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We resolve discrepancies in previous analyses of the flow of collisionless dark matter particles in the
Sun’s gravitational field. We determine the phase-space distribution of the flow both numerically, tracing
particle trajectories back in time, and analytically, providing a simple correct relation between the velocity
of particles at infinity and at the Earth. We use our results to produce sky maps of the distribution of arrival
directions of dark matter particles on Earth at various times of the year. We assume various Maxwellian
velocity distributions at infinity describing the standard dark halo and streams of dark matter. We illustrate
the formation of a ring, analogous to the Einstein ring, when the Earth is directly downstream of the Sun.
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I. INTRODUCTION

The motion of galaxies in the Universe cannot be ex-
plained by the gravitational pull of visible matter. Invisible
dark matter (DM) is introduced to account for galactic
rotation velocities and the gravitational interaction be-
tween galaxies. The spinning motion of the spiral disk of
our Milky Way Galaxy is too fast to be explained merely by
the gravity of its visible stars and gas, so it is assumed that
the disk is surrounded by a much larger halo that contains a
few stars but mostly unseen DM. A galaxy like our
Milky Way is about 10% visible matter (stars and gas)
and 90% unseen DM.

The nature of DM is one of the unsolved problems of
astrophysics and cosmology. Numerous theories have been
proposed regarding the nature of the DM, from brown
dwarf stars to MACHOs (massive compact halo objects)
and theoretical subatomic particles such as WIMPs
(weakly interacting massive particles) or axions. More
than 20 groups of physicists worldwide have been building
devices to detect DM particles.

Several of these devices aim to detect the elastic scat-
tering of WIMPs off a laboratory target. Some of them also
attempt to measure the direction from which the WIMPs
reach the detector. These directional searches will most
probably be the only observational way to explore the
astrophysical properties of WIMPs near the Solar
System. Current theoretical expectations for the local
WIMP distribution range from a virialized Maxwellian
velocity function (isothermal model) to a more or less
complex network of streams of WIMPs. These streams
arise either from the tidal disruption of satellite galaxies,
like the Sagittarius dwarf, or from the process of gravita-
tional collapse during the formation of the Milky Way
Galaxy.

For the planning and future interpretation of WIMP
searches, it is important to identify and analyze the density
and velocity distribution of DM particles in the Solar

System. Damour and Krauss [1], Gould [2], Gould and
Alam [3], and Lundberg and Edsjo [4] analyzed the trans-
fer of DM particles from unbound to bound orbits caused
by gravitational collisions with planets and by scattering
with nuclei inside the planets or the Sun. Previously, Danby
and Camm [5], Danby and Bray [6], Griest [7], and Sikivie
and Wick [8] studied the distribution of particles on un-
bound orbits, but their conclusions disagree with each
other. All these papers, with the exception of Sikivie and
Wick’s which was more general, assumed an isotropic
Maxwellian distribution of velocities for the particles at
infinity.

To resolve the discrepancies in the latter studies just
mentioned, and to prepare for an analysis of velocity
distributions more general than an isotropic Maxwellian,
this paper is devoted to clarifying the effect of the gravi-
tational field of the Sun on the distribution of unbound
orbits in our Solar System. We neglect the effects of the
planets on the DM particle distribution.

As an illustration of the problem we address, Fig. 1
depicts a flow of DM particles coming from infinity with
a mean velocity V relative to the Sun and a velocity
distribution function f�v� in the rest frame of the flow.
The gravitational pull of the Sun deflects the particles,
which speed up and get closer together as they approach
the Sun. This so-called gravitational focusing effect
changes the spatial density of particles near the Sun.

Our goal is to compute the phase-space density of dark
matter particles f�rE; vE� as a function of the particle
velocity vE at the position of Earth rE, starting from a
given, but arbitrary, velocity distribution at infinity, i.e. far
away from the Sun.

FIG. 1. Illustration of a flow of dark matter particles through
the gravitational field of the Sun.

*Electronic address: alenazi@physics.utah.edu
†Electronic address: paolo@physics.utah.edu

PHYSICAL REVIEW D 74, 083518 (2006)

1550-7998=2006=74(8)=083518(13) 083518-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.083518


The problem of the velocity distribution of a cloud of
noninteracting particles in the gravitational field of a point
mass was discussed by Danby and Camm [5] many years
ago. They gave an expression for the velocity distribution
function at any point in the Sun’s rest frame, but confined
themselves to points along the axis of symmetry. A few
years later, the same problem was considered again by
Danby and Bray [6], where they studied the gravitational
enhancement of the density of nonzero temperature inter-
stellar matter near a star by applying the velocity distribu-
tion function of Danby and Camm [5]. In their paper, they
discussed the problem away from the axis of symmetry. In
1988 Griest [7] studied the effect of the Sun’s gravity on
the distribution and detection of DM near the Earth in the
case of the isothermal model. Griest [7] considered the
annual modulation for the signal of DM detection and
obtained his velocity distribution function from Danby
and Camm [5], correcting, however, some errors and trans-
forming it to the Earth’s rest frame. He found that the
inclusion of bound particles in calculating the distribution
function has a negligible effect on direct detection of DM.
In 2002 Sikivie and Wick [8] analyzed the Sun’s gravita-
tional field for a flow with zero velocity dispersion through
the Solar System. They gave expressions for the density
and velocity distribution functions that they state were
different from the analogous expressions of Danby and
Camm [5] and Griest [7].

