
Particles as Wilson lines of the gravitational field

L. Freidel*
Perimeter Institute for Theoretical Physics, Waterloo, Canada; Laboratoire de Physique, École Normale Supérieure de Lyon,
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Since the work of Mac-Dowell-Mansouri it is well known that gravity can be written as a gauge theory
for the de Sitter group. In this paper we consider the coupling of this theory to the simplest gauge invariant
observables that is, Wilson lines. The dynamics of these Wilson lines is shown to reproduce exactly the
dynamics of relativistic particles coupled to gravity, the gauge charges carried by Wilson lines being the
mass and spin of the particles. Insertion of Wilson lines breaks in a controlled manner the diffeomorphism
symmetry of the theory and the gauge degree of freedom are transmuted to particles degree of freedom.
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I. INTRODUCTION

‘‘Geometry tells matter how to move; matter tells ge-
ometry how to curve’’—this simple sentence encompasses
the main physical message of general theory of relativity.
Yet, as any great idea, it contains the seed of problems:
there is an explicit dichotomy in this statement—the divi-
sion of the physical world into two entities, matter and
geometry.

There is an old dream, preceding the idea of unification
of all interactions, to unify geometry and matter, usually in
the guise of geometrization of matter (though string theory
seems to take the completely opposite stance, attempting to
‘‘matterize’’ gravity.) If gravitational field is geometry is it
that not reasonable to expect that all other physical objects
could be described in terms of geometry of some sort as
well? In this paper we aim to give an affirmative answer to
this question. To be more precise we show that point
particles, with momentum and spin, can be described as
Wilson lines of an appropriate connection.

The particle can be described by the momentum and spin
it carries. These are charges of Poincaré group, which is
also the gauge group of gravity with vanishing cosmologi-
cal constant. However recent developments indicate that in
order to construct a reasonable theory of (quantum) gravity
one presumably should include an infrared regulator in the
form of cosmological constant. Thus the minimal geomet-
rical model must be based on the gauge group being de
Sitter group, SO�4; 1� in four dimensions. The vanishing
(or small—as it is the case in our universe) cosmological
constant setting can be obtained then by taking an appro-

priate limit of such a theory. Fortunately the charges of this
group can be still interpreted as momentum and spin, so
coupling of gravity understood as a gauge theory of
SO�4; 1� can be naturally coupled to matter. This also
raised the possibility that matter could be understood in
terms of some specific configurations of gravitational field.
In this paper we show how this construction can be realized
explicitly.

In the next section, following [1] we recall how gravity
can be constructed as a constrained topological field the-
ory. In Sec. III, using the formalism of Balachandran et al.
[2] we shortly review the way the point particles can be
coupled to external gauge field. We show that in the case of
the SO�4; 1� gauge group the resulting equations reduce to
the standard Mathisson-Papapetrou form, in the appropri-
ate limits. In the following section we show that also the
gravitational field equations acquire the correct form, with
energy-momentum tensor, and the source of torsion being
pointlike particles with appropriate energy-momentum and
spin. Section Vexplains how particles could be understood
in terms of Wilson lines. We conclude this paper with some
comments, and with an appendix containing some useful
formulas.

II. THE ACTION OF GRAVITY AND
TOPOLOGICAL FIELD THEORY

In this section, following [1] we present for the reader’s
convenience the action for gravity as an action of a per-
turbed topological BF system. This formulation is an ex-
tension of the original work of Mac Dowell and Mansouri
[3] who expressed gravity as a SO�4; 1� gauge theory. We
focus on SO�4; 1� since it concerns Lorentzian gravity with
a positive cosmological constant which is clearly the most
physically interesting case. Everything we say in this paper
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can be readily translated to the case of negative cosmo-
logical constant or Euclidean gravity. Note however that
we definitely need a non zero cosmological constant for
this formalism to make sense.

The gravitational field is encoded in a SO�4; 1� (de
Sitter) connection

 A � �

�
1

2l
ea��a��

1

4
!ab
� �ab

�
(2.1)

where the index a runs from 0 to 3. In this formula, gamma
matrices �a�=4, �ab=4 form a representation of generators
TIJ (I; J � 0; . . . 4, � � �4) of the Lie algebra so�4; 1�. ea�
is the frame field from which the metric is constructed and
!ab
� is the spin connection. When written in terms of the

so�4; 1� generators the connection reads A � AIJTIJ.
Connection has a mass dimension 1 whereas the frame
field is dimensionless; this is the reason why a length scale
l appears in the expression of the components of A repre-
senting the frame field. As we will see in order to recover
the usual gravitational dynamics this length scale has to be
the cosmological length l related to the cosmological con-
stant by

