limit. This expectation was verified numeri-
cally, following the same procedure as the one used in [1].
Numerical simulations also provided the rate of approach6:
for any e!�v� there exist eigenfunctions e!;��v�, e!;��v�
of ĈWDW

grav (corresponding to the same eigenvalue !2) such
that

 e!�v� �

(
e!;��v� �O�

1
v2�; for v > 0;

e!;��v� �O�
1
v2�; for v < 0:

(5.1)

An example of e!�v� and its approach to e!;��v� for large
positive v is presented in Fig. 1.

Each eigenfunction e!�v� can be expressed as the com-
bination of basis functions ek�v� defined via Eq. (3.7)

 e!�v� !
v	1

Aejkj�v� � Be�jkj�v�;

e!�v� !
v��1

Cejkj�v� �De�jkj�v�:
(5.2)

Since the eigenfunctions e!�v� of � are determined on the
entire lattice Lj"j by their values on (at most) two points,
the WDW limits for positive and negative v are not inde-
pendent. Thus, the coefficients C, D are uniquely deter-
mined by values of A, B (and vice versa).

The property (5.1) allows us to construct a basis e�s�k �v�
for the physical (symmetric) sector following step by step
the procedure presented in [1]:

(i) One first constructs the basis functions e
�jkj�v�

(supported on Lj"j respectively) by solving (4.2)
on domains Lj"j \ ��v�; v

�
� for some fixed,

6The numerical tests have shown that the quantity v2je!�v� �
e!;�v�j is bounded.
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large, positive v� 2 Lj"j. The initial conditions
are specified by demanding that the values of
e
�jkj�v� agree with those of e�v� at v � v�, v� �

4. As in the case studied in [1], eigenfunctions are
enormously amplified on the negative v side and
their limits for v��1 are the combinations
Cejkj �De�jkj of WDW basis functions with coef-
ficients of almost equal absolute value i.e., jCj 

jDj.

(ii) Next, the functions e
�jkj�v� are used to calculate

symmetric eigenfunctions e�s�
�jkj�v� via (4.5). Again

their behavior is dominated by properties of e
�jkj�v�

for v < 0. In particular their limit for large v is
composed of incoming (k > 0) and outgoing (k <
0) WDWeigenfunctions. The coefficients of decom-
position with respect to the basis defined by (3.7)
have almost equal absolute value for " � 0, 2

 e�s�
�jkjjLj"j !

v!1
z�ei�


ejkj � e�i�


e�jkj�; (5.3)

where z are some complex constants satisfying
jz�j 
 jz�j, while the phases � are functions of
" and !. For " � 0 and " � 2, jz�j � jz�j and
�� � ��.

These numerically constructed symmetric eigenfunc-
tions can be now used to build the semiclassical states,
using (4.11). Our aim is to construct a state sharply peaked
at a phase space point lying on a classical trajectory of the
expanding universe at late times. The form of the physical
inner product and the expression of general physical state
given by (4.11) provides a natural choice of ~��k�

 

~��k� :� e���k�k
��2=2
2�e�i!�

�
; (5.4)

where 
 is a suitable small spread. The resulting physical
state ��v;�� is peaked at p� � p�� � �

������������������
12�G@2
p

k. The

value v� of the Dirac observable djvj�o
at which the state

will be peaked at� � �o is determined by��. To obtain a
semiclassical state at late times we have to choose large
value of p�: p�� 	 @ (in units c � G � 1). Thus we need

to select k� � �1. The resulting ~��k� has such a small
amplitude for k > 0 that without loss of numerical preci-
sion it can there be set to zero. Therefore the explicit form
of es

jkj is not needed.
Using expression (4.11) and (5.4) we obtain final form of

the wave function

 ��v;�� �
Z 1

0
dke���k�k

��2=2
2�e�s�k �v�e
i!�k�������: (5.5)

In order to calculate the integral we select a set of k0s
uniformly distributed within the interval �k� � 10
; k� �
10
�, compute the eigenfunctions es

�jkj�v� for all k in this
set and in the chosen finite domain in v, and finally
evaluate the integral (5.5) using Fast Fourier Transform.
Numerical simulations were performed with various values
of p�� ranging between 100 and 1000. Typical number of
points constituting the interval k ranged from 2048 to 4096.

B. Evolution

As we discussed in Sec. IV, the quantum constraint
equation can be cast in the form of a Klein-Gordon equa-
tion in a static space time with� playing the role of time. It
is then natural to consider the evolution in terms of the
initial value problem in�. Since � is a discrete operator in
v, the quantum evolution reduces to solving a system of
coupled, ordinary, 2nd order differential equations.

