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Thermodynamics of an accelerated expanding universe
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We investigate the laws of thermodynamics in an accelerating universe driven by dark energy with a
time-dependent equation of state. In the case we consider that the physically relevant part of the Universe
is that enveloped by the dynamical apparent horizon, we have shown that both the first law and second law
of thermodynamics are satisfied. On the other hand, if the boundary of the Universe is considered to be the
cosmological event horizon the thermodynamical description based on the definitions of boundary entropy
and temperature breaks down. No parameter redefinition can rescue the thermodynamics laws from such a
fate, rendering the cosmological event horizon unphysical from the point of view of the laws of

thermodynamics.
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I. INTRODUCTION

Numerous and complementary cosmological observa-
tions tell us that our universe is experiencing today an
accelerated expansion [1]. From the Wilkinson
Microwave Anisotropic Probe (WMAP) results, such an
acceleration is driven by a so-called dark energy (DE) [2].
Such a new element of the universe, capable of accelerat-
ing, must, in accordance with the Friedmann equation
(unless we adopt wide modifications of Einstein gravity),
have a pressure less than minus one third of the energy
density. In view of the large reinterpretation of concepts
implied by this energy it has been even baptized under the
suggesting name of quintessence.

The DE has been sought within a wide range of physical
phenomena, including a cosmological constant whose
equation of state is P/p = wp = —1, the above men-
tioned quintessence with —1 < wp < —1/3, or an exotic
field with wp < —1 [3], which can lead to even more
strange and undesirable effects such as a big rip, a future
unavoidable singularity of space-time. An equation of state
which gradually changes with the cosmological time is
also a realistic possibility to explain the acceleration [4—
6]. Except for the so far well-known fact that DE has a
negative pressure, the nature of this energy component still
remains a complete mystery.

In this new conceptual set up, one of the important
questions concerns the thermodynamical behavior of an
accelerated expanding universe driven by a DE. Some
recent discussions on this topic can be found in [7-10].
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With the cosmological constant, the universe is an ether-
nally accelerating de Sitter (dS) space.

On the other hand, defining a quantum theory for general
relativity turns out to be a problem closely related to the
connection between general relativity itself and thermody-
namics. The first such hint has been obtained long ago by
Bekenstein [11] who outlined the laws of thermodynamics
in the presence of black holes which turned out to be
equivalent to the laws of black holes mechanics [12].
Einstein equation can even be derived from the proportion-
ality of entropy and horizon area (among some further
technical details) [13]. In recent years, black holes entropy
was used as a means to a new reformulation of gravity in
terms of the holographic principle [14]. Relations between
the entropy in the so-called gravity bulk and a boundary
conformal field theory have been derived as a consequence
of such a relation [15], promoting such ideas as the most
influencial in recent years’ quantum field theory.

The thermodynamics corresponding to an accelerated de
Sitter Universe was studied some years ago [16]. There is a
cosmological event horizon, analogous to a black hole
horizon, which can be associated with thermodynamical
variables. Supposing that some energy passes through the
cosmological event horizon, the definitions of black hole
temperature and entropy imply that the first law of ther-
modynamics is valid. Following earlier work, quantum
gravity in de Sitter space has been related to a conformal
field theory on the spacelike boundary of de Sitter space
[17,18]. It has been argued that the bulk/boundary relation
might be a consequence of general aspects of quantum field
theory [19].

For the accelerating universe driven by quintessence
with constant pressure to energy densities wp, in the range
—1 <wp < —1/3, which is called Q space in [7], Bousso
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argued that a thermodynamical description is approxi-
mately valid and he has shown that the first law of ther-
modynamics holds at the apparent horizon of the Q space.
The first law has also been derived on the apparent horizon
of FRW universe with spatial curvatures [20]. There is a
subtlety between the definitions of the apparent horizon
and of the event horizon of the universe. In the dS universe
they degenerate, while they are separated entities in quasi-
de Sitter universes. The question one may raise is whether
the first law holds for both, the cosmological event horizon
and the apparent horizon, with the definitions of tempera-
ture and entropy that we find in the de Sitter horizon.
Further, when the DE equation of state is time-dependent,
especially with the transition from wp > —1 to wp < —1
as indicated by recent observation [4], it would be interest-
ing to investigate the first law of thermodynamics, or the
entropy and temperature definitions at cosmological
horizons.

The study of the first law of thermodynamics in the
accelerated expanding universe serves as the first motiva-
tion of the present paper. Besides we are also going to study
the expression of the entropy enveloped by cosmological
horizons and examine the second law of thermodynamics
derived from such a definition for an accelerating universe.
Our attention will be focused on the accelerating universe
driven by DE with the transition equation of state described
in the recent model [5].