 

1

l2
�

�

3
(2.2)

To formulate the theory we also need a two form valued
in the Lie algebra so�4; 1� denoted by B � BIJ��TIJdx

� ^

dx�. In terms of this two form and connection A the action
takes the form

 �
1

2
S �

Z
Tr
�
B ^ F�A� �

i�
2
B ^ B��

�
2
B ^ B

�

(2.3)

which can be rewritten in components as

 S �
Z �

BIJ ^ F
IJ �

�
4
BIJ ^ BKL�

IJKL4 �
�
2
BIJ ^ BIJ

�

(2.4)

This action can be shown [1] to be equivalent to the action
of General Relativity, for � � 0.

In order to solve the equation of motion for B it is
convenient to introduce the operators
 

P ij
�kl �

�
�
�
2
�ijkl � ��

ij
kl

�
;

P ij
�klP

kl
�mn � ��

2 � �2��ijmn
(2.5)

The field equations for B following from (2.3) read

 Bij �
1

�2 � �2 P
ij
�klF

kl; (2.6)

 B4i �
1

�
F4i: (2.7)

These equations are algebraic, so we can substitute them

back to (2.3) to obtain
 

S �
Z � ��

4��2 � �2�
Fij ^ Fkl�ijkl �

�

2��2 � �2�
Fij ^ Fij

�
1

�
F5i ^ F5i

�
(2.8)

The curvatures of connection A are decomposed as follows

 Fij�A� � Rij�!� �
1

l2
ei ^ ejFi4�A� �

1

l
d!ei: (2.9)

Using (2.9) and introducing the Nieh-Yan class

 C � d!ei ^ d!ei � Rij ^ ei ^ ej

we can rewrite this action in terms of gravity variables

 S � ~SP �
�

4��2 � �2�

Z
Rij�!� ^ Rkl�!��ijkl

�
�

2��2 � �2�

Z
Rij�!� ^ Rij�!� �

1

�

Z
C: (2.10)

The last three terms are the integrals of Euler, Pontryagin,
and Nieh-Yan classes. These are integer valued topological
invariants with trivial local variation. The first term of
action (2.10)
 

~SP �
1

2G

Z
Rij�!� ^ ek ^ el�ijkl

�
�

12G

Z
ei ^ ej ^ ek ^ el�ijkl

�
1

G�

Z
Rij�!� ^ ei ^ ej (2.11)

is the action of General Relativity with nonzero cosmo-
logical constant and a nonzero, dimensionless Immirzi
parameter �. The initial parameters �;�; l are related to
the physical ones as follows

 

1

l2
�

�

3
; � �

G�

3

1

�1� �2�
;

� �
G�

3

�

�1� �2�
:

(2.12)

Even if the term proportional to ��1 in (2.11) is not
topological (its variation is non zero), it does not affect
the classical equation of motion when �2 � �1 unless the
theory is coupled to fermions [4]. We recover the usual
metric gravity in the case � � 0, in this case the torsion is
forced to vanish. The other extreme � � 1 correspond to
Cartan-Weyl formulation of gravity [1]. It is important to
note that in both cases we have � � 0.

We see therefore that for � � 0 the action (2.3) repro-
duces the action of General Relativity accompanied with a
number of topological terms. This action makes it possible
also to consider limits �! 0, in which equations of mo-
tion of General Relativity turn into those of topological
field theory. Let us first consider � � 0, � � 0 limit of

L. FREIDEL, J. KOWALSKI-GLIKMAN, AND A. STARODUBTSEV PHYSICAL REVIEW D 74, 084002 (2006)

084002-2



(2.3) which, as it follows from (2.12), corresponds to the
limit G! 0. In this case we have to do with a pure BF
theory described by the action

 �
1

2
S0 �

Z
TrB ^ F�A�; (2.13)

whose equations of motion simply state that geometry is de
Sitter flat

 F�A� � 0: (2.14)

The topological theory (2.13) is invariant under two gauge
symmetries, the standard

 A � g�1Ag� g�1dg; Bg�1Bg (2.15)

along with

 A � A; B � B� dA� (2.16)

where dA � d� �A; �	 is the covariant exterior derivative
and � being an so�4; 1� valued one form.

Another possible limit is � � 0, � � 0, which involves
large Immirzi parameter

 �
1

2
S0 �

Z
Tr
�
B ^ F�A� �

�
2
B ^ B

�
(2.17)

This theory is also invariant under (2.15), while (2.16) is
replaced with

 A � A� ��; B � B� dA��
�
2
��;�	; (2.18)

which implies that spacetime geometry is arbitrary in the
bulk.