To solve the quantum constraint and determine the
evolution of the state ��v;�� numerically, we have to first
specify the domain of integration. It was chosen to be jv�
"j � 4N where 1� N 2 N is an integer, such that the
initial (and, as the evolution shows, also subsequent) wave
function is negligibly small at the boundary. Nonetheless,
since this domain is finite we have specify boundary con-
ditions. We recall that for jvj 	 1 the difference equation
can be very well-approximated by the WDW equation. In
particular the fundamental equation i@�� �

�����
�
p

� can be
approximated by @�� � �

�������������
12�G
p

�v@v�. To ensure de-
terministic evolution, the wave packets ��v;�� were re-
quired to leave (rather than enter) the domain of
integration. The resulting equation at the boundary was
again discretized, taking the form
 

@���v;�� � s
���������������
3�G=4

p
�jvj � 2����v;��

���v� 4sgn�v�; ���: (5.6)

Returning to the problem of evolution on the entire
domain the initial data �j�o

, @��j�o
at � � �o were

chosen to be the same as those of the WDW Gaussian
semiclassical state (3.16) corresponding to a large expand-
ing universe, peaked at p� � p�� and vj�o

� v� 	 1.
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v

eω(v)

LQC
WDW

FIG. 1. Eigenfunction e!�v� of � (denoted by �) for " � 0
and ! � 20 is compared with eigenfunction e!�v� of the �
operator in WDW theory (solid line). At large v both eigenfunc-
tions approach each other, however they differ at small v.
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Note that eigenfunctions of the quantum constraint es
�jkj�v�

approach a linear combination of eigenfunctions of WDW
constraint for jvj 	 1 (Eq. (5.3)). Thus in order to keep the
properties of the initial state specified at jvj 	 1 as close
as possible to those of the solution ��v;�� of the �
operator at large values of jvj, each of the basis functions
e�jkj was rotated by a phase e�i��k;"�. The phase was
found numerically by method analogous to the one used
in [1]. After its values were determined for variety of
different k, the function of the form

 ���k� � A ln�Bk� C� �D; (5.7)

(where A, B, C,D are real constants) was fitted to them. As
the 0th and 1st order of its expansion in k corresponds,
respectively, to a constant phase and the shift of origin in�
these terms were subtracted from ��. The resulting WDW
solution then took the form:

 ��v;�� �
Z
dke���k�k

��2=2
2�e�i�
�0
e�jkj�v�ei!�k�����

��;

(5.8)

where

 

��0�k� :� ���k� � ���0� � k@k���k�j0;

�� :� �o �
������������������
1=12�G

p
lnjv�j:

(5.9)

The right side of (5.8) and its derivative with respect to �
were calculated numerically to obtain the desired initial
data.

This initial data was then evolved using fourth order
adaptive Runge-Kutta method. To estimate the numerical
errors due to discretization in� the profiles �j� calculated
for different step sizes were compared. As the measure of
the distance between them we used the norm

 k f k ��� :� sup
jvi�"j�N

jf�vi; ��j: (5.10)

The step sizes were refined until the distance between the
results ���, ���=2 of integration, with step size �� and
��=2 respectively, satisfied the inequality

 k ��� ����=2 k�k ���=2 k �����; (5.11)

for a prespecified, small �. An example of behavior of the
distance for particular calculation is presented on Fig. 2.
They show that the numerical errors manifest themselves
mainly in phases. The differences between the absolute
values of the wave function profiles are approximately 1
order of magnitude smaller. Thus the expectation values

and dispersions of observables djvj� are determined with
much better precision than � itself.

Numerical simulations were performed using 10 differ-
ent values of p�� which ranged between 103 and 2� 104.

The value of v at which the state peaks was always chosen
to be greater than 2:5p��. We chose 8 different " sectors,
with " values uniformly distributed in the interval between
0 an 2, excluding 0. The values of dispersions 
=k� varied
from 1.7% to 11% depending on the value of p��.

The resulting wave functions ��v;�� of the exact the-
ory were finally used to calculate the expectation values

hcp�i, hdjvj�i of observables defined by (4.13). Using the
inner product h�j�i" given by (4.12), their explicit ex-
pressions are given by
 

h�jdjvj�j�i � h�j�i�1
"

X
v2L";N

B�v�jvjj��v;��j2 (5.12a)

h�jcp�j�i � h�j�i�1
"

X
v2L";N

B�v� ���v;����i@�

� @���v;��; (5.12b)

where L";N :� fv � "� 4n;�N � n � Ng
The dispersions

 

h�cp�i2 � hcp2
�i � hcp�i2; (5.13a)

h�djvj�i � hcv2
�i � h

djvj�i2; (5.13b)

were also calculated.

C. Results

Results of various numerical simulations can be sum-
marized as follows:

(i) The states remain sharply peaked throughout the
evolution. Their norms are preserved under the

10-5

10-4

10-3

10-2

105 106 107

M

I
II

FIG. 2. Error functions k ��M� �� k = k � k (upper curve)
and k j��M�j � j�j k = k � k (lower curve) are plotted as a
function of time steps. Here ��M� refers to final profile of
wave function for a simulation with M time steps. � is the limit
of final profile as 1=M ! 0 calculated via polynomial extrapo-
lation. In both cases, the evolution began at � � 0 and the final
profile is evaluated at � � �1:35.
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‘�-evolution’, providing a consistency check on
the numerics.

(ii) The classical trajectory provides a good approxi-
mation to the expectation values of Dirac observ-
ables when the energy density � of the scalar field
is small compared to a critical energy density �crit.
However, when this value is reached, the expecta-
tion values cease to be peaked at the classical
solution. Instead of following the classical trajec-
tory into the big bang singularity as in the case of
the WDW dynamics, the LQC state undergoes a
quantum bounce. The numerical value of �crit was
the same in all simulations, given by �crit 

0:82�Pl � 0:82=G2

@. A physical understanding of
this phenomenon can be obtained from the modi-
fied Friedmann equations which incorporate the
leading corrections due to quantum geometry ef-
fects (see Appendix B 1). These effective equations
also provide an analytical expression �crit �
3=�16�2�3G2

@� of the critical density whose nu-
merical value agrees with that found in the simu-
lations of the exact LQC dynamics.