II. THE FIRST LAW OF THERMODYNAMICS

In this section we investigate the basic thermodynamic
properties of accelerating universes. such as entropy, en-
ergy and temperature. We examine the first law of thermo-
dynamics on the apparent horizon as well as on the
cosmological event horizon. We begin by studying the
thermodynamics of the Q space with constant equation of
state for DE, that is, —1 < w, < —1/3.

A. Q space with constant equation of state for the DE

The dynamical evolution of the scale factor and the
matter density is determined by the Einstein equations,
which can be written in the form

(a/a)* = 8mp/3,

where the DE energy density p and the pressure P obey
P =wpp.

Defining € = 3(wp + 1)/2, for a constant equation of
state we have a(f) = /¢ and p(r) = 3/(87e*r?), where
0<e<1 (—1<wp<—1/3). This set describes the
accelerating Q space [7], For € > 1 we get the decelerating
universe while e = 0 corresponds to the de Sitter space.

In the de Sitter space, the event horizon and the apparent
horizon are degenerated. In that case we understand why
Hawking’s arguments work correctly, that is, it corre-
sponds to our case with € = 0. There is only one horizon

d/a = —4m(p +3P)/3, (1)
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as a causality barrier separating the internal system from an
outside world. As in the black hole case, there are well-
defined concepts corresponding to thermodynamical quan-
tities exhibited by the de Sitter horizon. Analysis of quan-
tum field theory in a de Sitter background [16] shows that a
freely falling detector will measure a temperature propor-
tional to the surface gravity Ty = k/27 = 1/(2@Rg). In
addition, as originally suggested for black holes, the total
entropy is represented by the horizon area Sy = wR% in
order to avoid a decrease of the observable entropy. In the
accelerating universe, except for the phantom case which
we do not discuss in view of its intrinsic problems, the
event horizon is beyond the apparent horizon, being thus
unobservable.

As discussed in [21] the apparent horizon gravitational
entropy can be used as a bound for the particle entropy thus
providing a physical ground for such an entropy. Once one
associates entropy with the apparent horizon area, it can be
seen as a thermodynamical function and the energy added
into the apparent horizon in an adiabatic process defines
the temperature of the horizon.

In the Q space, the event horizon is Ry = a [f" dt/a =
—et/(e — 1), and the apparent horizonreads R4 = 1/H =
et. In contrast to the dS space, now the event horizon and
the apparent horizon are in general different surfaces.
These horizons relate to each other by R4/Ry =1 — €.
They do not differ much, especially when € is very small
(wp close to —1). Neither the event horizon nor the appar-
ent horizon changes significantly over one hubble time,
tyR./R, = € < 1(x = A, E), especially in the regime we
study for small €. Hence, a thermodynamical description of
the horizon will be approximately valid in the Q space.
And the apparent horizon has thermodynamical properties
akin to those of the event horizon, T4, = 1/(2#R,) and
Sy = 77'Rf\. This is well-known during inflation [16]
and usually assumed in the derivation of the first law of
thermodynamics on the apparent horizon and in the study
of its relation describing the dynamics of the universe
[13,20,22].

Now let us examine the first law of thermodynamics on
these two horizons. For the apparent horizon the first law
was obtained in [7]. The amount of energy crossing the
apparent horizon during the time interval dt is

— dE = 47R3T ,k*kPdt = 4wRip(1 + w)dt = edt.
2
The apparent horizon entropy increases by the amount

Comparing (2) with (3) and using the definition of the
temperature, the first law on the apparent horizon, —dE =
T,dS,, was confirmed.

We now work with the cosmological event horizon. The
total energy flow through the event horizon can be simi-
larly got as
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—dE = 47R%p(1 + w)dt = edt/(1 — €)®..  (4)
The entropy of the event horizon increases by

. 27R
dSy = 2mRyRpdt = — 4 edt, (5)
(I—e)
and using the Hawking temperature for the event horizon
we obtain

TEdSE = Edt/(l - E). (6)

We do not obtain the first law with the above definitions
since the energy income is larger by a factor 1/(1 — e).

One may argue that the temperature of the bath should
be the same using the event and apparent horizon, which
should be the local effect on the observer. If we choose T4,
the temperature on the apparent horizon, which is larger
exactly by a factor 1/(1 — €), the difference 1 — € disap-
pears and the first law —dE = TdS looks correct in this
form.