In what follows we will consider mainly the most gen-
eral case �;� � 0, corresponding to the full dynamical
gravity theory (with torsion and Immirzi parameter.) In
some instances we will also discuss particular topological
limits of this theory.

III. PARTICLE ACTION AND EQUATIONS
OF MOTION

In the formulation of the previous section gravity is
formulated as a SO�4; 1� gauge theory, of which only the
SO�3; 1� part is unbroken by the gravitational term pro-
portional to�. As shown in [1,5] in the case of pure gravity,
the formalism can be extended to be SO�4; 1� gauge in-
variant with spontaneous symmetry breaking down to
SO�3; 1� Lorentz gauge invariance. The first goal of this
paper is to show that matter can arise in the most natural
way in this formalism by introducing the simplest possible
term breaking the gauge symmetry of the theory in a
localized way. The gauge degrees of freedom are then
promoted to dynamical degree of freedom, and as we
will show, reproduce the dynamics of a relativistic particle
coupled to gravity. This realizes explicitly in four dimen-
sion the idea that matter (relativistic particles) can arise as

a charged (under SO�4; 1�) topological gravitational de-
fect. This strategy, well known in three dimensions, gives a
new perspective where matter and gravity are geometri-
cally unified [6] and was the key ingredient in the recent
construction of the effective action of matter fields coupled
to quantum three dimensional gravity [7].

An equivalent way to present the inclusion of matter in
our context is to realize that the only natural way to couple
a gauge field to localized excitation is by insertions of
Wilson lines. Remarkably, the dynamics of these Wilson
lines is the one of a relativistic particles. The formalism
that allows to reach this conclusion was first developed by
Balanchandran et al. [2]. In this section we consider spin-
ning particle moving in an external gravitational field, the
full description of the particle(s)—gravity system will be
described in the next section, while we return to Wilson
lines in Sec. V.

The simplest possible localized gauge breaking coupling
to the gravitational field1 A is obtained by choosing a
worldline P and a fixed element K of the so�4; 1� Lie
algebra so as to have

 SP�A� � �
Z

d�Tr�KA�����; (3.1)

where � parameterizes the worldline z���� and A���� 

A��z���� _z�.

This action breaks gauge invariance and diffeomorphism
symmetry2 In order to restore the symmetry at the particle
location one promotes the gauge degree of freedom to the
dynamical ones, which can be interpreted as Lorentz frame
and particle position. This is similar to what happens in
three dimension.

The 4-dimensional de Sitter group acts by conjugation
on its Lie algebra, the orbits of this action being labeled by
two numbers �m; s� which are the mass and spin of the
particle. For each orbit we choose a fixed representative
element of the 4-dimensional de Sitter Lie algebra (for
conventions see the Appendix)

 K 
 ml�0�=2� s�2�3=4 (3.2)

with obvious generalization in the case of massless
particles.

The Lorentz Lie algebra so�3; 1� is identified with the
subalgebra of so�4; 1� generated by �ab. The Lagrangian
of a single particle propagating in a gravitational field is
characterized by an embedding of its worldline z��� and a

1We restrict in this paper to the gravitational coupling which
has a clear physical interpretation. The coupling of string like
sources to the B field in BF theory as been recently considered in
[8], but its physical interpretation in the full theory is far from
clarified.

2This is true for diffeomorphism that modify the worldline
location. The action is still invariant under the residual symmetry
consisting of diffeomorphisms that acts along the worldline, i-e
reparametrization invariance.
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function h��� valued in the Lorentz subgroup h �
exp��ab�ab=4�. This function represents a Lorentz trans-
formation from the rest frame, in which the Poincaré
charges of the particle are described by the algebra element
(3.2) to an actual frame, in which the particle has momen-
tum p and spin s (see Eq. (3.6) below.)

Let us denote by Ah � h�1Ah� h�1dh the correspond-
ing gauge transformation of A. Then the lagrangian takes
the simple form

 L�z;h;A� � �Tr�KAh
����� S �

Z
d�L�z; h;A�:

(3.3)

This lagrangian can be rewritten also in the following form

 L�z; h;A� � �Tr�JA�� � L1�z; h� (3.4)

where in the first term J is given by

 J 
 hKh�1: (3.5)

The components of J can be expressed in terms of the
particle’s momenta and spin

 J �
l
2
pa�

a��
1

4
sab�

ab: (3.6)

The first term in Eq. (3.4) describes the covariant coupling
between the particle and the A connection of the (con-
strained) BF theory, while the second

 L1�z;h� � �Tr�h�1 _hK�; (3.7)

describes the dynamics of the particle.
This action is analogous to the spin part of the action for

particle in three dimensional gravity [6]. The difference is
that the gauge group is now SO�4; 1� which has two
Casimir operators, mass and spin, and the information
about the two Casimir operators is encoded in the extrinsic
source K, (3.2).