(iii) On further backward evolution � decreases. When
it becomes small compared to �crit, the state again
becomes sharply peaked on a classical solution
which has the same value of hp̂�i, but which is
contracting in the future. Thus, the quantum ge-
ometry effects lead to a resolution of the big bang
singularity. Furthermore, the state becomes semi-
classical also in the distant past, and the pre and
post big bang branches are joined by a ‘‘quantum
bridge’’ by the deterministic evolution of LQC. So
long as the initial state at late times is chosen to be
semiclassical, this scenario, including the value of
�crit, is robust. An example of the result of numeri-
cal simulation is shown in Fig. 3. The comparison

between the classical trajectories and quantum evo-
lution is presented in Fig. 4.

(iv) In order to better understand the behavior of energy
density during quantum evolution we indepen-
dently analyzed the evolution of expectation values
of the energy density operator, defined as �̂� �dp2
�=2p3j�. Results were consistent with those re-

ported above. We found that in all quantum solu-
tions h�̂�i is bounded above by �crit 
 0:82�Pl. An
example of the behavior of the expectation values
of �̂� is presented in Fig. 6.

(v) In the regime where quantum gravity modifications
to the classical dynamics are negligible, the relative
dispersions of Dirac observables were found to
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remain constant and equal on both sides of the
bounce point (see Fig. 5). Thus both semiclassical
branches, before and after the bounce, are equally
coherent. Close to the bounce point the value of
relative dispersion of djvj� decreases reaching mini-
mal value exactly at the bounce point. However,
this decrease does not imply increased coherence in
the large density region. Indeed using the property
that states remain sharply peaked, we can find ��
from �v=v and estimate the uncertainty product
���p�. While the product remains roughly con-
stant before and after the bounce, it has a small
increase near the bounce point.
Behavior of the dispersion ��� is shown in Fig. 6.
Its value grows in the classical regime in the ex-
panding phase but becomes very small near the
bounce point. After the bounce, dispersion again
increases, before decreasing in the classical con-
tracting phase. This peculiar variation in ��� near
the quantum bounce can be qualitatively under-
stood using effective theory discussed in
Appendix B. It has its origin in the phenomena of
superinflation—i.e. the phase in which _H > 0
where H � _a=a is the Hubble rate—which occurs
in the regime �crit > �> �crit=2 [28]. However,
since some of the assumptions that underlie the
current derivation of the effective equations are
generally violated in the Planck regime, this ‘‘un-
reasonable efficacy’’ of the effective equations re-
mains somewhat mysterious.

VI. DISCUSSION

This is the second in a series of detailed papers whose
goal is to develop a comprehensive LQG framework to

systematically investigate the physics of the Planck regime
near the big bang. In [1] we analyzed the homogeneous
isotropic model with a massless scalar field by introducing
several new techniques to construct the physical sector of
the theory. We established that, thanks to the quantum
geometry effects which distinguish LQC from the WDW
theory, in the backward evolution of states which are
semiclassical at late times, the big bang is replaced by a
quantum bounce. That investigation was based on the
quantum Hamiltonian constraint that has been used in the
LQC literature for the last three years. We were able to
analyze the physical sector of the theory in detail and
firmly establish that, although the quantum evolution dic-
tated by that constraint has several desirable features, it
also has a serious flaw: quantum effects can dominate and
significantly modify classical predictions even when the
matter density (and curvatures) are low [1,6]. In this paper
we showed that a physically motivated modification of the
quantum Hamiltonian constraint overcomes this weakness
while preserving the attractive features of the older evolu-
tion. Indeed, a key strength of this work is that several
features of the present simulations are qualitatively similar
to those of [1]. Finally, in both works, detailed numerical
analysis of dynamics was restricted to those quantum states
which are semiclassical at late times. Within the model,
these states best represent our physical universe and our
discussion of the quantum bounce refers only to these
states, although evolution is well-defined and unitary on
the full physical Hilbert space.

We deliberately followed the same organization as [1] to
bring out the (similarities and) differences between the two
quantum evolutions. Physically the differences are criti-
cally important but mathematically they are rather subtle.
This is just as one would expect of an improvement that
cures a significant limitation while retaining the strengths
of the older method. In Appendix A we outline the inclu-
sion of the cosmological constant. Again, while the pre-
vious quantum evolution shows certain departures from the
classical theory even when the space-time curvature is low
[6], the quantum evolution generated by the new
Hamiltonian constraint is free of this drawback. Now the
departures occur only in the deep Planck regime near the
big bang (or the big crunch) and lead to a replacement of
the classical singularity by a quantum bounce.

Models discussed so far are too simple to be physically
realistic. However, the methods introduced are rather gen-
eral. In particular, as indicated at the end of Sec. II A, the
‘ ��-strategy’ incorporates certain key features of full LQG.
Hence, results obtained in this paper provide concrete
indications of how quantum geometry can lead to subtle
yet important departures from the classical theory by mak-
ing gravity repulsive in the deep Planck regime. Glimpses
of new physics that may emerge were presented in the last
section of [1]. We direct the reader to that paper also for a
detailed discussion of numerical analysis, physical ramifi-
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cations of results and comparisons with other approaches
that also feature emergent time and/or quantum bounce.