But the problem is not solved. If we extend the discus-
sion to the time-dependent equation of state DE, even if we
use the local temperature on the apparent horizon, we shall
see that the first law of thermodynamics still cannot be
rescued on the event horizon, with the usual definitions of
the temperature and entropy.

B. Accelerating universes driven by DE with
time-dependent equation of state

We shall use the holographic DE model [23]. The gen-
eralization of this model by considering interaction be-
tween DE and dark matter (DM) has recently been
discussed in [5]. For simplicity, we neglect the interaction
between DE and DM for the moment, but the result below
also holds if we include the interaction.

The event horizon in this case is given by the expression
Rg=a [Yda/(Ha*) = c¢/(JOpH). The last equality
was gotten by considering the holographic DE pp, =
Q;3H? = 3¢*R;? [23]. The apparent horizon is R, =
1/H. The relation between apparent and event horizon is
R4/Rg = /Qp/c and the apparent horizon is in general
smaller than the event horizon. If ¢ = 1 and ), = 1 both
horizons are the same, Ry = R,.

Neglecting the interation between the DE and DM, the
evolution of the DE was obtained as [23]

Q’=QZ(1—Q)[1+ 2 } )
D D D \

Qp /O,

and the equation of state of the DE has the form

wp = —1/3 = 2{Qp/3c). ©)

With the evolution of the DE, wp changes with cosmo-
logical time.

We now examine how much the horizon will change
over one Hubble time. For the apparent horizon
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dH™Y) _ HdH—l

ty— = aH ,
1 “ dx

R, da ©)

where x = Ina. From the Friedmann equation, we have
1-Qp=Q, =p,/BH?) = Q,oH;H a3, therefore
H™ ' = a2 /1= Qp/(Hy/Q,y0). Equation (9) can be re-
written as
Ry ,
[HF =3/2-Q5/Q(1 = Qp)). (10)
A
Considering the evolution of the DE, Eq. (7), we have
Ry _ _ 32
th——=3/2—-Qp/2 = Qp"/c. (11)
Ry
We now calculate the change of the event horizon, which
can be obtained from
L Rp 3 Q) _
1 RE 2 2QD(1 - QD)

1—\/?_1). (12)

We learn neither the apparent horizon nor the event
horizon change significantly over one hubble scale. This
can be seen from Fig. 1. Actually, the event horizon
changes less than the Hubble horizon. The equilibrium
thermodynamics still can be applied here. As originally
suggested for black holes, the temperature and entropy on
the horizon are similarly described.

Now we start to investigate the first law of thermody-
namics on different horizons. For the apparent horizon, the
total amount of energy crossing the apparent horizon dur-
ing dt is

— dE = 47R%p(1 + w)dt = 3(1 + w)/2dt. (13)

— t,dIn(R,)/dt
— t,,d In(RQ)dt

0.8
06
04r

0.2f

FIG. 1 (color online).

The rate changes of the apparent horizon
and the event horizon over one Hubble scale with ), = 0.7 and
c=1.
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Employing w = Pp/pp =wppp/(BH?) = wpQp =
(—=1/3 = 2,/Qp/(Bc))Qp, we get

—dE=(3/2 - Qp/2 - Q¥*/c)dt. (14)

On the other hand, using the definitions of temperature
on the horizon and the holographic entropy we get

-1

. dH
TAdSA = RAdt =H dt

=[3/2 - Qp/2 — Q¥*/cla. (15)

Thus on the apparent horizon, the first law, —dE = T,dS,,
is confirmed, with the above definitions.

We now extend the discussion to the event horizon. The
energy flow through the event horizon reads

2
3¢ (1 + w) it
20,
23/2-Qp/2— Q3%/c)
= dr.
Qp

— dE = 47R%p(1 + w)dt =

(16)

To examine the first law, let us compute TpdSg = Rpdt.

Using
b8 )
Edr O, H dx\./QpH

_ 3¢ cQ
2/, 20321 - Qp)

and (7), we have Ry = ¢//Qp — 1.

We thus see that the first law cannot be satisfied in this
form. It cannot be rescued even by using the same tem-
perature of the bath on the apparent horizon, T =
1/(27R,), as we could have done in the Q space, since

a7

2

Rpdt = [ ¢ ¢ }dt.

Q) Ja,

R .
TAdSEZ—EREdtZ ¢

Ry VQp

(18)

Therefore, the first law of thermodynamics cannot hold at
the event horizon with the usual definition of entropy and
temperature.