To put (3.4) into more conventional form let us rewrite it
explicitly distinguishing the rotation transformations gen-
erated by �ab, a; b � 0; . . . ; 3 and ’translation’ transforma-
tions generated by �a�. By introducing the scalars

 JIJ � �Tr�J�IJ=2�; J � JIJ�IJ=4

recalling that Aa4 �
���������
�=3

p
ea and introducing momentum

pa �
���������
�=3

p
Ja4, and spin sab � Jab we can rewrite (3.4) as

 L�z; h;A� �
1

2
�AIJ� JIJ� � L1�z;h�

� ea�pa �
1

2
!ab
� sab � L1�z; h� (3.8)

Since J in the above equations is an element of the
so�4; 1� algebra, JIJ must satisfy the constraints

 

1

2
JIJJIJ � C2 (3.9)

and

 

1

16
JIJJKL�IJKLM�

MABCDJABJCD � C4; (3.10)

where C2 and C4 are eigenvalues of quadratic and quartic
Casimir operators of so�4; 1� algebra.

To see what is the physical meaning of C2 and C4 let us
rewrite the Eqs. (3.9) and (3.10) using the notations as in
(3.8). Assuming that the cosmological constant � is small
and considering the leading order in � we get

 C2 �
1

2
JabJab � J

4aJ4a �
1

2
sabsab �

3

�
papa �

3

�
papa

(3.11)

and

 C4 �

�
1

4
JabJcd�abcd

�
2
� JabJ4c�abcd�defgJ4eJfg

�

�
1

4
sabscd�abcd

�
2
�

3

�
sabpc�abcd�defgpesfg

�
3

�
sabpc�abcd�

defgpesfg; (3.12)

which is proportional to the length of the Pauli-Lubanski
vector.

From the way the particles are coupled to the connection
in (3.8) it is clear that p� 
 e�

apa in the above equations
is space-time momentum. From (3.11) one can see that the
Casimir C2 gives rise to the mass of the particle

 m2 �
�

3
C2: (3.13)

The last equation for the mass relates two well-known
problems in particle physics. Since the representation the-
ory is labeled by integers, there is a natural unit and the
most natural choice is to take the representation with
minimal C2. Under this assumption, explaining why the
cosmological constant is small would also help to explain
why masses of elementary particles are small, and vice
versa.

In the center of mass frame, pa � �m; 0; 0; 0�, the
Casimir C4 in (3.12) can be rewritten as

 C4 �
3m2

�
sij�ijk�

klmslm � C2s
isi; (3.14)

where i; j; . . . � 1; 2; 3 are SO�3�-indices and si � �ijksjk
is the spin in the rest frame of the particle. Thus we have
the expression for the spin

 s2 �
C4

C2
: (3.15)

Consider now the equations of motion that follow from
the Lagrangian (3.3). The variation over h gives (ignoring
total derivatives)

 �L � �Tr�h�1�h��K;Ah	��; (3.16)
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 � �Tr��hh�1�D�J��; (3.17)

where we introduced the SO�4; 1� covariant derivative
along the worldline of the particle

 D� 

d
d�
� �A�; �	; (3.18)

and J is defined by Eq. (3.5)
Since h is restricted to be in the Lorentz subgroup

SO�3; 1� of SO�4; 1� Eqs. (3.16) constrain only the spin
part of J and give the spin precession equation

 D�Jab � r�sab � e�apb � e�bpa � 0; (3.19)

with r� 

d
d�� �!�; �	 the Lorentz connection and e�a �

e�a _z�. Note that by construction the momenta and spin
satisfy the orthogonality condition

 sabpb � 0: (3.20)

In what follows we will also need the translational part of
the current derivative

 

1

l
D�Ja � r�pa �

1

l2
sabe

b
� (3.21)

The variation over z gives

 

�L
�z�

�
d
d�

Tr�JA�� � Tr�J@�A�� _z�;

� Tr�D�JA�� � Tr�JF���A�� _z� � 0 (3.22)

where
 

F���A� 
 @�A� � @�A� � �A�;A�	

� T��
a�a�=2

�

�
R��ab�!� �

1

l2
�e�ae�b � e�ae�b�

�
�ab=4

(3.23)