Finally, as emphasized in Sec. I, a key limitation of the
present work is that the theory is not obtained through a
systematic symmetry reduction of full LQG. This is inevi-
table at present because our understanding of the full
quantum dynamics of LQG is still very incomplete. The
overall framework is constructed by following strategies
developed in full LQG. However, an important difference
arose in the introduction of the Hamiltonian constraint
operator because our mini-superspace reduction is carried
out by gauge fixing and is therefore not diffeomorphism
invariant. As a result, in the last step we had to use some
physical considerations and borrow the expression of the
area gap � from the full theory. The strategy in LQC is to
begin with simple models and work one’s way up by
incorporating the lessons learned along the way.
Improved dynamics discussed in this paper is an interesting
example of such lessons. Considerable work is now in
progress, also by several others, to extend the present
analysis to more complicated models that will include
anisotropies as well as inhomogeneities.
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APPENDIX A: NONZERO COSMOLOGICAL
CONSTANT

In this appendix we will investigate the dynamics of the
universe with a massless scalar field and a cosmological
constant �. Our goal is only to test whether the quantum
bounce scenario is robust and if the ��-evolution is free of
the undesirable features of the �o-evolution, such as de-
partures from the classical theory at low values of total
energy densities [6]. Therefore the numerical simulations
are not as refined as in the main body of the paper. A more
systematic and detailed analysis will appear elsewhere.

A negative � leads to a classical recollapse of the
universe when total energy density, including the ‘‘vacuum
energy density’’ due to �, vanishes. If a quantum bounce
exists in this model then it can lead to a cyclic model of the
universe. A positive � is favored by current observations.
For completeness we will discuss both the cases and ask
whether general features of the � � 0 analysis persist.

The classical Hamiltonian constraint is of the form

 C� � �
6

�2 c
2 ����
p
p
� 2�jpj3=2 � 8�Gjpj��3=2�p2

�: (A1)

From Hamilton’s equations it is easy to see that the mo-
mentum p� is again a constant of motion and the scalar
field � is a monotonic function of time. Hence it is well
suited to play the role of emergent time in the quantum
theory.

The quantization procedure and the construction of the
physical Hilbert space (and observables) for the case � �

0 is completely analogous to that in the model with � � 0.
The quantum Hamiltonian constraint it gives is similar in
its form to (4.1)

 @2
���v;�� � �����v;��

:� �
�

��
16�2�3l4Pl

27K@
�B�v���1�v

�
��v;��;

(A2)

where �� is a self-adjoint operator and K is a constant
defined in (2.17). For �> 0 it fails to be positive definite
on H kin. However, since the operator @2

� on the left side of
(A2) is negative definite, only the projection of �� on its
positive eigenspace is relevant for solutions to the con-
straint. We can therefore repeat the procedure of Sec. IV B,
decompose the solutions into positive and negative fre-
quency parts, and construct the physical inner product

and observables. The expectation values of djvj�, cp� and
their dispersions at an instant � are again given by (5.12)
and (5.13) respectively, where as the norm of the wave
function can be calculated via (4.12).

The next step is to construct states which are sharply
peaked at late times and compare the behavior of the
expectation values of observables with classical trajecto-
ries. The particular properties of the model differ for �< 0
and �> 0. Therefore they have to be handled with differ-
ent methods and we do so separately in Appendices A 1
(�< 0) and A 2 (�> 0).

1. Negative cosmological constant

The classical equations of motion imply that v��� sat-
isfies the following differential equation:

 

�@�v
v

�
2
� 12�G�

�4���3

�3K�2
v2 �

p2
�

: (A3)

When the cosmological constant is negative the solution to
this equation takes the form
 

v��� �
�������������
12�G
p 3K

�4��l2Pl�
3=2

p��������
j�j

p
� j cosh�

�������������
12�G
p

����o��
�1j: (A4)

Thus, the universe originates at the big bang singularity
(for � � �1), expands until the recollapse point (at � �
�o) where the total energy density (due to the scalar field
and the cosmological constant) drops to zero and then
contracts, reaching the big crunch singularity at � � �1.
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To determine the quantum evolution we apply the
method specified in Sec. V B, that is:

(i) We first choose on the v axis the domain L" \
��vb; vb�, where L" is a lattice defined in
Sec. IVA for some " � 0, and vb 	 1.

(ii) Next, we specify the initial data, ��v;�o�,
@���v;��j�o

, peaked at a phase space point rep-
resenting an expanding, large classical universe.

(iii) We evolve this data backward, solving (A2) nu-
merically as in Sec. V B.

(iv) Finally we calculate the expectation values and
their dispersions using (5.12) and (5.13)

We specified the initial state by choosing a Gaussian in
��; c� peaked at �� � K��2=3��v��2=3 (see (2.17)) and
c����; p���, and its time derivative by using the classical
trajectory. (Thus, we follow ‘‘method I’’ of section V.B.2 of
[1]). As discussed there, while this method is not as optimal
as the one used in main body of this paper, it has the
advantage that it does not require the knowledge about
properties of the eigenfunctions of ��. The exact forms of
these initial profiles were the following:

 

��v;��j�o
�jvj1=2e�����v���

��2=2
2�e��i=2����v�����c�

(A5a)

@���v;��j�o
���v;�o�

��2

2p�

�
i��v�

3

�
����2�

8�Gp2
�

�3��

�
� i��3��

4���v�������2c�

��2
2

�
: (A5b)

where � :� 4��‘2
Pl=3.