Although the dynamical difference between the appar-
ent horizon and the event horizon is not large, the differ-
ence of their thermodynamical properties really is. In the
de Sitter universe, this problem was hidden, since in that
case the event horizon and the apparent horizon were
degenerate. This problem becomes especially sharp with
a dynamical equation of state. One reason could be that the
first law may only apply to variations between nearby
states of local thermodynamic equilibrium, while the event
horizon reflects the global properties of spacetimes. At the
event horizon, maybe the temperature and the entropy are
ill-defined. In the nonstatic space-time, the horizon ther-
modynamics are not simple, the notion of the surface
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gravity maybe ill-defined as argued in the study of the
quasi-de Sitter geometry in the inflationary universe [22]
and the definition of temperature and entropy by means of
the relations found by Bekenstein and Hawking are possi-
bly wrong.

III. ENTROPY AND THE SECOND LAW OF
THERMODYNAMICS

We will study the entropy enveloped by cosmological
horizons. To exhibit the entropy of the accelerating uni-
verse with DE equation of state wp < —1 together with
wp > —1 cases, we use our interacting holographic DE
model [5].

The entropy of the universe inside the horizon can be
related to its energy and pressure in the horizon by Gibb’s
equation [10]

TdS = dE + PdV. (19)

For the apparent horizon, considering V = 47R3/3, E =
4mpR3 /3 = R4/2, P = wp = wpQ;,3H?/(87), we have

Using T = 1/(2aR,), which is the only temperature scale
we have at our disposal, we get

Thus we see that the entropy enveloped by the apparent
horizon is S ~ R3.
Now we need to solve the equation to see the evolution

of the entropy. Since RydR, = Ry“adx = — 5 4 dx,
we have
ds _~dH
dH
= —7(1—3b% — Qp — 2032 /) H 3=
dx
dH
= —2mgH 3 — (22)
dx

where we have used the evolution of the DE in our inter-
acting holographic DE model [5]

2032 2/Q
“D = —3p2 - Q-2+ VP (23
Qp c c

and the equation of state of the DE

_ Q) B b>
" TT30,0 - 0p) Qp(l - Qp)
__l_%VQD_b_Z (24)

3 3 C QD.

Above, b? is the coupling between DE and DM. The
evolution of the Hubble parameter in our model was de-
scribed as
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dInH
dx

—3/2+3b%/2+ Qp/2 + Q% /c

—(3 =32 - Qp —203/c)/2. (25)

In (22) q is the deceleration parameter, given by
g=—H/H*—1
= 3[-1=wp =1 -=0Qp)/Qp]Qp/2 -1

=(1-3p2-Q, —20¥%/c)/2. (26)

To accommodate the transition of the DE equation of
state from wp > —1 to wp < —1 at recent stage as
indicated by observations [4], we constrained our model

parameters ¢ from holography in the range /Q, <c¢ <
1.255 and b? of the coupling between DE and DM within
the range 1.4(1 —/0.7/¢)/3 < b* < 8c%/81 [5]. Within
these parameter space, we have (), >0 and H' <0. At
early stage, ), is small and the universe was in the
deceleration era with g >0, so we obtain dS/dx > 0.
However at late time, DE starts to dominate, the universe
evolved in an accelerated expansion with ¢ <0, thus we
get dS/dx < 0. Therefore the entropy of the universe
enveloped by the apparent horizon increased first and
then started to decrease. The entropy will decrease to a
negative value at a late era of the universe when it is
dominated by phantom fields, which is consistent with
those observed in [9,10]. The behavior of this entropy is
shown in the dotted line in Fig. 2.

In addition to the entropy in the universe, there is a
horizon entropy of the apparent horizon S, = 7H 2.
The evolution of this horizon entropy is shown in the
dashed line in Fig. 2. At the early stage we see that S >
S, which is in violation of the holographic principle. This

FIG. 2. The evolution of entropies and wp with the parameters
b?> =0.08 and ¢ = 1 and the initial conditions Q, = 0.7 and
H2 SO =1 0730.
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tells us that although our interacting holographic DE model
[5] is successful to describe the late time accelerating
universe with the transition equation of state of DE, this
model is not appropriate to describe the early deceleration
of the universe.

In order to check the generalized second law (GSL) of
gravitational thermodynamics, we have also plotted the
evolution of § + §,, the solid line in Fig. 2. It is easy to
see that entropy of matter and fluids inside the apparent
horizon plus the entropy of the apparent horizon do not
decrease with time. Thus the GSL is respected in the
universe enveloped by the apparent horizon.