Here

 Ta � dea �!a
b ^ e

b � T��adx� ^ dx�=2

is the torsion, while

 Rab � d!� �!;!	=2 � R��abdx� ^ dx�=2

is the Lorentz curvature.
If one uses Eq. (3.19), Eqs. (3.22) written in components

reads

 �r�pa�e�a �
1

2
sabR��ab _z� � paT��a _z�: (3.24)

This is Mathisson-Papapetrou [9] equation describing the
dynamic of spinning particle in the presence of torsion in
an arbitrary gravitational background. When torsion is zero
we recover the usual Mathisson-Papapetrou equation,
when spin is also zero we recover the usual geodesic
equation.

This equation can be written in the more usual form if
one introduces the affine connection ���

	, which is related
to the spin connection !ab

� by the identity @�e�a �
!�b

aeb� � ���
	e	a. It can be written in terms of the

Christofell symbol �̂ as ���	 � �̂��	 � T	f��g �
1
2T��	

where T��	 � T��ae	a is the torsion tensor, and the
Mathisson-Papapetrou equation reads

 r�p� �
1

2
sabR��

ab _z�; (3.25)

where p� 
 pae�a and r�p� 
 @�p� � ���
	p	.

We see therefore that the SO�3; 1� gauge transformation
and the diffeomorphism symmetry is restored at the parti-
cle location while the gauge parameters acquire physical
meaning being the Lorentz frame and particle position.

Above we restricted ourselves to h being valued in the
Lorentz subgroup SO�3; 1� of the full de Sitter group
SO�4; 1�. We know however that if one further restrict
ourselves to the topological case where � � 0, the bulk
action is also invariant under de Sitter gauge transforma-
tions. In this case we can have a de Sitter covariant for-
mulation of particle dynamics similar to that in 2� 1
gravity, where h has to be taken an element of SO�4; 1�.
Let us try therefore to take h 2 SO�4; 1�, and see which
additional equation will result. In doing so we would get
from (3.16) an additional equation

 r�pa �
1

l2
sabe�

b: (3.26)

This equation is equivalent to Eq. (3.22) provided that the
following identity is satisfied along the particle worldline

 

1

l2
sabe�

ae�
b �

1

2
sabR��

ab _z� � paT��a _z�: (3.27)

This identity is satisfied for arbitrary particle if

 Rab�� �
1

l2
e�

ae�
b � 0; T��

a � 0 (3.28)

i.e. if the background spacetime geometry is de Sitter. Such
geometry holds in the limit in which � � 0, Eq. (2.13). In
this case the path integral quantization of the particle can
be easily evaluated, see Sec. V.

If one now consider the full gravity case where � � 0,
the bulk action also breaks the de Sitter invariance down to
SO�3; 1�. As we will see in the next section, if one take into
account the variation coming from the term proportional to
� (see Eq. (4.6) and comments following it) the equation of
motion obtained by making an SO�4; 1� gauge transforma-
tion in the full gravity theory are consistent with the
Mathisson-Papapetrou equation we derived above. Thus,
analogously to what is shown in the context of pure gravity
in [1] we expect a formulation of gravity coupled to
particles where the the full de Sitter invariance is manifest,
but spontaneously broken down to SO�3; 1� by classical
solutions.
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IV. EQUATIONS OF MOTION FOR GRAVITY—
PARTICLE SYSTEM

Let us now consider the gravitational equation of motion
when the gravitational field is coupled to a particle carrying
Poincaré charge J (3.6). The action of this system will be
given by the sum of actions (2.3) and (3.4). The equations
of motion resulting from this action are as follows.

B equations

 Bab �
1

�2 � �2

�
�
�
2
�abcdFcd � �Fab

�
(4.1)

 Ba4 
 Ba �
1

�
Fa4 �

1

�l
d!e

a (4.2)

A equations

 �dAB�IJ �
1

2
JIJP �x� (4.3)

where we have introduced the threeform

 JIJP �x� �
Z
���	
JIJ��� _z
�4�x� z����dx� ^ dx� ^ dx	

(4.4)

with ���	
 the Levi-Civita tensor �0123 � 1. This form is
such that

 

Z
JIJP �x� ^ a�x� �

Z
P
d�JIJ��� _z����a� (4.5)

for any one form a.

Finally we have
h equations, obtained by varying the action with respect

to an SO�4; 1� transformation (2.15).