Because the domain of integration in numerical simula-
tions is compact in v, we have to provide the boundary
conditions. Unlike for � � 0 however the size of classical
universe is bounded by a maximum value vmax. Therefore,
it suffices to choose vb such that the classical recollapse
point is well within the domain and set the ‘‘mirror bound-
ary conditions’’: � � @�� � 0. In numerical simulations
vb was chosen to satisfy the inequality vb � 1:2vmax to
make sure that the recollapse occurs due to dynamics and is
not an artifact of the boundary conditions.

An example of the result of simulation is presented in
Fig. 7. The state remains sharply peaked throughout the
evolution. The expectation values follow classical trajec-
tory corresponding to the expansion phase till the total
energy density

 �tot � �� � ��; where �� :� �8�G��1�; (A6)

becomes comparable to �crit. At �tot � �crit the universe
bounces due to repulsive effects of quantum geometry, and
follows contracting phase of classical trajectory. The
agreement with classical trajectory remains good through
the classical recollapse and expansion phase preceding it,

until the energy density becomes large again. Then again a
bounce is observed. In effect the evolution is periodic: each
‘‘cycle’’ of classical evolution is connected through quan-
tum bridge with previous/next cycle. Both the big bang and
big crunch singularities are resolved and replaced by quan-
tum bounces. The behavior of fluctuations of Dirac ob-
servables is also periodic in the sense that the spread at a
given point of the trajectory and after full cycle are the
same. Thus, in the fully quantum evolution of LQC, semi-
classical states do not loose coherence in evolution from
one cycle to another.

2. Positive cosmological constant

In the case when cosmological constant is positive clas-
sical trajectories, i.e., solutions to (A3), take the form

 

v��� �
�������������
12�G
p 3K

�4��l2Pl�
3=2

p��������
j�j

p
� j sinh�

�������������
12�G
p

����o��
�1j: (A7)

As for � � 0 we have then two types of trajectories. In one
the universe starts from a big bang singularity, expands and
reaches infinite value of v for finite � � �o. In the other
the universe contracts from the infinite volume state (at a
finite � � �o) and reaches the big crunch singularity.

The Eq. (A3) implies, in particular, that in the region
where energy density of scalar field is small with respect to
vacuum energy density ��, the speed @�v of a wave packet
following classical trajectory is proportional to v2. This
feature, and the fact that to specify proper boundary con-
ditions for evolution in�we need to know an explicit form
of the square root of the Wheeler-DeWitt limit of the

-3

-2.5

-2

-1.5

-1

-0.5

 0

0 2*104 4*104 6*104 8*104 1.0*105 1.2*105

v

φ

classical
LQC

FIG. 7. The expectation values (and dispersions) of djvj� for the
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positive part of ��, makes the application of the evolution
method numerically difficult. Therefore for the construc-
tion of semiclassical states we used the method of direct
evaluation of the integral representation of ��v;�� speci-
fied in Sec. VA. Thus,

(i) We first calculate the symmetric eigenfunctions
esk�v� of the j��j operator.

(ii) Next, we construct the Gaussian state peaked at
some k� and with spread 
 (see Eq. (5.5)).

(iii) Finally, we evaluate the integral (5.5) using fast
Fourier transform and calculate the expectation
values.

The exact application of this method requires the normal-
ization of esk�v� with respect to the inner product given by
(4.12). However, our goal here is only to test robustness of
the quantum bounce in presence of a cosmological con-
stant. Therefore, we will not construct semiclassical states
which minimize uncertainties but work just with states
which are reasonably sharply peaked. Then, it is enough
to use for basis eigenfunctions e0sk �v� :� C�k�esk�v� where
C�k� changes slowly with k, remaining approximately
constant within interval �k� � 3
; k� � 3
�. To construct
such functions we first observe that, for large v, esk�v� show
oscillatory behavior and the absolute values of their ex-
tremas decrease as jvj increases and set the ‘‘normaliza-
tion’’ by requiring equality of maximas closest to the large
v� chosen initially.

An example of the result of simulation is presented in
Fig. 8. The state indeed is sharply peaked. As in the case

� � 0, the expectation values of djvj� again reproduce the
picture of two semiclassical regions, one contracting and
the other expanding, connected by a quantum bounce. The
total energy density (defined via (A6)) at the bounce point
equals �crit. Unlike in the � � 0 case however the universe
shrinks from v � 1, bounces and again re-expands to v �
1, all within a compact interval of �.

To summarize, in both cases (�> 0 and �< 0):
(1) Classical singularity is replaced by a quantum

bounce, which occurs when �tot � �� � �� �
�crit. The critical value of energy density was found
numerically to be equal to 0:82�Pl. Thus, the value
of �crit is independent of the value of cosmological
constant. Analysis of the modified Friedmann equa-
tion on the lines of Appendix B yields the same
expression, �crit �

���
3
p
=�16�2�3G2

@�, of the critical
density.