It is of interest to examine the GSL in the universe
enveloped by the cosmological event horizon. The evolu-
tion of the entropy inside the event horizon can be gotten
similarly as that of the apparent horizon

ds . _,dH
E = _7TC4(l + 3WDQD)H 3\()/Dza
3T dQ)

- 7c4(1 + wDQD)HﬂQ;d—f, (27)

while the evolution of the geometric entropy on the event
horizon reads

ds I— 20249
G T TImEHT G meHRO TR (28
We thus find
d(S + Sg) _ TAHQ[AB — CD],  (29)
dx 2
where A =2q+2Qp/c?, B=2+2q C=2q+

2\/Qp/c, D=2+ 2q +2Qp/c* Since in our model it
is required that \/Qp <c, we have A< C and B<D.
Thus, for the universe enveloped by the cosmological event
horizon we have d(S + Sg)/dx <0 and the GSL breaks
down, with the usual definitions of entropy for the
boundary.

IV. CONCLUSIONS AND DISCUSSIONS

The apparent horizon of the universe always exists and
the thermodynamical properties related to the apparent
horizon has been studied by several authors, including in
a quasi-de Sitter geometry of inflationary universe [22] and
a late time accelerating Q space [7]. In this paper we have
extended the investigation to an accelerated expanding
universe driven by DE of time-dependent equation of state.
We have confirmed that the first law of thermodynamics
still holds for this dynamic apparent horizon. Besides we
have also examined the GSL of gravitational thermody-
namics of the accelerating universe driven by the interact-
ing holographic DE [5] with the transition equation of
state. The entropy of matter together with fluids inside
the apparent horizon plus the entropy of the apparent
horizon always increase with time, which shows that the
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GSL is protected in the accelerating universe enveloped by
the apparent horizon.

In the usual standard big bang model a cosmological
event horizon is absent. The thermodynamics related to the
cosmological event horizon was studied in the dS space
[16], however in dS space, the cosmological event horizon
and apparent horizon degenerate. In a general accelerating
universe driven by DE with equation of state wp # —1, the
cosmological event horizon separates from that of the
apparent horizon. In this paper we have tried to apply the
usual definition of the temperature and entropy as that of
the apparent horizon to the cosmological event horizon and
examine the first and the second laws of thermodynamics.
In contrast to the case of the aparent horizon, we are
surprised to find that both the first and second law of
thermodynamics break down if we consider the universe
to be enveloped by the event horizon with the usual defi-
nitions of entropy and temperature. The break down of the
first law could be attributed to the possibility that the first
law may only apply to variations between nearby states of
local thermodynamic equilibrium, while the event horizon
reflects the global space-time properties. Besides in the
dynamic space-time, the horizon thermodynamics is not as
simple as that of the static space-time. The event horizon
and apparent horizon are in general different surfaces. The
definition of thermodynamical quantities on the cosmo-
logical event horizon in the nonstatic universe are probably
ill-defined. This was first argued in the quasi-de Sitter
geometry of the inflationary space-time [22].

Furthermore we would like to point out that the apparent
horizon serving as a specific surface was observed by
Bousso in studying the covariant entropy bound [24].
The apparent horizon was singled out as the largest surface
whose interior can be treated as a Bekenstein system,
which satisfies the Bekenstein’s entropy/mass bound § =
27RE and Bekenstein’s entropy/area bound S = A/4. In
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the region surrounded by the surface outside the apparent
horizon, one could satisfy Bekenstein entropy/mass bound
but break Bekenstein entropy/area bound, which indicates
a breakdown of the treatment of the enclosed region as a
Bekenstein system. Since Bekenstein bounds are universal,
all gravitational stable spacial regions with weak self-
gravity should satisfy Bekenstein bounds and the corre-
sponding thermodynamical system is a Bekenstein system.
This should also be true in cosmological situations. For the
dS situation, since the cosmological event horizon coin-
cides with the apparent horizon, the region enclosed by the
cosmological horizon satisfies Bekenstein bounds. How-
ever for the accelerating universe driven by DE with wp #
—1, from our Egs. (4) and (6) above, for example, we see
that at the event horizon dE > dRpg, or E > Rg. Although
the Bekenstein entropy/mass bound can be satisfied, the
Bekenstein entropy/area bound is violated, since § =
2@ER; > 7wR%. Thus the thermodynamic system outside
the apparent horizon is no longer a Bekenstein system and
the usual thermodynamic description breaks down.

To our knowledge, this thermodynamical problem re-
lated to the event horizon in the accelerating universe
driven by the DE has not been found before. The solution
of this problem requires further knowledge, which we do
not have at disposal at this moment.
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