In this paper we show that Danby and Camm’s expres-
sion is correct (provided their unspecified parameter � is
set to �1), that Danby and Bray’s expression needs cor-
rections, that Griest’s expression is correct after fixing a
typo evident by comparing other equations in his paper,
and that Sikivie and Wick’s expression is correct. All
expressions but Danby and Bray’s match our analytic
formulas and numerical results.

This paper is organized as follows. In Sec. II, we present
a general discussion of the distribution function for a flow
of DM particles and the associated Boltzmann equation. In
Sec. III, we describe a numerical backward-in-time method
to determine the DM particle distribution function based
on an adjustable time-step and a predictor-corrector itera-
tion. In Sec. IV, an analytical expression for the particle
velocity at infinity v1 is derived. When used to compute
the particle distribution function, it gives the same results
as in the numerical backward-in-time method. In Sec. V we
show our results as sky maps of the distribution of arrival
directions of the particles on Earth. In Sec. VI, we compare
our results to the four analytical expressions for unbound
orbits mentioned above. Finally, we summarize our results
in Sec. VII.

II. THE DISTRIBUTION FUNCTION

For a system of N identical classical particles, the dis-
tribution function f�r; v; t� is given by

 dN � f�r; v; t�d3xd3v; (1)

where dN is the number of particles in the volume element
d3x centered at r whose velocities fall in the velocity
element d3v centered at v at time t. From the distribution
function, one can compute the macroscopic variables for
an ensemble of particles. For example, the density ��r; t�,
the number of particles per unit volume, is given by
��r; t� � �N=�V, where �N is the total number of parti-
cles in the volume element �V at r. In the limit �V ! d3x,
�N is the integral of dN over all velocities. Hence

 �N � d3x
Z
f�r; v; t�d3v (2)

and

 ��r; t� �
Z
f�r; v; t�d3v: (3)

An equation that governs the evolution of the distribu-
tion function f is the Boltzmann equation
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Here xi, vi, and ai are the Cartesian components of the
position, velocity, and acceleration vectors, respectively,
and a summation is implied over repeated indices. The
collision term on the right-hand side receives contributions
from particle collisions. However, cold dark matter is
collisionless, thus
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For a stationary distribution function f, we have @f=@t �
0. In this case, the Boltzmann equation reduces to

 vi
@f
@xi
� ai

@f
@vi
� 0: (6)

It follows that f is constant along trajectories; that is, if
r � r�t� and v � v�t� represent a particle trajectory,
f�r�t�; v�t�� � const, independent of t. This is Liouville’s
theorem.

To find the value of f�rE; vE� at the position of the Earth,
we determine the velocity v1 it had when it was far away
from the Sun. Then we use Liouville’s theorem to equate
f�rE; vE� to the distribution function at infinity f1�v1�,

 f�rE; vE� � f1�v1�: (7)

This is the basis of our analysis.
Attention must be paid to the reference frame in which

f1�v1� is given. In our discussion, we assume it is in the
frame of the Sun, namely, that the velocity v1 is measured
relative to the Sun. For example, in the particle flow
illustrated in Fig. 1, which approaches the Sun with mean
relative velocity V and with rest-frame distribution f�v�, a
Galilean transformation gives
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 f1�v1� � f�v1 � V�: (8)

In particular, for a Maxwellian distribution, the distribution
function in the rest frame of the flow reads

 f�v� �
�1

�2��2�3=2
exp

�
�

v2

2�2

�
; (9)

where �1 is the uniform particle density at infinity and� is
the velocity dispersion. In the Sun’s frame, it becomes

 f1�v1� �
�1

�2��2�3=2
exp

�
�
jv1 � Vj2

2�2

�
: (10)

III. NUMERICAL METHOD

A backward-in-time method is used to compute the
distribution function f for a flow of DM particles at the
Earth, given a velocity distribution f1�v1� far away from
the Sun.

To find the value of f�rE; vE� at the position of the Earth,
we place a particle at the point �rE; vE�, and follow its
trajectory numerically backward in time until it is far away
from the Sun, at position r1 with velocity v1 (see Fig. 2).
Since f is constant along every trajectory (Liouville’s
theorem), we have

 f�rE; vE� � f�r1; v1�: (11)

We set the latter equal to the given velocity distribution
f1�v1�. We choose jr1j � 90 AU.

The initial position r0 of each simulated trajectory is
taken to coincide with the position of the Earth rE,

 r 0 � rE: (12)

The initial velocity v0 is set to the opposite of the arrival
velocity of the particle on Earth,

 v 0 � �vE; (13)

so that the particle follows its trajectory backward in time.

For advancing particles along the trajectory, we use a
modified version of the algorithm described in [9].
Newton’s theory of gravity is used to produce a simulation
of the motion of particles in the gravitational field of the
Sun. In the simulation, the trajectories of DM particles in
the Solar System are traced as they are deflected by the
Sun’s gravitational field. The accuracy of the numerical
calculation is maintained by two techniques: an adjustable
time-step for advancing the orbit, and a predictor-corrector
iteration for improving the accuracy of each step.