 ��abcdBab ^ Bc �
�Z

d��D�J�d�4�x� z����
�
d4x (4.6)

Let us pause for a moment to recall that in the case of a
particle in external, fixed gravitational field the h equation
of motion (3.26), for h 2 SO�4; 1� has led to constraints
imposed on components of gravitational field strengths. As
we will see in a moment this problem is absent if the
gravitational field is dynamical, in the case � � 0.
Indeed, consider Eq. (4.3). Applying the covariant deriva-
tive to both sides we get

 �dAdAB�IJ �
1

2
�dAJP�IJ�x�

� �
1

2

�Z
D�J����4�x� z����d�

�
IJ

(4.7)

Therefore the component a4 of (4.7) is just�1=2 times the
RHS of Eq. (4.6). Now

 �dAdAB�IJ � FIK ^ B
KJ � FJK ^ B

IK

To compare this with Eq. (4.6) we just need the transla-
tional component of this:

 Fdc ^ B
c4 � F4

c ^ B
dc �

�
Bcd �

1

�
Fcd

�
^

1

l
d!ec �� �

�
�

1

�2 � �2

�
�Fcd �

�
2
�cdabFab

�
^

1

l
d!ec

� �
�
2
�abcd�Bab ^ Bc�: (4.8)

This is just �1=2 times the LHS of Eq. (4.6). Thus we
conclude that the h Eq. (4.6) is just a part of integrability
conditions of (4.3). Thus in what follows we can disregard
Eq. (4.6) whatsoever.

We see therefore that in the case, in which gravity is
fully dynamical, it is consistent to take the gauge degrees
of freedom that become dynamical at the particle world-
line, described by h 2 SO�4; 1�. Diffeomorphisms and
those h that belong to SO�3; 1� leave the bulk action
invariant, and therefore they are dynamical degrees of
freedom only along the worldline location. The analysis
of their dynamics is not modified by the coupling to gravity
and the results of the previous section therefore apply in the
case where gravity is dynamical. Moreover, these dynami-
cal degree of freedom ensures that the all formalism is
invariant under the usual gauge group of gravity.

Those h that belong to SO�4; 1�=SO�3; 1� do not leave
the bulk action invariant, and therefore they are dynamical

degrees of freedom even in the absence of the particle.
Since their equation of motion is a subset of Einstein
equation, this suggests that they are determined on-shell
by the gravitational and particle degree of freedom.
However, this determination which can be performed in
the pure gravitational case [1] is more involved and not yet
known when matter is present.

Let us now consider the equation for gravitational field
produced by a point particle in full generality. Our starting
point will be Eq. (4.1), (4.2), and (4.3), Consider first
Eq. (4.3) in ‘‘rotational‘‘ direction and expand its RHS.

 �dAB�ab � d!Bab � Aa4 ^ B4
b � Ab4 ^ Ba4

� d!Bab �
1

�l2
�Ta ^ eb � ea ^ Tb�: (4.9)

Now, from definition of F (2.9)
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 d!Fab � d!Rab �
1

l2
�Ta ^ eb � Tb ^ ea�

� �
1

l2
�Ta ^ eb � Tb ^ ea� (4.10)

Thus

 �dAB�ab � d!

�
Bab �

1

�
Fab

�

� �
�
�

1

�2 � �2 d!

�
�Fab �

�
2
�abcdFcd

�

�
1

2
JabP

and Eq. (4.3) can be written as

 Ta ^ eb � Tb ^ ea �
�l2

2�

�
��abcd �

�
2
�abcd

�
JcdP (4.11)

This is an algebraic equation which fully determine the
torsion in term of the spin of the particle. When written in
terms of the gravitational parameter it reads

 Ta ^ eb � Tb ^ ea �
G�

2�1� �2�

�
��

�
2
�
�
ab

cd
scdP

(4.12)

and we see that the Immirzi parameter affects the coupling
between torsion and spin; in the case of usual metric
gravity � � 0 the torsion is zero.

If we now consider the translation part of (4.3) we get

 �dAB�a4 � d!B
a4 � A4

b ^ B
ab

�
1

l

�
1

�
d!T

a � Bab ^ eb

�

�
1

l

�
1

�
Fab � Bab

�
^ eb (4.13)

Thus the field equation gives us the Einstein equation

 

�

��2 � �2�

�
�
�
Rab ^ eb �Ga

�
�
l
2
JaP (4.14)

where

 Ga 

1

2
�abcdFcd ^ eb

�
1

2
�abcd

�
Rcd ^ eb �

�

3
eb ^ ec ^ ed

�

is the Einstein tensor with cosmological constant. The first
term on the RHS is the derivative of the torsion d2

!e
a �

d!T
a � Rab ^ eb. Equation (4.14) written in terms of the

gravity coupling constant (2.12) reads

 

1

�
Rab ^ eb �G

a �
G
2
paP: (4.15)

Eqs. (4.12) and (4.15) characterize the gravitational field

produced by point particle with momentum pa and spin
sab, and have the standard form.