(2) In the dynamics dictated by the Hamiltonian con-
straint used so far in literature, a deviation from the
classical behavior resulting in a recollapse occurs at
low energy density scales, when cosmological con-
stant dominates [6]. The improved dynamics pre-
sented in this work is free of this physically
undesirable feature. More generally, the new dy-
namics reproduces the standard Friedmann dynam-
ics when �� �crit.

APPENDIX B: SOME CONCEPTUAL ISSUES

1. Effective dynamics

An effective description of quantum dynamics can be
obtained by applying geometric methods to quantum me-
chanics, where the Hilbert space is treated as an infinite
dimensional phase space which has a structure of a fiber
bundle (see, e.g., [29,30]). The base space of this bundle is
the classical phase space and fibers are the states with same
expectation values of the operators for the corresponding
canonically conjugate phase space variables. Using coher-
ent states we can attempt to find horizontal sections which
are preserved under the quantum evolution up to some
desired accuracy, and can thus obtain an effective
Hamiltonian which incorporates the leading quantum cor-
rections to the classical dynamics.

Let us consider the � � 0 case as in the main body of
the paper. Then, for LQC, this procedure leads to an
effective Hamiltonian with leading order terms as [31]

 H eff �
Ceff

16�G

� �
3

8�G�2 ��2 jpj
1=2sin2� ��c� �

1

2
B�p�p2

�: (B1)

Here B�p� denotes the eigenvalue of d1=jpj3=2 operator
given by (2.31). Modifications to the dynamics due to
behavior of B�p� become significant for jvj � 1.7 For
jvj 	 1, B�p� quickly approaches the classical value
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FIG. 8. The expectation values (and dispersions) of djvj� for the
model with positive cosmological constant are compared with
classical trajectories. In this simulation, the parameters were:
" � 2, p�� � 1:6� 103, and � � 4:1� 10�2. Horizontal
dashed lines denote asymptotic values of � for which v! 1.

7The value of jvj at which effects of B�p� become important
depends on the value of the quantization ambiguity parameter j
which following theoretical considerations of Refs. [19,20], has
been set equal to half.
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jpj�3=2, proportional to 1=jvj and the rate of approach is
given by

 B�p� �
�

6

8��‘2
Pl

�
3=2 K
jvj

�
1�

5

9

1

jvj2
�O

�
1

jvj4

��
: (B2)

Neglecting the higher order quantum corrections to B�p�
we can obtain the Hamilton’s equation for v and �

 _v � fv;H effg � �
8��G

3

@H eff

@c

�
2jvj1=3

� ��K

�
8��‘2

Pl

6

�
1=2

sin� ��c� cos� ��c�; (B3)

and

 

_� � f�;H effg �

�
8��‘2

Pl

6

�
�3=2

K
p�
jvj

: (B4)

The modified Friedmann equation can be obtained from
the vanishing of the Hamiltonian constraint (B1):

 sin 2� ��c� �
8��2 ��2G

6jpj2
p2
�; (B5)

and using Eq. (B3). It turns out to be
 

H2 �
_v2

9v2 �
8�G

3
�
�
1�

�
�crit

�
; where

�crit �

���
3
p

16�2�3G2
@
;

(B6)

with � � p2
�=2jpj3. Quantum geometry effects thus lead

to �2 modification of the Friedmann equation at the scales
when � becomes comparable to �crit. The Hubble parame-
ter vanishes when energy density becomes equal to the
critical value �crit and the universe bounces from the ex-
panding (contracting) branch to the contracting (expand-
ing) branch. Further, �=�crit term becomes negligible for
�� �crit and Eq. (B6) reduces to the standard Friedmann
equation; there are no departures from classical general
relativity in the low curvature regime. Detailed phenome-
nological investigations of the effective theory obtained
from the improved quantum constraint confirm that un-
natural effects of the old quantization are cured in the
improved quantization [32].

To compare effective dynamics with the exact quantum
evolution in Sec. V B, it is useful to combine (B3) and (B4)
to obtain:

 

dv
d�
�

�������������
12�G
p �

1�
�
�crit

�
1=2
v: (B7)

Trajectories obtained from this equation are plotted in

Fig. 9 and compared with the expectation values of djvj�

and the classical dynamics. As can be seen, the effective
dynamics provides an excellent approximation to the
underlying quantum dynamics.

Remark: The modified field Eqs. (B6) and (B7) can be
interpreted as saying that the effective Newton’s constant is
given byGeff � G�1� �=�crit�, whereG is the low energy
Newton’s constant and �crit 
 0:82�Pl. Now, the renormal-
ization group analysis based on Euclidean quantum gravity
[33] strongly suggests the existence of a nontrivial fixed
point at which the theory becomes asymptotically free. The
behavior of Geff in LQC is in qualitative agreement with
that picture.

2. Subtleties associated with k � 0 cosmologies

To write the space-time metric in the standard FRW
form, gab � �ratrbt� a2�t�qoab, one needs a fiducial,
Riemannian 3-metric qoab of constant curvature k.
Clearly, under a rescaling qoab ! �2qoab, the scale factor
a�t� scales as a�t� ! ��1a�t�. As is well-known, while this
rescaling freedom can be eliminated in the k � 1 cases
by requiring that qoab be the unit 3-sphere or unit 3-
hyperboloid metric, in the k � 0 case there is no natural
way to select a unique qoab whence the scale factor a�t� by
itself does not have a direct physical meaning. This feature
introduces certain subtleties in the Hamiltonian framework
in the k � 0 case. The purpose of this appendix is to
summarize them and correct certain misconceptions that
have permeated in some of the LQG literature.