As is well known, the acceleration of gravity on the
particles due to the Sun (of mass M and located at the
origin of the coordinate system) is given by

 a �r� � �
GM

r2 r̂; (14)

where G is Newton’s gravitational constant.
To move the particle along the trajectory, the calculation

uses a number of steps, up to 50 000, with a varying time-
step �t. If the acceleration were constant, equal to a, say,
the velocity of the particle would change in a time �t by
�v � a�t, and its position would change by �r � �v�t
with a velocity �v equal to the average of the velocity vi at
the beginning of the step and the velocity vi�1 at the end.
Since the particle moves in a nonuniform gravitational
field, there is an inevitable change in the acceleration.
But if the change in position is sufficiently small, the error
we make by assuming a constant acceleration can be made
as small as we wish.

Using the approximation that the position changes by
the average velocity during the time-step and the velocity
changes by the average acceleration, we have for the new
velocity and position

 r i�1 � ri � 1
2�vi � vi�1��t; (15)

 v i�1 � vi � 1
2�ai � ai�1��t; (16)

where ai � a�ri�; see Eq. (14). This is a nonlinear system
of six equations in six unknowns, ri�1 and vi�1, which we
solve using the predictor-corrector method described in the
next paragraph.

To compute vi�1 from Eq. (16) we need to know the
value of ri�1 that enters in ai�1, but to find ri�1 we need to
know vi�1 in Eq. (15). To break the cycle, we use an
iterative method, i.e. a series r�k�i�1, v�k�i�1 of successively
more accurate approximations to the position and velocity
at the end of the step (here k is the iteration number). We
start the iteration by setting

 r �1�i�1 � ri � vi�t� 1
2ai��t�

2; (17)

 v �1�i�1 � vi � ai�t: (18)

We refine the estimate using Eqs. (15) and (16) with r�k�i�1

and v�k�i�1 in the right-hand side, and r�k�1�
i�1 and v�k�1�

i�1 in the
FIG. 2. The figure shows the idea of the backward-in-time
method to compute the distribution function f.
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left-hand side. Our convergence condition is

 jv�k�1�
i�1 � v�k�i�1j � �pjai�tj; (19)

where �p is a dimensionless number. After some trials, we
found that �p � 10�3 was a good compromise between
accuracy and efficiency.

The time-step is adjusted as follows. At every step i, we
compute the acceleration ai�1 at the new position using a
trial time-step, and then compare the change in accelera-
tion ai�1 � ai during the step with the acceleration ai at its
beginning. If

 jai�1 � aij> �tljaij; (20)

where �tl is a small positive number, we deem �t too large.
In this case, we divide �t by 2 and restart the current step.
Otherwise, if

 jai�1 � aij � �tsjaij; (21)

where �ts is another small positive number, we deem �t
too small. In this case, we double �t and restart the current
step. This is repeated until the time-step �t is acceptable.
After some experimentation, we found that �tl � �ts �
10�3 is a good choice.

IV. ANALYTICAL METHOD

As an alternative to the numerical method, and as a cross
check of the calculation, the velocity at infinity v1 appear-
ing in Eq. (7) can also be computed analytically.

The expression for v1 can be obtained using the conser-
vation of the Laplace-Runge-Lenz vector following Sikivie
and Wick [8]. We give here a shorter derivation that will
lead to a simpler formula for v1.

The Laplace-Runge-Lenz vector per unit mass is

 A � v� �r� v� �GMr̂ � r?v2r̂? �GMr̂: (22)

Here r̂? � r?=r?, and r? is the projection of r perpen-
dicular to v (see Fig. 3).

Conservation of the Laplace-Runge-Lenz vector A im-
plies

 r?v
2r̂? �GMr̂ � bv2

1b̂�GMv̂1; (23)

where b is the impact parameter and b̂ is a unit vector

perpendicular to v1 in the same plane as v and r (see
Fig. 4).

Conservation of angular momentum in the form

 bv1 � r?v (24)

allows us to eliminate b from Eq. (23). Dividing the result
by r and using the identity r � r? � r � v̂ v̂ , the conserva-
tion of the A equation becomes

 

r?
r

�
v2 �

GM
r

�
r̂? �

GM
r

r̂ � v̂ v̂ �
r?
r
vv1b̂�

GM
r

v̂1:

(25)

Equation (25) is a relation between the unit vector bases
�r̂?; v̂� and �b̂; v̂1� (see Fig. 4). Introducing the rotation
angle � between the two bases, we write

 b̂ � cos�r̂? � sin�v̂; (26)

 v̂1 � sin�r̂? � cos�v̂: (27)

Inserting Eqs. (26) and (27) into Eq. (25), we have, in the
�r̂?; v̂� basis,

 

r?
r
vv1 cos��

GM
r

sin� �
r?
r

�
v2 �

GM
r

�
; (28)

 �
GM
r

cos��
r?
r
vv1 sin� �

GM
r

r̂ � v̂: (29)

Solving this linear system for cos� and sin�, we find

 cos� �
1

D

�
r2
?

r2 vv1

�
v2 �

GM
r

�
�

�
GM
r

�
2
r̂ � v̂

�
; (30)

 sin� �
1

D
r?
r
GM
r

�
v2 �

GM
r
� vv1v̂ � r̂

�
; (31)

where

 D �
�
v2 �

GM
r
� vv1v̂ � r̂

��
v2 �

GM
r
� vv1v̂ � r̂

�
:

(32)

Energy conservation in the form

FIG. 3. Definition of r? as used in the derivation of v1.
FIG. 4. Rotation of the basis vectors as a particle moves in the
Sun’s gravitational field.
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 v1 �

�����������������������
v2 �

2GM
r

s
(33)

has been used in deriving the above expression for D.
Notice in passing that D � jAj2=r2.