V. QUANTUM PARTICLES AND WILSON LINES

Let us now describe the effect of quantizing particle
degrees of freedom. We first restrict our analysis to case
of the pure BF theory (� � � � 0) to show that in the
quantum regime inclusion of the particle is realized exactly
by insertion of Wilson lines. Indeed in this case the bulk
action is invariant under SO�4; 1� gauge transformation,
while the insertion of the particle breaks this symmetry at
the location of the particle. The SO�4; 1� gauge group
element h��� at the location of the particle becomes a
dynamical object and its integration in the path integral
gives

 W�A� �
Z

D�h�ei
R
P
�Tr�KAh

����� (5.1)

with Ah � h�1Ah� h�1dh. We can interpret this path
integral as the quantum amplitude associated with the
system described by the particle action

 S�h� �
Z

d�Tr�h�1 _hK� � Tr�AJ�; (5.2)

where J � hKh�1.
The phase space variables of this system are �h; J�

satisfying the commutation relations (see [6])

 fh; JIJg � �IJh; fJIJ; JKLg � �JKJIL � � � � (5.3)

and subject to the constraints

 C 
 K� hJh�1 � 0: (5.4)

Among these constraints, 2 are first class �C04; C23� and the
others are second class. The algebra of gauge invariant
observables commuting with the constraints is generated
by JIJ and their Dirac bracket is equal to the original
bracket. They form an SO�4; 1� algebra subject to the first
class constraints (3.9) and (3.10) which label a representa-
tion of mass m and spin s. Because of the Feynman-Kac
correspondence the path integral (5.1) computes, for a
closed loop, the trace in the so�4; 1� representation �m; s�
of the Wilson line operator

 W�A� � Tr�m;s�

�
P exp

Z
P
AIJJIJ

�
: (5.5)

This correspondence between path integral and Wilson
lines has been studied in the compact group case by
Alekseev et al [10].

Let us remark that this gives an interesting perspective
on Feynman amplitudes: Such amplitudes are related to
path integrals (5.1) along the Feynman graph. The
Feynman graph amplitude can thus be interpreted as a
spin network evaluation (which generalizes Wilson loops)
of a SO�4; 1� spin network whose edges are labeled by
pairs �m; s�.
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Now if we turn on gravity � � 0 the quantization story
is more involved. In this case the bulk action is invariant
only under SO�3; 1� gauge transformations and the
‘‘Wilson line‘‘ is now deformed by the coupling to the
gravitational field, it depends on the value of the B fields
and becomes

 W�A� �
Z

D�h�ei
R
P
�Tr�KAh

�������
R
M

Tr���h�B^B� (5.6)

where ��h� � h�h�1.

VI. CONCLUSIONS

In this paper we investigated the coupling of point
particle to gravity regarded as a constrained topological
field theory. Our results presented here could be treated as a
starting point for various directions of investigations.

First, since the � parameter is small, we can consider a
perturbation theory of gravity coupled to particle(s) being
the perturbation theory in �. The distinguished feature of
this theory would be that it is, contrary to earlier ap-
proaches, manifestly diffeomorphism-invariant, so its
framework it is possible to talk about weak gravitational
field in the conceptual framework of full general relativity.
These investigations, both in the case of � � 0 and � � 0
will be presented in the forthcoming paper.

The fuller control over the small � sector will presum-
ably make it possible to address the outstanding question of
what is the flat space limit of the theory of quantum gravity,
coupled to point particles. It has been claimed that such a
theory will be not the special relativity, but some form of
doubly special relativity (see e.g. [11].). This has been
shown in the case of three dimensional gravity [7].
Indeed the key ingredient that allowed to construction the
effective dynamic of matter coupled to 3d quantum gravity
was the understanding that particles can be described as
charged topological defect. This allowed to quantize in one
stroke gravity and matter and simplify drastically the prob-
lem of understanding the modification of matter dynamics
due to quantum gravity effects. We hope that the results
presented here will similarly simplify the study of quantum
gravity to matter fields, especially in the limit where � is
small, and according to the perturbation proposed in [1].