The Hamiltonian framework has more information than
that contained in the equations of motion. In particular the
symplectic structure can be regarded as the imprint left by
the quantum theory on the classical framework. To define
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FIG. 9. A comparison of the quantum dynamics represented by

the expectation values and dispersions of djvj� (points with error
bars), the effective dynamics (dotted curve) and the classical
dynamics (dashed curve) is presented near the bounce point. The
effective dynamics provides a good approximation to the under-
lying quantum theory. The values of parameters were p� �
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the correct symplectic structure and Hamiltonian in the
noncompact, homogeneous context, one has to introduce a
fiducial cell V and restrict all integrations to it. In the k �
�1 case, one can fix V to have unit volume with respect to
the unit hyperboloid metric. In the k � 0 case, such a
simple prescription is not available. However, once V is
chosen, its presence can be used to make the canonical
variables, the symplectic structure and the Hamiltonian
insensitive to the choice of the fiducial metric qoab [4].
This was the procedure followed in [1] as well as in the
present paper. For each choice of V we obtain a physical
theory. In that theory, one can make well-defined predic-
tions. However, since in the k � 0 case there is no physical
procedure to fix the fiducial cell, we now have a new
‘‘gauge freedom’’ V ! �3V . Under this rescaling the
theory changes. Only those quantities which are insensitive
to this rescaling can be regarded as physical.

Recall that in the quantum theory V̂ � jp̂j3=2 is the
volume operator associated with the fiducial cell V .
Thus, j�i (respectively jvi) is an eigenstate of quantum
geometry in which the volume of V is jpj3=2 �

�8��=6�3=2j�j3=2‘3
Pl (respectively �8��=6�3=2�

�3
���������
3
���
3
pp
=2

���
2
p
�v‘3

Pl). Now, in the quantum theory based
on the cell V , j1=pj3=2 ceases to be a good approximation

to the eigenvalues of the inverse volume operator d1=V for
�<��, for a well-defined real number �� (which makes
no reference to the size fiducial cell V ). Therefore one
sometimes finds statements in the LQC literature to the
effect that the quantum geometry effects become important
when �<��. However, physically this would mean that
the quantum geometry effects become important when the
physical volume of V is less that jp�j3=2. Clearly, since the
fiducial cell cannot be fixed unambiguously in the k � 0
case, unlike in the k � 1 cases, this tempting suggestion
has no invariant meaning. Put differently, from a space-
time perspective, one can begin with a quadruplet
�qab; �; _qab; _�� representing the initial data at late times
for an expanding universe, consider a semiclassical quan-
tum state which is sharply peaked about this configuration
and ask when, in the backward quantum evolution, there
are significant departures from the classical trajectory. The
answer to this physical question cannot depend on the
choice of the fiducial cell used in the construction of
quantum theory. Therefore, in the k � 0 case, the answer
that this happens at p � p� is not viable. Similarly, in the
analysis of the quantum bounce, the value of pcrit (or vcrit)
at which the bounce occurs has only mathematical mean-
ing within the theory based on a specific V . From a space-
time perspective, this is not surprising: it is well-known
that the value of the scale factor at which something
specific happens is tied to the choice of fiducial metric
and therefore has no invariant meaning.

On the other hand, in the classical theory the matter
density � has direct physical meaning also in the k � 0

case from both the space-time and the phase space per-
spectives. In the space-time perspective, it is given by � �
� _��2=2 and makes no reference to the fiducial metric. From
the phase space perspective it is given by � � p2

�=2jpj3

and is insensitive to the choice of V because under the
rescaling V ! �3V , p� ! �3p� and jpj ! �2jpj.
Therefore it is physically meaningful to ask if there is a
critical value of density �crit at which the classical theory
becomes inadequate. Numerical simulations show that the
LQC dynamics used in the literature yields �crit �

kjpcritj � k0=�p��, where k and k0 are constants that do
not depend on V and pcrit refers to the value of p of at the
bounce point. The physical meaning of jpj and p� �
_�jpj3=2 depends on the choice of V . Since � itself is

gauge invariant, i.e., is independent of the choice of the
fiducial metric qoab or the fiducial cell V , there is a con-
ceptual mismatch.8 By contrast, the quantum dynamics
presented in this paper leads to �crit 
 0:82�Pl for any
state which is semiclassical at late times;, in particular,
�crit makes no reference to the fiducial cell V .

To summarize, whether one works with geometrody-
namics or path integrals or LQG, the introduction of a
fiducial cell V is essential in quantization of spatially
noncompact homogeneous models. V can be used to
remove the reference to the fiducial metric qoab from the
theory. However, its presence introduces a new ‘‘gauge’’
freedom and one has to exercise due care in the physical
interpretation of the theory. If we have two theories, the
first based on a fiducial cell V 1 and the second on V 2 �
�3V 1, the state j�i (or jvi) of the first theory is physically
the same as the state j�2�i (respectively j�3vi) of the
second theory. Using this equivalence, one has to ensure
that the final physical results are independent of the choice
of the initial fiducial cell.