Substituting the above expressions for cos� and sin�
into Eq. (27), multiplying by v1, and canceling common
factors, we finally obtain the equation

 v1 �
v2
1v� v1�GM=r�r̂� v1v�v � r̂�
v2
1 � �GM=r� � v1�v � r̂�

(34)

where v1 is given in Eq. (33). As a simple check, when
M � 0, Eq. (34) correctly gives v1 � v. In our application,
v and r are the particle velocity and position when the
particle reaches the Earth, namely v � vE and r � rE.

The expression for v1 in Eq. (34) depends on the
Keplerian character of the potential, but is independent
of the velocity distribution function at infinity. This means
that it can be used not only for a Maxwellian distribution
but also for more general functions.

When we used Eq. (34) in the velocity distribution
function, Eq. (10), we achieved an excellent agreement
with our numerical backward-in-time method described
in the previous section. Later, in Sec. VI, we will show
that the expression for v1 in Eq. (34) matches formulas
used by Griest [7] and Sikivie and Wick [8].

V. PHASE-SPACE DISTRIBUTION

In this section, we present the velocity distribution of the
DM particles as they arrive at the Earth. We place the Earth
at different locations during the year, and plot the flux of
WIMPs as a function of their arrival direction n̂ at fixed
arrival speed vE.

A. Positions of the Earth

We specify the position of the Earth at different times of
the year by means of the ecliptic longitude of the Sun �	,
which varies from 0
 to 360
 during the course of one year.
Figure 5 shows how �	 changes as the Earth orbits the Sun.
At the vernal (or spring) equinox ( �March 21), �	 � 0
;
at the summer solstice ( � June 20), �	 � 90
; at the
autumnal equinox ( � September 21), �	 � 180
; and at
the winter solstice ( � December 20), �	 � 270
. Table I
summarizes the relation between the ecliptic coordinates
of the Sun, the beginning of the four astronomical seasons,
and their approximate calendar dates.

In the approximation of a circular orbit, one has the
following relation between �	 and the time of year t:

 �	 ’
360


1 yr
�t� tVE�: (35)

Here t is the time during the year, which e.g. runs from 0 at
midnight on New Year’s to 1 yr ’ 365:2425 days at the
end of the year. The time tVE is the time of the vernal

equinox, i.e. tVE ’ 79:25 days from midnight on New
Year’s to midnight on March 21.

We fix the origin of our coordinate system at the position
of the Sun (see Fig. 5). The x axis points in the direction of
the Earth’s position at the autumnal equinox, the y axis in
the direction of the Earth’s position at the winter solstice,
and the z axis is perpendicular to the Earth’s orbit. As seen
from the Earth, the x axis points toward the position of the
Sun at the vernal equinox, the y axis toward the position of
the Sun at the summer solstice, and the z axis toward the
North Pole of the ecliptic.

The position vector of the Earth is given by (for a
circular orbit)

 r E � ��cos�	x̂� sin�	ŷ� AU: (36)

Here 1 AU is the average distance between the Earth and
the Sun.

B. Velocities of the DM particles

To ensure that only unbound orbits are considered, we
constrain the particle speed vE to be equal to or greater
than the escape speed vesc at the Earth’s position,

FIG. 5. The ecliptic longitude of the Sun �	 changes from 0


to 360
 as the Earth orbits the Sun.

TABLE I. The table relates the position of the Sun in the sky in
ecliptic coordinates ��	; �	� to the beginning of the four astro-
nomical seasons and their approximate calendar dates.

Sun’s ecliptic
coordinates ��	; �	�

Season Date

(0
,0
) Vernal equinox � March 21
(90
,0
) Summer solstice � June 20

(180
,0
) Autumnal equinox � September 21
(270
,0
) Winter solstice � December 20
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 vE � vesc �

�����������
2GM
rE

s
: (37)

We specify the arrival direction of DM particles using a
unit vector n̂ pointing in the direction of arrival. We
represent the sky by a sphere centered at the Earth (celes-
tial sphere, see Fig. 6). We use the ecliptic coordinate
system in which the two coordinates of a point P on the
celestial sphere are (1) the ecliptic latitude �, which is the
angular distance from the ecliptic to P and varies from
�90
 at the Ecliptic North Pole to �90
 at the Ecliptic
South Pole, and (2) the ecliptic longitude �, which is the
angular distance along the ecliptic from the vernal equinox
to the great circle through P and is measured eastwards in
degrees from 0
 to 360
.

In ecliptic coordinates,

 n̂��;�� � cos� cos�x̂� cos� sin�ŷ � sin�ẑ: (38)

As can be seen from Fig. 6, since the unit vector n̂ points
in the direction from which the DM particle is coming, its
velocity points in the opposite direction. Thus the velocity
of the particle at the Earth is

 v E � �vEn̂

� �vE�cos� cos�x̂� cos� sin�ŷ � sin�ẑ�: (39)

In the backward-in-time method, the initial velocity of
the DM particle used to start the simulation is opposite to
the actual velocity of the particle at the Earth, that is, v0 �
�vE � �vEn̂.

C. Sky maps of the DM particle flux

In this section, we present sky maps that show the arrival
distribution of the DM particles for three cases: a stream
moving in the �y direction, a stream moving in the �x

direction, and the Maxwellian distribution of the standard
halo.