Last but not least there is a curious appearance of
gravitational analogues of magnetic monopole in the topo-
logical sector of our theory, with � � 0, � � 0. Consider
Eq. (4.3)

 �dAB�IJ �
1

2
JIJP �x� (6.1)

where JIJP �x� is defined by (4.4). Since for � � 0, BIJ �
1=�FIJ, it seems for the first sight that Eq. (6.1) is simply
inconsistent because after substituting F for B the left hand
side is identically zero by Bianchi identity. However hav-
ing pointlike, distributional sources we can allow for dis-

tributional connections, for which Bianchi identity does
not hold, as in the case of Dirac monopole.

By construction (cf. Equation (3.5)) there is always a
gauge transformation which makes it possible to fix the
gauge such that

 

1

�
�dAF�IJ �

1

2
KIJ�P (6.2)

where K is given by Eq. (3.2). It is now clear that a solution
of (6.1) has the form

 A �
�
2
KAD (6.3)

where AD is the abelian Dirac monopole connection (see
for example [12]). For example in the patch which does not
cover the negative z axis

 AD �
xdy� ydx
r�r� z�

in cartesian coordinates.
To construct a general solution let us assume that

 A � A0 �
�
2
KAD 
 A0 �

�
2
AD (6.4)

where A0 is an arbitrary nonsingular connection (i.e., the
one that satisfies Bianchi identity dA0

F�A0� � 0.) Plugging
this anzatz into Eq. (6.2) we find that this equation is
satisfied identically.

What is even more interesting, the monopole configura-
tions arising in the topological limit of gravity give rise to
correct particle action. To see this, consider the action (2.4)
in the � � 0 case

 S �
Z �

BIJ ^ FIJ �
�
2
BIJ ^ BIJ

�
(6.5)

Solving for B, and plugging the solution back to the action,
we find

 S �
1

2�

Z
�FIJ ^ FIJ� (6.6)

Using (6.1), integrating the delta, and going to arbitrary
gauge we get

 S �
1

4

Z
Tr�Ah���K� � CS�A� (6.7)

where CS�A� is the boundary Chern-Simon action on S2 �
R (spacelike infinity times time.) We see therefore that the
particle action arises from singularities of topological rem-
nant of gravitational field, of the form of generalized
monopoles. It is not clear however, if this type of construc-
tion can be extended to the full theory, with � � 0.

L. FREIDEL, J. KOWALSKI-GLIKMAN, AND A. STARODUBTSEV PHYSICAL REVIEW D 74, 084002 (2006)

084002-8



ACKNOWLEDGMENTS

For J. K-G. this work is partially supported by the grants
No. KBN 1 P03B 01828 and University of Wroclaw 2594/
W/IFT.

APPENDIX

In this appendix, we recall our conventions and present
some useful formulas.

For gamma-matrices, we use

 f�a; �bg � 2�ab (A1)

where �ab is the Minkowski metric of signature
��;�;�;��. For commutator of two gamma matrices,
we use the notation

 �ab �
1

2
��a; �b	 (A2)

We denote ‘‘gamma-five’’ matrix by �:

 � � �i�0�1�2�3; f�; �ag � f�; �abg � 0; (A3)

which satisfies �2 � 1. The matrices

 �a1...an �
1

n!
��a1 � � ��an � permutations�

satisfy the identities

 �a�b � �ab � �ab (A4)

 �ab�c � �abc � �bc�a � �ac�b (A5)

 �abc�d � �abcd�� �dc�ab � �bd�ac � �ad�cb (A6)

 �ab� �
i
2
�abcd�c�d; �abc � i�abcd�d� (A7)

 f�a�; �g � 0; f�ab; �g � i�abcd�
cd (A8)

 f�b�; �ag � i�abcd�cd; f�bc; �ag � 2i�abcd�d� (A9)

 �a�a � 4; �a1...anb�b � �4� n��a1...an

�b�a1...an�b � ��1�n�4� 2n��a1...an
(A10)

The Lie algebra so�4; 1� is generated by Tab � �ab=4
and Ta � �a�=4 which satisfy

 2�Tab; Tcd	 � �bcTad � �acTbd � �bdTac � �adTbc;

(A11)

 2�Tab; Tc	 � �bcTa � �acTb; (A12)

 2�Ta; Tb	 � �Tab: (A13)

Moreover
 

Tr�TabTcd� �
1

4
��bc�ad � �ac�bd�;

Tr�TaTb� � �
1

4
�ab:

(A14)

The normalization of the generators is such that if A �
AIJTIJ, B � BIJTIJ then

 �A;B	 � �AIKBJK � B
IKAJK�TIJ � �A;B	

IJTIJ: (A15)
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