We will conclude with the discussion of a subtlety. Fix a
fiducial cell V and consider the resulting quantum theory.
Then, for v < v� the inverse volume corrections become
important and the functional form of ��p�; p� is signifi-
cantly different from the classical relation � � p2

�=2p3.
Therefore, if a trajectory were to enter this region, the
quantum corrected � along it does not increase and may
never reach the critical value �crit. Then the argument for a
quantum bounce would break down. But a detailed ana-
lytical and numerical examination shows that this could
happen only if the assumption p� 	 @ (in c � G � 1
units) is violated. In a state which is peaked at such a small

8Furthermore, even if one works with the theory obtained by
just fixing a fiducial cell from the beginning, for states with
p� 	 @ (in the c � G � 1 units) which are favored by semi-
classical considerations, �crit can be quite low, violating the
expectation that classical general relativity should be valid at
low densities. It is this second point that was emphasized in [1]
and the main body of this paper. The conceptual mismatch is a
related but separate drawback of that quantum dynamics.
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p�, the uncertainty in the Dirac observables becomes
comparable to the values of the observables themselves,
whence the state can not be regarded as semiclassical. Such

a state falls outside both the detailed quantum evolution
studied in the main body of the paper and the realm of
effective equations developed in Appendix B 1.

[1] A. Ashtekar, T. Pawlowski, and P. Singh, Phys. Rev. D 73,
124038 (2006).

[2] A. Ashtekar, T. Pawlowski, and P. Singh, Phys. Rev. Lett.
96, 141301 (2006).

[3] M. Bojowald, Phys. Rev. Lett. 86, 5227 (2001); Classical
Quantum Gravity 19, 2717 (2002).

[4] A. Ashtekar, M. Bojowald, and J. Lewandowski, Adv.
Theor. Math. Phys. 7, 233 (2003).

[5] M. Bojowald, Living Rev. Relativity 8, 11 (2005).
[6] K. Banerjee and G. Date, Classical Quantum Gravity 22,

2017 (2005); K. Noui, A. Perez, and K. Vandersloot, Phys.
Rev. D 71, 044025 (2005).

[7] A. Ashtekar and J. Lewandowski, Classical Quantum
Gravity 21, R53 (2004).

[8] C. Rovelli Quantum Gravity (CUP, Cambridge, 2004).
[9] T. Thiemann, Introduction to Modern Canonical Quantum

General Relativity (CUP, Cambridge, to be published).
[10] A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourão, and

T. Thiemann, J. Math. Phys. (N.Y.) 36, 6456 (1995).
[11] C. Rovelli and L. Smolin Nucl. Phys. B442, 593 (1995);

B456, 753(E) (1996).
[12] A. Ashtekar and J. Lewandowski, Classical Quantum

Gravity 14, A55 (1997).
[13] A. Ashtekar, Proceedings of the Einstein Century

Conference, edited by J-M Alimi et al. (AIP, New York,
to be published).

[14] A. Ashtekar, S. Fairhurst, and J. Willis, Classical Quantum
Gravity 20, 1031 (2003).

[15] T. Thiemann, Phys. Lett. B 380, 257 (1996); Classical
Quantum Gravity 15, 839 (1998); 15, 1281 (1998).

[16] M. Bojowald, personal communication.

[17] N. M. J. Woodhouse, Geometric Quantization (Oxford UP,
Oxford, 1997).

[18] M. Bojowald, Classical Quantum Gravity 19, 5113 (2002).
[19] K. Vandersloot, Phys. Rev. D 71, 103506 (2005); Ph.D.

thesis, The Pennsylvania State University, 2006.
[20] A. Perez, Phys. Rev. D 73, 044007 (2006).
[21] W. Kaminski (personal communication).
[22] A. Ashtekar and R. Geroch, Rep. Prog. Phys. 37, 1211

(1974).
[23] C. Kiefer, Phys. Rev. D 38, 1761 (1988).
[24] A. Ashtekar, in Lectures on Non-Perturbative Canonical

Gravity, edited by R. S. Tate (World Scientific, Singapore,
1991), Chap. 10.

[25] A. Ashtekar and R. S. Tate, J. Math. Phys. (N.Y.) 35, 6434
(1994).

[26] D. Marolf, gr-qc/9508015; Classical Quantum Gravity 12,
1199 (1995); 12, 1441 (1995); 12, 2469 (1995).

[27] J. B. Hartle and D. Marolf, Phys. Rev. D 56, 6247 (1997).
[28] P. Singh, Phys. Rev. D 73, 063508 (2006).
[29] J. Willis, Ph.D. thesis, The Pennsylvania State University,

2004); A. Ashtekar, M. Bojowald, and J. Willis, report,
2004 (to be published).

[30] A. Ashtekar and T. Schilling, On Einstein’s Path, edited by
A. Harvery (Springer-Verlag, New York, 1998); T.
Schilling, Ph.D. thesis, Penn State, 1996 (http://cgpg.
gravity.psu.edu/archives/thesis/index.shtml).

[31] V. Taveras, to be published.
[32] P. Singh, K. Vandersloot, and G. V. Vereshchagin, Phys.

Rev. D 74, 043510 (2006).
[33] M. Reuter and F. Saueressig, J. Cosmol. Astropart. Phys.

09 (2005) 012.

QUANTUM NATURE OF THE BIG BANG: IMPROVED . . . PHYSICAL REVIEW D 74, 084003 (2006)

084003-23