We start by deriving a formula for the flux of DM
particles that reach the Earth. The number of particles at
the Earth position is

 dN � f�rE; vE�d3xd3v: (40)

For a flux of particles, we write the volume element as

 d3x � dAdl � dAvEdt; (41)

where dA is an element of area orthogonal to the particle
flux, and dl � vEdt is the length traveled by the particles
of speed vE in a time dt. We use spherical coordinates in
velocity space, and write the velocity element as

 d3v � v2
EdvEd�; (42)

where d� is the solid angle in velocity space covered by
the arrival directions of the particles. Inserting Eqs. (41)
and (42) into Eq. (40), the number of particles becomes

 dN � f�rE; vE�v3
EdAdtdvEd�: (43)

We define the specific flux of DM particles reaching the
Earth from a direction n̂ � �v̂E as the flux of particles per
unit area per unit solid angle per unit speed,

 F�vE; n̂� 
dN

dAdtdvEd�
� f�rE; vE�v3

E: (44)

We produce sky maps of F�vE; n̂� by fixing the value of
vE and varying n̂ on a regular grid of 360 points in � and
100 points in sin�. A gray scale is used to represent the
values of F�vE; n̂�=�1, darker gray levels corresponding to
lower values of the specific flux. In all the maps, the
observer is on the Earth and looking toward the �x axis
(see Fig. 5), and the arrival speed of the DM particles is
fixed at vE � 30 AU=yr.

Figure 7 shows the specific flux for a stream of DM
particles moving toward the �y direction with velocity
Vy � 10 AU=yr and Vx � Vz � 0. The stream velocity
distribution at infinity is assumed to be Gaussian,
Eq. (10), with velocity dispersion � � 1 AU=yr. This
value of � is chosen so as to reduce the dispersion of the
flow and have a clear and sharp view of the distribution.
The map in Fig. 7(a) is for �	 � 0
, which occurs at the
time of the vernal equinox. In this map, the Sun is repre-
sented by a white dot at ��;�� � �0
; 0
�. The specific flux
is concentrated in the circular spot centered at ��;�� �
�270
; 0
�, which is in the �y direction, as it should be.
The map in Fig. 7(b) is for �	 � 270
, which occurs at the
time of the winter solstice. In this map, the specific flux has
spread out into a ring around the Sun. The origin of this
ring can be understood by referring to Fig. 1. In the case we
are discussing, the Earth is located at the point on the left of
the Sun where the two trajectories drawn cross each other.
An observer on the Earth sees particles coming from two
directions in the plane of the figure. One is the flux of

FIG. 6. Specification of the arrival direction of a dark matter
particle by means of a unit vector n̂ and ecliptic coordinates �
and � on the celestial sphere.
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particles passing on one side of the Sun, and the other is the
flux of particles passing on the other side. When the figure
is rotated around the Earth-Sun axis, the two directions
trace the ring in Fig. 7(b). This ring is analogous to the
Einstein ring in the gravitational lensing of light.

As a second example, we consider a stream approaching
the Solar System from the �x direction, with Vx �
�10 AU=yr and Vy � Vz � 0. We again assume a
Maxwellian velocity distribution at infinity with dispersion
� � 1 AU=yr. The corresponding particle specific flux is
shown in Fig. 8 at four successive times between the vernal
equinox ( � March 21) and the summer solstice ( � June
20). At the vernal equinox, Fig. 8(a), the Sun is directly in
front of the stream, at �	 � 0
. The Earth is on the leeward
side of the stream, i.e. directly behind the Sun (stream, Sun,
and observer are lined up in this order). In this case, the
observer sees the distribution of particles as a ring around
the Sun, as explained before for Fig. 7(b). Ten days later,
Fig. 8(b), the Sun has shifted eastward to �	 ’ 9:
9. Now
the observer sees an incomplete ring, because the Earth has
moved to a point where fewer particle trajectories cross
each other. As the observer’s location changes again [see
Fig. 8(c) for �	 ’ 19:
7, 20 days after the vernal equinox],
the ring starts to disappear because fewer and fewer tra-
jectories cross. Eventually, the observer sees a circular
spot, like in Fig. 8(d) at �	 � 90
, three months after the
vernal equinox.

Finally, we give an example of arrival distributions
under the assumption of a standard dark halo. In this
model, the DM particles are on average at rest relative to
the Galaxy, and their velocity distribution is Maxwellian
with velocity dispersion � � vLSR=

���
2
p

. Here vLSR is the

speed of the local standard of rest (LSR), which moves at
vLSR � 220 km=s relative to the Galactic rest frame in the
direction of the Galactic rotation. The latter is �l; b� �
�90
; 0
� in galactic coordinates, and ��;�� �
�347:
340; 59:
574� in ecliptic coordinates. In astronomical
units, � � 32:816 AU=yr. The other parameter we need is
the mean velocity of the flow V with respect to the Sun.
Alternatively, we can specify its opposite �V, i.e. the
velocity of the Sun with respect to the flow. In the standard
halo, the DM particles are on average at rest in the Galactic
rest frame, thus �V is the velocity of the Sun with respect
to the Galactic rest frame. We write it as the sum of the
velocity vSun�LSR of the Sun with respect to the LSR
(called the solar motion) and the velocity vLSR of
the LSR with respect to the Galactic rest frame. We take
the galactic components of the solar motion to be [10]
U � 10:00� 0:36 km=s (radially inwards), V �
5:25� 0:62 km=s (in the direction of Galactic rotation),
andW � 7:17� 0:38 km=s (vertically upwards). The cen-
tral values have a magnitude vSun�LSR � 13:378 km=s �
2:822 AU=yr in the direction �l; b� � �27:
70; 32:
409� or
��;�� � �248:
35; 32:
189�. Putting things together, we
have

 V � �vLSR � vSun�LSR: (45)

Converting from the galactic to the ecliptic coordinate
system and then our (x, y, z) coordinate system, we obtain
V � ��22:049; 7:372;�41:521� AU=yr in the direction
��;�� � ��18:
487; 60:
755�.

The arrival distribution of DM particles for vE �
30 AU=yr at four times of the year is shown in Fig. 9. As

(a)

(b)

FIG. 7. Specific flux of dark matter particles F�vE; n̂� for a stream moving toward the �y direction at (a) the vernal equinox, (b) the
winter solstice. The gray scale on the right shows the values of F�vE; n̂�=�1.
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before, the intensity of the gray levels represents the values
of the particle specific flux F�vE; n̂�=�1, with whiter re-
gions corresponding to a higher flux. The effect of gravi-
tational focusing near the Sun is evident. In order to help
the reader place the DM particle distribution in the sky, the
location of the brightest 1,986 stars (brighter than �5:17
visual magnitude) is indicated by black dots. The size of
each dot is proportional to the star’s magnitude. Notice the
constellation of Orion at � � 85
, � � �30
, and the
constellation of Ursa Major at the top left of the figure.
An almost sinusoidal ‘‘band’’ of stars can be followed from

the lower left corner through Orion up to the top center and
symmetrically down: it is the Milky Way.

VI. COMPARISON WITH PREVIOUS ANALYSES

In this section, we compare our results with analytical
expressions of Danby and Camm [5], Danby and Bray [6],
Griest [7], and Sikivie and Wick [8]. We find Danby and
Camm’s expression correct after fixing their unspecified
parameter �, Danby and Bray’s expression incorrect unless
few signs are changed, Griest’s expression correct after

FIG. 8. Sky maps showing the arrival distribution of 30 AU/yr dark matter particles moving in the �x direction with velocity
dispersion 1 AU/yr. (a) �	 � 0
 (vernal equinox), (b) �	 ’ 9:
9, (c) �	 � 19:
7, and (d) �	 � 90
 (summer solstice).
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fixing a typo, and Sikivie and Wick’s expression correct.
We checked that all distributions, with the exception of
Danby and Bray’s, match the results of our numerical and
analytical methods shown in Figs. 7–9.

A. Danby and Camm

In the work of Danby and Camm [5], the velocity
distribution function is determined at all points around

the Sun. Cylindrical polar coordinates �$;’; z� are used
with the origin at the center of attraction, and the z axis
directed towards the streaming cloud of particles (see
Fig. 10). The coordinate $ is the distance of the
Earth from the flow axis, and ’ is the azimuthal angle.
The corresponding velocity components are �, �, Z.
Danby and Camm’s distribution function at any point
reads, in their notation,

(a)

(b)

(c)

(d)

FIG. 9. Sky maps showing the arrival distribution of 30 AU/yr dark matter particles using standard halo parameters for � and V.
(a) �	 � 0
 (vernal equinox), (b) �	 � 90
 (summer solstice), (c) �	 � 180
 (autumnal equinox), and (d) �	 � 270
 (winter
solstice).
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 f � �2���3=2�0h3 exp
�
�

1

2
h2

�
c2 � I1 � 2c

I1Z� �I
1=2
1 	r�1 cos
� �I1=2

1 Z2 cos
� �I1=2
1 Z� sin


I1 �	r�1 � �I1=2
1 Z cos
� �I1=2

1 � sin


��
; (46)

where

 I1 � �2 ��2 � Z2 �
2	
r
: (47)

Since �, �, and Z are the velocity components and 	 �
GM, then I1 is identical to our v2

1 given by Eq. (33).
For the parameters h and �0, we have h � 1=� and

�0 � �1. The parameter c in Eq. (46) can be obtained
from the identity

 �2 ��2 � �Z� c�2 � jv� Vj2; (48)

which follows by comparing the exponents of the
Maxwellian velocity distributions in Eqs. (10) and (46).
We find c � V.

For the other parameters in Eq. (46), we use Fig. 10 to
define them in terms of our parameters and according to
our notation. In Fig. 10, Z is the component of the particle’s
velocity v along the z axis, � is the radial component of v
(orthogonal to the z axis), and 
 is the angle between the
�z axis and the position vector r. (The angle � is used by
Griest [7] and will be discussed later when comparing our
calculation to his results.) Since the velocity of the Sun vs
points in the �z direction, the angle 
 is also the angle
between r and vs. On the windward side of the axis of
symmetry (their z > 0), sin
 � 0 and cos
 � �1. On the
leeward side (their z < 0), sin
 � 0 and cos
 � �1. From
the rotational symmetry of the problem, the velocity dis-
tribution is independent of the azimuthal angle ’.

Using V � �vs � �ẑ, we have

 cos
 � r̂ � ẑ � �r̂ � V̂ (49)

and

 Z � v � ẑ � �v � V̂: (50)

Since � is the radial component of v, we can write it as

 � � v � ê$; (51)

where ê$ is a radial unit vector orthogonal to the z axis. An
expression for ê$ valid off the flow axis is

 ê$ �
r̂� r̂ � V̂ V̂

jr̂� r̂ � V̂ V̂ j
�

r̂� cos
V̂
sin


: (52)

The second equality follows from Eq. (49) and the fact that
sin
 > 0 for 0< 
< �. On the axis, sin
 � 0 and Eq. (52)
contains a division by zero. However, Danby and Camm’s
expression contains only the product ê$ sin
, which is well
defined. Indeed, their expression contains the combination
Z cos
�� sin
, which with the help of Eqs. (51) and (52)
becomes
 

Z cos
�� sin
 � �v � V̂ cos
�
v � r̂� cos
v � V̂

sin

sin


� v � r̂: (53)

According to our analysis and notation, Eq. (46) there-
fore takes the form

 f �
�1

�2��2�3=2
exp

�
�
FDC

2�2

�
; (54)

where

 FDC � V2 � v2
1 � 2V

�
v2
1v� �v1�GM=r�r̂� �v1v�v � r̂�
v2
1 � �GM=r� � �v1�v � r̂�

: (55)

We used I1 � v2
1, and cos
, Z, and Z cos
�� sin
 given

in Eqs. (47), (49), (50), and (53).
The quantity FDC can be put into the form

 FDC � V2 � v2
1 � 2V � v1 � jv1 � Vj2 (56)

with v1 given by Eq. (34) provided the parameter � � �1.
Danby and Camm introduced � in Eq. (46) to deal with

an ambiguity in the derivation of their formula. This am-
biguity leads Danby and Camm [5] to confine their atten-
tion to the axis of symmetry instead of making full use of
their expression. They solved their ambiguity by putting
cos
 � 1 and choosing � � �1 on the leeward side of the
z axis and� � �1 on the windward side. This choice gives
the correct solution on the z axis, because on this axis
sin
 � 0 and only the product � cos
 appears in Eq. (46).
With � � �1, the windward side has � cos
 � �1 and
the leeward side � cos
 � �1. These are the same values
that Danby and Camm obtain on the axis.

FIG. 10. Relating Danby and Camm’s [5] and Griest’s [7]
parameters to our parameters r, v, and V.
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We conclude that Danby and Camm’s expression is
correct provided � � �1 and care is taken in using
Eq. (53) for Z cos
�� sin
. Once this is done, their
expression gives the same results as our numerical and
analytical methods shown in Figs. 7–9.

B. Danby and Bray

Danby and Bray’s distribution function, Eqs. (2) and (3)
of their paper [6], reads, in their notation,

 f � �2���3=2�0h
3 exp

�
�h2

2
FDB

�
; (57)

where

 FDB � c2 � J2

� 2c
J2Z� J�	=r� cos
� JZ�Z cos
�� sin
�

J2 � �	=r� � J�Z cos
�� sin
�
:

(58)

Danby and Bray’s notation is the same as Danby and
Camm’s, except that J � I1=2

1 and that the direction of
the z axis in Fig. 10 has been reversed.

Danby and Bray’s formula is incorrect, as we now show.
In our notation we have [cf. Eqs. (49), (50), and (53)]

 cos
 � r̂ � V̂; (59)

 Z � v � V̂; (60)

 Z cos
�� sin
 � v � r̂: (61)

Hence,

 FDB � V2 � v2
1 � 2V

�
�v2

1v� v1�GM=r�r̂� v1v�v � r̂�
v2
1 � �GM=r� � v1�v � r̂�

: (62)

This formula is incorrect because the v2
1v term in the

numerator and the v1�v � r̂� term in the denominator
have the wrong sign. To fix Danby and Bray’s formula,
one should change the sign of the J2Z term in the numera-
tor and of the J�Z cos
�� sin
� term in the denominator
in Eq. (58).

C. Griest

Griest [7] used spherical coordinates with the Sun at the
origin and the positive z axis on the line from the Sun to the
Earth. He considered a cloud of DM particles that, far away
from the Sun, had a uniform density and an isotropic
Maxwellian distribution of velocities. Griest’s distribution
function [7] reads, in his notation,

 f � �2���3=2�0h3 exp
�
�h2

2
FG

�

�J2�; (63)

where

 FG � v2
s � J

2

� 2vs
J2Z� J�GM	=a�� cos
� JvZ cos�

J2 � �GM	=a�� � Jv cos�
: (64)

A typing mistake in Griest’s paper [7] was corrected in
writing the above expression for FG; namely, cos� in the
last term in the denominator was mistakenly written as
cos
. This typing mistake can be seen by comparing
Eqs. (2) and (5) of Griest’s paper [7].

The step function 
�J2� in Eq. (63) incorporates the
assumption that there are no particles in bound orbits. In
our calculation, we always have 
�J2� � 1.

In the expression of FG, vs is the Sun’s velocity with
respect to the cloud of DM, and according to our notation
vs � V. The parameter J2 is identical to v2

1, which is given
by Eq. (33). The parameters cos
 and Z are the same as in
Danby and Camm’s paper [5] and are related to our pa-
rameters by Eqs. (49) and (50). Furthermore, the parameter
v is the arrival speed of the DM particles on Earth with
respect to the Sun, a� is the distance between the Earth and
the Sun, h is the inverse of the velocity dispersion, and �0 is
the density of the particles at infinity. Converting to our
notation, we have M	 � M, a� � r, h � 1=�, and �0 �
�1. Finally, from Fig. 10 we can write

 cos� � v̂ � r̂: (65)

According to our analysis and notation, Griest’s formula
Eq. (63) takes the form

 f �
�1

�2��2�3=2
exp

�
�
FG

2�2

�
; (66)

where

 FG � V2 � v2
1 � 2V �

v2
1v� v1�GM=r�r̂� v1v�v � r̂�
v2
1 � �GM=r� � v1�v � r̂�

:

(67)

In writing the last expression, we used J � v1, and cos
,
Z, and cos� given in Eqs. (49), (50), and (65).

Equation (67) is equivalent to

 FG � V2 � v2
1 � 2V � v1 � jv1 � Vj2 (68)

provided v1 is given by Eq. (34). Thus Griest’s distribution
function is identical to our expression for the Maxwellian
distribution function, Eq. (10), and it gives the correct
distribution as in Figs. 7–9.

D. Sikivie and Wick

We also compared our results to the work of Sikivie and
Wick [8]. Sikivie and Wick gave a position-dependent
phase-space distribution in the presence of the Sun which
in their notation reads
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 f�r; v� �
d1

�
����
�
p

��3
exp

�
�

1

�2
SW

v2
G�r; v�

�
��v2

1�r; v��:

(69)

As in Griest’s paper [7], the step function ��v2
1�r; v��

incorporates the assumption that there are no particles in
bound orbits. In our calculation, we always have
��v2

1�r; v�� � 1. d1 � �1 is the density of the particles
at infinity, and �SW �

��������
2=3

p
�. The factor v2

G�r; v� in the
exponent of Eq. (69) is given by [8]

 v2
G�r; v� � �v	 � v1�r; v��2; (70)

where v	 � �V is the Sun’s velocity with respect to the
mean velocity of the DM particles, and v1�r; v� is given by
the following formula in Sikivie and Wick’s paper:

 v1�r; v� �
1

a2v2
1 � l

2

�
v�l2 � av2

1r� av1�r � v��

� rav2
1

�
1

r
�r � v� �

v2

v1
�
av1
r

��
: (71)

Here a � GM=v2
1, l2 � r2v2 � �r � v�2, and v1 is given

in Eq. (33).
The distribution function, Eq. (69), matches our DM

particle distribution. Indeed, Sikivie and Wick’s expression
for v1, Eq. (71), is analytically identical to ours, Eq. (34),
due to the cancellation of the common factor,

 v2 �
GM
r
� vv1v̂ � r̂; (72)

between the numerator and the denominator of their
expression.

VII. CONCLUSIONS

In this paper, we analyzed the distribution of a flow of
unbound collisionless DM particles in the Solar System,
both numerically and analytically. In particular, we fo-
cused on the velocity distribution at the location of the
Earth. We used Liouville’s theorem to relate the phase-
space distribution at the Earth to the velocity distribution at
infinity (Sec. II).

In the numerical method (Sec. III), we traced the trajec-
tories of the DM particles backward in time after they were
deflected by the Sun’s gravitational field. This numerical
method is independent of the special form of the gravita-
tional field and of the velocity distribution at infinity. The

calculation assumed Newtonian gravity for advancing the
trajectories until the particles returned to infinity. The
accuracy of the calculation was maintained by an adjust-
able time-step and a predictor-corrector iteration for im-
proving the accuracy of each step along the trajectory.

In the analytical method (Sec. IV) we obtained a for-
mula, Eq. (34), for the velocity of the DM particles at
infinity. That formula is valid for motion in a Keplerian
field, and is independent of the choice of velocity distri-
bution at infinity.

We applied both the numerical and the analytic methods
to a selection of Maxwellian velocity functions at infinity
representing streams of DM and the standard halo (Sec. V).
Comparison of the numerical and analytical calculations
gave the same results.

For these velocity functions, we produced a number of
sky maps showing the arrival distribution of DM particles
at the Earth—actually the specific flux defined in
Eq. (44)—at different times of the year (see Figs. 7 and
8). The maps also show the location of the Sun in the sky as
the Earth moves around the Sun. The arrival distribution of
DM particles under standard dark halo assumptions is
displayed in Fig. 9, which also shows the positions and
magnitudes of the brightest 1,986 stars in the sky.

The effect of the gravitational field of the Sun on the
distribution of DM particles is evident on these maps. For
example, the gravitational deflection produces a ring in the
arrival distribution when the Earth is directly on the other
side of the Sun as seen from the stream [see Figs. 7(b) and
8(a)]. This ring is analogous to the Einstein ring in the
gravitational lensing of light.

Finally, comparing our results with previous analyses,
we were able to resolve the issue of discrepant results in
Danby and Camm [5], Danby and Bray [6], Griest [7], and
Sikivie and Wick [8]. Danby and Camm’s distribution
function is correct on the axis of symmetry of the flow,
and their ambiguity in the choice of the parameter � can be
fixed by choosing � � �1. Danby and Bray have an
incorrect distribution with a couple of wrong signs.
Griest’s distribution is correct after fixing a typo evident
from comparing various equations in his paper. Sikivie and
Wick’s distribution is also correct. We checked that Danby
and Camm’s, Griest’s, and Sikivie and Wick’s distributions
match the results of our numerical and analytical expres-
sions shown in Figs. 7–9.
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